10806/157林物性

Linear Algebra, EE 10810EECS205004

First Exam (10:10 AM - 1:00 PM, Friday, October 30th, 2020) (Dated: Fall, 2020)

Total scores: 120

1. (20%) [Vector Space and Subspace]

Let W and U be subspace of a vector space V.

- (a) (5%) Prove that the vector $\vec{0} \in \mathcal{V}$ is unique.
- (b) (5%) Prove that for each element $\vec{x} \in \mathcal{V}$, there exists a unique vector \vec{y} , such that $\vec{x} + \vec{y} = \vec{0}$.
- (c) (5%) Is it possible that $\mathcal{W}\cap\mathcal{U}=\phi,$ i.e., ϕ denotes null. ? Why ?
- (d) (5%) Show that $W \cap \mathcal{U}$ is also a subspace of V.

2. (20%) [Basis and Dimension]

Let S be the set of all positive real numbers. Now, we want to make S as a vector space in V by asking the following definitions for vectors, vector addition and scalar multiplication:

- Each element of S will be considered as a "vector" in \mathcal{V} .
- For $A, B \in S$, a "vector sum" is defined as

$$A + B \equiv A B, \tag{1}$$

where the product on the right is the usual product of two real numbers.

• For $c \in \mathcal{R}(\text{real})$, and $A \in S$, a "scalar multiplication" is defined as

$$c \cdot A \equiv A^c, \tag{2}$$

that is the real number A raised to the c power.

Now the questions are

- (a) (5%) What is the zero vector in \mathcal{V} ?
- (b) (10%) Give an example of a set of basis vectors for V.
- (c) (5%) What is the dimension of V?

3. (10%) [Invertibility]

Let $\hat{T}: \mathcal{V} \to \mathcal{V}$ be a linear transformation and $\hat{T}^3(\vec{v}) = 0$ for all $\vec{v} \in \mathcal{V}$. Find the inverse of $\hat{I} - \hat{T}$, where \hat{I} is the identity transformation.

4. (15%) [Linear Transformation]

Let $\overline{\overline{M}}_{2\times 2}(\mathcal{R})$ be the set of 2×2 real matrices. Let $\hat{T}:\overline{\overline{M}}_{2\times 2}(\mathcal{R})\to \overline{\overline{M}}_{2\times 2}(\mathcal{R})$ be the mapping defined by $\hat{T}(\overline{\overline{A}})=\overline{\overline{B}}\,\overline{\overline{A}}$, where $\overline{\overline{B}}=\begin{bmatrix}1 & -1\\ 1 & -1\end{bmatrix}$ and $\overline{\overline{A}}\in\overline{\overline{M}}_{2\times 2}(\mathcal{R})$.

- (a) (5%) Verify that \hat{T} is a linear operator on $\overline{\overline{\mathbf{M}}}_{2\times 2}(\mathcal{R})$.
- (b) (5%) Find the range space of \hat{T} , i.e., $R(\hat{T})$.
- (c) (5%) Find the nullspace of \hat{T} , i.e., $N(\hat{T})$.

5. (10%) Write down the Dimension Theorem, and Explain its meaning in your words.

6. (25%) [Inverse and Transpose]

Let \tilde{A} be a matrix with the property that

$$\bar{\bar{\mathbf{A}}}^{-1} \equiv c \,\bar{\bar{\mathbf{A}}}^T. \tag{3}$$

(a) (5%) Show that the matrix $\bar{\bar{\mathbf{B}}}$ defined as

$$\bar{\bar{\mathbf{B}}} = \begin{bmatrix} \bar{\bar{\mathbf{A}}} & \bar{\bar{\mathbf{A}}} \\ -\bar{\bar{\mathbf{A}}} & \bar{\bar{\mathbf{A}}} \end{bmatrix},\tag{4}$$

has the inverse in the form

$$\bar{\bar{\mathbf{B}}}^{-1} = d \, \bar{\bar{\mathbf{B}}}^T. \tag{5}$$

- (b) (5%) Find the formula for d.
- (c) (5%) Find $\bar{\bar{\mathbf{B}}}^{-1}$ for the case

$$\bar{\bar{\mathbf{A}}} = \begin{bmatrix} 4 & 3 \\ -3 & 4 \end{bmatrix}. \tag{6}$$

- (d) (5%) Find the inverse for the cases in which $\bar{\bar{\bf A}}$ is the 1 × 1 matrix, i.e., $\bar{\bar{\bf A}}=[1]$.
- (e) (5%) Find a formula for the inverse of the matrix

$$\ddot{\bar{C}} = \begin{bmatrix} \ddot{\bar{B}} & \ddot{\bar{B}} \\ -\ddot{\bar{B}} & \ddot{\bar{B}} \end{bmatrix}. \quad (7)$$

7. (20%) [Rotation]

(a) (5%) In 2D, FIG. 1 (Left), Show that the matrix \overline{R}_2 rotates the column vectors, counterclockwise, with an angle θ has the form:

$$\overline{\overline{R}}_{2} = [\hat{I}_{\mathcal{R}^{2}}]_{\beta'}^{\beta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \tag{8}$$

FIG. 1:

(b) (5%) In 3D, FIG. 1 (Right), by considering the rotation about the ẑ-axis, but clockwise, Construct the corresponding rotation matrix, \(\overline{R}_3\),

$$\overline{\overline{R}}_{3} = [\hat{I}_{\mathcal{R}^{3}}]_{\beta'}^{\beta} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}. \tag{9}$$

(c) (10%) Now, instead, Find the matrix of the rotation by 90° , counterclockwise, about the line spanned by the vector $\vec{c} = (1, 2, 2)$. Hint: you may try vectors $\vec{a} = (-2, -1, 2)$, $\vec{b} = (2, -2, 1)$, and \vec{c} as the bases for β' .