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e 2nd Exam on Dec. xxth, (10:10AM - 1:00 PM, Friday), covering Chap. 2.6, Chap. 3, Chap. 4, Chap 5.

e Solutions for 1st Exam:

— 1(c): Not possible.

—2(a): {1}

— 2(b): {R},R > 0& R # 1; any positive real number, but not 1.
—2(c): dim(V) =1
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e Assignment:
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1. Prove that E is an elementary matrix if and only if F is.

2. Find the rank of the following matrices:
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From Scratch !!

Definition: the dual space of V is the vector space L(V, F'), denoted by V*.

Theorem 2.24: Let 8 = {#1,%2,...,%n} be the ordered basis of V, and we can find 8* = {f_i,f_é, .. ,f,;} as an ordered
basis for V*, for any f € V*, we have

F=Y @) fi (2)

Definition: the ordered bases 8* = {fi, fa, ..., fu} of V* that satisfies f;(Z;) = d,; is called the dual basis of 3.

Theorem 2.25: for any linear transformation 7" : V — W, the mapping 7" : W* — V* definted by 1" (9) = gT for all
g € W* is a linear transformation with the property hat

(122 = (17" (3)

Definition: for a £ € V, the linear functional on V" is defined as & : V* — F by & = f(x).
Lemma: If Z(f) =0 for all f € V*, then & = 0.
Theorem 2.26: ¢ : V — V** by ¢(Z) = & is an isomorphism.

Corollary: every ordered basis for V* is the dual basis for some basis for V.
Section 2.7: Homogeneous Linear Differential Equations with constant coefficients

Definition: Elementary row [column] operations:

Type 1, 2, and 3 elementary matrix: f, 5, and E

Theorem 3.1: There exists an m X m (n X n) elementary matrix E, such that B = ﬁmxn (or B= jman)

Theorem 3.2: Elementary matrices are invertible, and the inverse oof an elementary matrix is an elementary matrix of
the same type.

Definition: If A € ﬁmxn(F), the rank of j, denoted rank(A), is the rank of the linear transformation L4 : F™ — F™.
Corollary of Theorem 2.18: an n X n matrix is invertible if and only if its rank is n.
Theorem 3.3: rank(T) = rank([T]g)

Theorem 3.4: If fmxm and 5 are invertible matrices, then

nxn
1. rank(jmxné) = rank(j),
2. rank(ﬁmxn) = rank(j ,

3. rank(ﬁana) = rank(A),

Corollary: Elementary row and column opeartion on a matrix are rank-preserving.
Theorem 3.5: The rank of any matrix equals the maximum number of its linearly independent columns;

Theorem 3.5: The rank of a matrix is the dimension of the subspace generated by its columns.

Theorem 3.6: Let ian has the rank r. Then r < m, r <n, and a can be transformed into
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Corollay 2: rank(A ) = rank(A)



