EE2030Linear Algebra

Homework#4

Due: 04/26/2023 10:10(Wed)

1. The floor \mathbf{V} and the wall \mathbf{W} are not orthogonal subspaces, because they share a nonzero vector (along the line where they meet). No planes \mathbf{V} and \mathbf{W} in \mathbf{R}^3 can be orthogonal! Find a vector in the column spaces of both matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{bmatrix}$$

This will be a vector $A\mathbf{x}$ and also $B\hat{\mathbf{x}}$. Think 3 by 4 with the matrix [A B].

- 2. If **S** is the subspace of \mathbf{R}^3 containing only the zero vector, what is \mathbf{S}^{\perp} ? If **S** is spanned by (1,1,1), what is \mathbf{S}^{\perp} ? If **S** is spanned by (1,1,1) and (1,1,-1), what is a basis for \mathbf{S}^{\perp} ?
- 3. Why is each of these statements false:
 (a) (1,1,1) is perpendicular to (1,1,-2) so the planes x+y+z=0 and x+y-2z=0 are orthogonal spaces.
 (b) The subspace spanned by (1,1,0,0,0) and (0,0,1,1,1) is the orthogonal complement of the subspace spanned by (1,-1,0,0,0) and (2,-2,3,4,-4).
 (c) Two subspaces that meet only in the zero vector are orthogonal.
- 4. (Quick and Recommend) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\mathbf{b} = (1,2,3,4)$ onto the column space of A.What shape is the projection matrix P and what is P?
- 5. If $P^2 = P$ show that $(I-P)^2 = I-P$. When P projects onto the column space of A, I-P projects onto the _____.
- 6. Use $P^T = P$ and $P^2 = P$ to prove that the length squared of column 2 always equals the diagonal entry P_{22} . This number is $\frac{2}{6} = \frac{4}{36} + \frac{4}{36} + \frac{4}{36}$ for

$$P = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

- 7. The average of the four times is $\hat{t} = \frac{1}{4}(0+1+3+4) = 2$. The average of the four b's is $\hat{b} = \frac{1}{4}(0+8+8+20) = 9$.
 - (a) Verify that the best line goes through the center point $(\widehat{t},\widehat{b})=(2,9)$.
 - (b) Explain why $C+D\hat{t}=\hat{b}$ comes from the first equation in $A^TA\hat{\mathbf{x}}=A^T\mathbf{b}$.

- 8. This problem projects b = (b₁, ..., b_m) onto the line through a = (1,...,1). We solve m equations ax=b in 1 unknown (by least squares).
 (a) Solve a^T ax̂ = a^T b to show that x̂ is the mean (the average) of the b's.
 (b) Find e = b ax̂ and the variance ||e||² and the standard deviation ||e||.
 (c) The horizontal line b̂ = 3 is closest to b = (1,2,6). Check that p = (3,3,3) is perpendicular to e and find the 3 by 3 projection matrix P.
- 9. Find the best line C+Dt to fit b = 4,2,-1,0,0 at times t = -2,-1,0,1,2.
- 10. Find orthogonal vectors A,B,C by Gram-Schmidt from a, b,c:

$$\mathbf{a} = (1, -1, 0, 0)$$
 $\mathbf{b} = (0, 1, -1, 0)$ $\mathbf{c} = (0, 0, 1, -1)$

A,**B**,**C** and **a**,**b**,**c** are bases for the vectors perpendicular to $\mathbf{d} = (1,1,1,1)$.

11. (a) Find a basis for the subspaces \mathbf{S} in \mathbf{R}^4 spanned by all solutions of

 $x_1 + x_2 + x_3 - x_4 = 0$

- (b) Find a basis for the orthogonal complement \mathbf{S}^{\perp} .
- (c) Find \mathbf{b}_1 in \mathbf{S} and \mathbf{b}_2 in \mathbf{S}^{\perp} so that $\mathbf{b}_1 + \mathbf{b}_2 = \mathbf{b} = (1, 1, 1, 1)$
- 12. (a) Choose c so that Q is an orthogonal matrix:

Projects $\mathbf{b} = (1,1,1,1)$ onto the first column. Then project \mathbf{b} onto the plane of the first two columns.