EE2030Linear Algebra

Homework#1

Due: 03/10/2023 10:10(Fri)

1. For which three number a will elimination fail to give three pivots?

$$A = \begin{bmatrix} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{bmatrix}$$
 is singular for three values of a.

- 2. Suppose elimination takes A to U without row exchanges. Then row j of U is a combination of which rows of A? If $A\mathbf{x} = 0$, is $U\mathbf{x} = 0$? If $A\mathbf{x} = b$, is $U\mathbf{x} = b$? If A starts out lower triangular, what is the upper triangular U?
- 3. Choose the numbers a, b, c, d in this augmented matrix so that there is (a) no solution (b) infinitely many solutions.

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & a \\ 0 & 4 & 5 & b \\ 0 & 0 & d & c \end{bmatrix}$$

Which of the numbers a, b, c or d have no effect on the solvability?

4. Find elimination matrices E_{21} then E_{32} then E_{43} to change K into U:

$$E_{43}E_{32}E_{21}\begin{bmatrix}2&-1&0&0\\-1&2&-1&0\\0&-1&2&-1\\0&0&-1&2\end{bmatrix} = \begin{bmatrix}2&-1&0&0\\0&3/2&-1&0\\0&0&4/3&-1\\0&0&0&5/4\end{bmatrix}$$

Apply those three steps to the identity matrix I, to multiply $E_{43}E_{32}E_{21}$.

- 5. True or false:
 - (a) If A^2 is defined then A is necessarily square.
 - (b) If AB and BA are defined then A and B are square.
 - (c) If AB and BA are defined then AB and BA are square.
 - (d) If AB = B then A = I.
- 6. Which matrices E_{21} and E_{31} produce zeros in the (2,1) and (3,1) positions of $E_{21}A$ and $E_{31}A$?

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \\ 8 & 5 & 3 \end{bmatrix}$$

Find the single matrix $E = E_{31}E_{21}$ that produces both zeros at once. Multiply EA.

7. For which three numbers c is this matrix not invertible, and why not?

$$A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$$

- 8. A is a 4 by 4 matrix with 1's on the diagonal and -a, -b, -c on the diagonal above. Find A^{-1} for this bidiagonal matrix.
- 9. Compute L and U for the symmetric matrix A:

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

Find the four conditions on a, b, c, d to get A = LU with four pivots.

10. If A=LDU and also $A=L_1D_1U_1$ with all factors invertible, then $L=L_1$ and $D=D_1$ and $U=U_1$. "The three factors are unique."

Derive the equation $L_1^{-1}LD = D_1U_1U^{-1}$. Are the two sides triangular or diagonal? Deduce $L=L_1$ and $U=U_1$ (they all have diagonal l's). Then $D=D_1$.

11. Which permutation makes PA upper triangular? Which permutations make P_1AP_2 lower triangular? **Multiplying** A on the right by P_2 exchanges the _____ of A.

$$A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$$

12. Factor the following matrix into PA=LU. Factor it also into $A=L_1P_1U_1$ (hold the exchange of row 3 until 3 times row 1 is subtracted from row 2):

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 2 & 1 & 1 \end{bmatrix}$$