EE2030Linear Algebra

Homework#5 reference solution

1.

The first determinant is 0. The second is $1 - 2t^2 + t^4 = (1 - t^2)^2$

2.

Here
$$A=LU$$
 with $\det(L)=1$ and $\det(U)=-6=$ product of pivots, so also $\det(A)=-6$. $\det(U^{-1}L^{-1})=-\frac{1}{6}=1/\det(A)$ and $\det(U^{-1}L^{-1}A)$ is $\det I=1$.

3.

(a)
$$\mathit{True}$$
: $\det(AB) = \det(A) \det(B) = 0$ (b) False : A row exchange gives $-\det =$ product of pivots. (c) False : $A = 2I$ and $B = I$ have $A - B = I$ but the determinants have $2^n - 1 \neq 1$ (d) True : $\det(AB) = \det(A) \det(B) = \det(BA)$.

4.

(a)
$$C_1 = 0$$
, $C_2 = -1$, $C_3 = 0$, $C_4 = 1$ (b) $C_n = -C_{n-2}$ by cofactors of row 1 then cofactors of column 1. Therefore $C_{10} = -C_8 = C_6 = -C_4 = C_2 = -1$.

5.

 $G_2 = -1$, $G_3 = 2$, $G_4 = -3$, and $G_n = (-1)^{n-1}$ (n-1). One way to reach that G_n is to multiply the n eigenvalues $-1, -1, \ldots, -1$, n-1 of the matrix.

6.

 $\det P = -1$ because the cofactor of $P_{14} = 1$ in row one has sign $(-1)^{1+4}$. The big formula for $\det P$ has only one term $(1 \cdot 1 \cdot 1 \cdot 1)$ with minus sign because three exchanges take 4, 1, 2, 3 into 1, 2, 3, 4; $\det(P^2) = (\det P)(\det P) = +1$ so

$$\det \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \det \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ is not right.}$$

7.

$$C = \begin{bmatrix} 6 & -3 & 0 \\ 3 & 1 & -1 \\ -6 & 2 & 1 \end{bmatrix} \text{ and } AC^{\mathrm{T}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \quad \text{This is } (\det A)I \text{ and } \det A = 3.$$

$$\text{The } 1, 3 \text{ cofactor of } A \text{ is } 0.$$

$$\text{Then } C_{31} = 4 \text{ or } 100 \text{: no change.}$$

8.

 $\begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 4 = \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix}$ because the transpose has the same determinant.

9.

The box has height 4 and volume
$$= \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 4 \end{bmatrix} = 4$$
. $\boldsymbol{i} \times \boldsymbol{j} = \boldsymbol{k}$ and $(\boldsymbol{k} \cdot \boldsymbol{w}) = 4$.