EE2030Linear Algebra

Homework#3

Due: 03/29/2023 10:10(Wed)

1. (a)Solvable if $b_2 = 2b_1$ and $3b_1 - 3b_3 + b_4 = 0$. Then $x = \begin{bmatrix} 5b_1 - 2b_3 \\ b_3 - 2b_1 \end{bmatrix} = x_p$ (b) Solvable if $b_2 = 2b_1$ and $3b_1 - 3b_3 + b_4 = 0$. $x = \begin{bmatrix} 5b_1 - 2b_3 \\ b_3 - 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Rank = 2; rank = 3 unless q = 2(then rank = 2). Transpose has the same rank!
 3.

$$\begin{bmatrix} 1 & 0 & 2 & 3 & \mathbf{2} \\ 1 & 3 & 2 & 0 & \mathbf{5} \\ 2 & 0 & 4 & 9 & \mathbf{10} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & \mathbf{2} \\ 0 & 3 & 0 & -3 & \mathbf{3} \\ 0 & 0 & 0 & 3 & \mathbf{6} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & -\mathbf{4} \\ 0 & 1 & 0 & 0 & \mathbf{3} \\ 0 & 0 & 0 & 1 & \mathbf{2} \end{bmatrix}; \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix}; x_n = x_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

- 4. Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and 2 are bases for the (equal) row spaces of A and U; (1, 1, 1) is a basis for the (equal) nullspaces.
- 5. A has rank 2 if c = 0 and d = 2; $B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}$ has rank 2 except when c = d or c = -d.
- 6. The dimension of **S** spanned by all rearrangements of \mathbf{x} is
 - (a) zero, when $\mathbf{x} = \mathbf{0}$
 - (b) one, when $\mathbf{x} = (1, 1, 1, 1)$
 - (c) three, consider a non-zero vector (x_1, x_2, x_3, x_4) such that $x_1+x_2+x_3+x_4 = 0$, i.e., its dot product with (1, 1, 1, 1) is 0.

(d) four when the \mathbf{x} 's are not equal and don't add to zero. No \mathbf{x} gives dim $\mathbf{S} = 2$.

- 7. Row space basis can be the nonzero rows of U: (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2); nullspace basis (0, 1, 2, 1) as for U; column space basis (1, 0, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 1); (happen to have $\mathbf{C}(A) = \mathbf{C}(U) = \mathbb{R}^3$); left nullspace has empty basis.
- 8. $row(3) 2row(2) + row(1) = \vec{0}$ so the vectors c(1, -2, 1) are in the left nullspace. The same vectors happen to be in the nullspace (an accident for this matrix).

9. (a) AX = 0, if each column of X is a multiple of (1, 1, 1); dim(nullspace) = 3.
(b) If AX = B then all columns of B add to zero; dimension of the B's = 6.
(c) 3 + 6 = dim(M^{3×3}) = 9 entries in a 3 by 3 matrix