EECS205003 Linear Algebra, Fall 2020

Quiz # 9, Solutions

Prob. 1:

Let $B = \{(1, -1, 2, 0, -1), (0, 1, 5, 2, -1), (0, 0, 23, 2, -7)\}$. Since Span(S) = Span(B) and B is linearly independent, $\{(1, -1, 2, 0, -1), (0, 1, 5, 2, -1), (0, 0, 23, 2, -7)\}$ is a basis for Span(S).

<u>Prob. 2:</u>

It is clear that the column space of the following matrix is \mathbb{R}^3 :

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix}.$$

By elementary row operations, we have

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & -3 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & -3 & -2 \end{bmatrix}.$$

We can see that the pivots are in the first, the second and the third columns. Thus by Theorem 5.2.13, $\{(-1,2,-3),(1,0,0),(0,1,0)\}$ is a basis for \mathbb{R}^3 extended from S.

Prob. 3:

For a $p = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0 \in \mathbb{P}_5$, we have $p' = 5a_5 t^4 + 4a_4 t^3 + 3a_3 t^2 + 2a_2 t + a_1$ and $p'' = 20a_5 t^3 + 12a_4 t^2 + 6a_3 t + 2a_2$ so that

$$L(p) = p'' - p' = (20a_5t^3 + 12a_4t^2 + 6a_3t + 2a_2) - (5a_5t^4 + 4a_4t^3 + 3a_3t^2 + 2a_2t + a_1)$$

= $-5a_5t^4 + (20a_5 - 4a_4)t^3 + (12a_4 - 3a_3)t^2 + (6a_3 - 2a_2)t + (2a_2 - a_1).$

Now $p \in \text{Ker}(L)$ if and only if $-5a_5 = 20a_5 - 4a_4 = 12a_4 - 3a_3 = 6a_3 - 2a_2 = 2a_2 - a_1 = 0$ if and only if $a_5 = a_4 = a_3 = a_2 = a_1 = 0$. Thus we have $\text{Ker}(L) = \{a_0 \mid a_0 \in \mathbb{R}\} = \mathbb{P}_0 = \text{the set of all constant polynomials.}$

It is clear that Range(L) is a subset of \mathbb{P}_4 . We claim that Range(L) is exactly \mathbb{P}_4 . For a polynomial $q = b_4t^4 + b_3t^3 + b_2t^2 + b_1t + b_9$ in \mathbb{P}_4 . To find a $p \in \mathbb{P}_5$ such that L(p) = q, we have to solve the following system of linear equations

$$\begin{array}{rcl}
-5a_5 & = & b_4 \\
20a_5 - 4a_4 & = & b_3 \\
12a_4 - 3a_3 & = & b_2 \\
6a_3 - 2a_2 & = & b_1 \\
2a_2 - a_1 & = & b_0
\end{array}$$

which has a solution $a_5 = -\frac{b_4}{5}$, $a_4 = -\frac{b_3}{4} - b_4$, $a_3 = -\frac{b_2}{3} - b_3 - 4b_4$, $a_2 = -\frac{b_1}{2} - b_2 - 3b_3 - 12b_4$, $a_1 = -b_0 - b_1 - 2b_2 - 6b_3 - 24b_4$, and a_0 arbitrary. Thus Range $(L) = \mathbb{P}_4$.

Since $Codomain(L) = \mathbb{P}_5$, $Dim(Codomain(L)) = Dim(\mathbb{P}_5) = 6$.

Prob. 4:

- (1) (i) Since $(0,0,\cdots) \in U$, U is nonempty.
 - (ii) For all $a = (a_1, a_2, a_3, \dots), b = (b_1, b_2, b_3, \dots) \in U$, let $c = (c_1, c_2, c_3, \dots) = a + b$. Then for all $n \geq 4$, we have

$$c_n = a_n + b_n = (a_{n-1} - 2a_{n-2} - a_{n-3}) + (b_{n-1} - 2b_{n-2} - b_{n-3})$$

$$= (a_{n-1} + b_{n-1}) - 2(a_{n-2} + b_{n-2}) - (a_{n-3} + b_{n-3})$$

$$= c_{n-1} - 2c_{n-2} - c_{n-3}.$$

Thus $c \in U$ and U is closed under the vector addition.

(iii) For all $x=(x_1,x_2,x_3,\cdots)\in U$ and $\alpha\in\mathbb{R}$, let $y=\alpha x$. Then for all $n\geq 4$, we have

$$y_n = \alpha x_n = \alpha (x_{n-1} - 2x_{n-2} - x_{n-3}) = y_{n-1} - 2y_{n-2} - y_{n-3}.$$

Thus $y \in U$ and U is closed under the scalar multiplication.

Therefore, U is a subspace of \mathbb{R}^{∞} by Theorem 5.1.1.

(2) First we note that since every component of a sequence in U is uniquely determined by its first three components, two sequences in U are equal to each other if only if their first three components are the same.

Consider three sequences

$$a=(1,0,0,-1,\cdots), b=(0,1,0,-2,\cdots)$$
 and $c=(0,0,1,1,\cdots),$

in U and let $S = \{a, b, c\}$. Since $\alpha_1 a + \alpha_2 b + \alpha_3 c = 0$ if and only if $(\alpha_1, \alpha_2, \alpha_3) = (0, 0, 0)$, S is a linearly independent set.

Since $a, b, c \in U$ and U is a vector space, so we have $Span(S) \subseteq U$.

For all $x=(x_1,x_2,x_3,\cdots)\in U$, since x has the same first three components with $x_1a+x_2b+x_3c$, we have $x=x_1a+x_2b+x_3b\in \mathrm{Span}(S)$, so $U\subseteq \mathrm{Span}(S)$ and then $U=\mathrm{Span}(S)$. Thus S is a basis for U. Since there are three sequences in S, $\mathrm{Dim}(U)=3$.

Prob. 5:

- (i) Since V contains the zero matrix O, it is a nonempty set.
- (ii) For all $A_1, A_2 \in V$, $(A_1 + A_2)B = A_1B + A_2B = O + O = O$, so $A_1 + A_2 \in V$ and V is closed under the vector addition.
- (iii) For all $A \in V$ and $\alpha \in \mathbb{R}$, $(\alpha A)B = \alpha(AB) = \alpha O = O$, so V is closed under the scalar multiplication.

From (i), (ii), and (iii), V is a subspace of $M^{n \times n}$ by Theorem 5.1.1.

Since AB = O, $B^TA^T = O$. Let \mathbf{r}_i be the *i*th row of A. Then $B^TA^T = O$ if and only if $\mathbf{r}_i^T \in \operatorname{Ker}(B^T)$ for all $1 \leq i \leq n$. Thus A is the set of all $n \times n$ matrices such that each row of A is the transpose of a column vector in $\operatorname{Ker}(B^T)$. Let $k = \operatorname{Dim}(\operatorname{Ker}(B^T))$ and $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ be a basis of $\operatorname{Ker}(B^T)$. Then $A \in V$ if and only if

$$A = \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \vdots \\ \mathbf{r}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{r}_{2} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{r}_{n} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{k} \alpha_{1j} \mathbf{u}_{j}^{T} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \sum_{j=1}^{k} \alpha_{2j} \mathbf{u}_{j}^{T} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \sum_{j=1}^{k} \alpha_{nj} \mathbf{u}_{j}^{T} \end{bmatrix}$$

$$= \sum_{j=1}^{k} \alpha_{1j} \begin{bmatrix} \mathbf{u}_{j}^{T} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \sum_{j=1}^{k} \alpha_{2j} \begin{bmatrix} \mathbf{0} \\ \mathbf{u}_{j}^{T} \\ \vdots \\ \mathbf{0} \end{bmatrix} + \sum_{j=1}^{k} \alpha_{nj} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{u}_{j}^{T} \end{bmatrix} = \sum_{i=1}^{n} \sum_{j=1}^{k} \alpha_{ij} M_{ij},$$

where α_{ij} are arbitrary scalars and M_{ij} is the $n \times n$ matrix such that the *i*th row of M_{ij} is \mathbf{u}_j^T while all the other rows are zero rows. Then $S = \{M_{ij} | 1 \le i \le n, 1 \le j \le k\}$ spans V. Consider a linear relation on S,

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \alpha_{ij} M_{ij} = O$$

where α_{ij} are scalars. Then we have

$$\sum_{j=1}^{k} \alpha_{ij} \mathbf{u}_{j}^{T} = \mathbf{0} \ \forall \ 1 \leq i \leq n \text{ if and only if } \sum_{j=1}^{k} \alpha_{ij} \mathbf{u}_{j} = \mathbf{0} \ \forall \ 1 \leq i \leq n$$

which imply that $\alpha_{ij} = 0$ for all $1 \leq i \leq n, 1 \leq j \leq k$ since $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is a linearly independent set. This shows that S is a linearly independent subset of V. We conclude that S is a basis for V. Thus $\text{Dim}(V) = |S| = n \cdot k = n \cdot \text{Dim}(\text{Ker}(B^T))$.

<u>Prob. 6:</u>

Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \text{Ker}(A) \cap \text{Col}(A^T)$. Since $\mathbf{x} \in \text{Col}(A^T)$, there exist an $\mathbf{y} \in \mathbb{R}^m$ such that $A^T\mathbf{y} = \mathbf{x}$ and then $\mathbf{y}^TA = \mathbf{x}^T$. And since $\mathbf{x} \in \text{Ker}(A)$, we have $A\mathbf{x} = \mathbf{0}$ so that $\mathbf{x}^T\mathbf{x} = \mathbf{y}^TA\mathbf{x} = 0$, which implies $x_1^2 + x_2^2 + \dots + x_n^2 = 0$ and then $\mathbf{x} = \mathbf{0}$. Thus $\text{Ker}(A) \cap \text{Col}(A^T) = \{\mathbf{0}\}$.