EE205003 Linear Algebra, 2020 Fall Semester

Quiz # 8

DATE: November 25th, 2019

- 1. Please answer the following questions. You should give reason(s), otherwise no credits.
 - (a) (10%) Is the set of all invertible 2×2 matrices a vector subspace of $\mathbb{R}^{2 \times 2}$?
 - (b) (10%) Is the set of all 2 × 2 matrices of the form $\begin{bmatrix} -a & a-b \\ b & a-c \end{bmatrix}$ a vector subspace of $\mathbb{R}^{2\times 2}$?
- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T((x_1, x_2, x_3)) = (x_1 x_2 2x_3, -2x_1 + x_3).$
 - (a) (10%) Please find T(U) with $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -x_1 + 2x_2 x_3 = 0\}.$
 - (b) (10%) Please find $T^{-1}(V)$ with $V = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 x_2 = 0\}.$
- 3. (15%) Do these two matrices have the same row space? Please give reason(s), otherwise no credits.

[1	-3	-2	2		$\left[-1\right]$	0	-2	2]	
0	1	2	-1	,	2	1	0	-1	
1	0	-1	0		0	-1	2	$\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	

- 4. (15%) Let \mathbb{R}^{∞} be the vector space of all infinite sequences of the form (x_1, x_2, \ldots) where x_i are arbitrary real numbers. Let U be the subset of \mathbb{R}^{∞} consisting of all sequences that have only finitely many nonzero terms. Please show that U is a subspace of \mathbb{R}^{∞} .
- 5. Let A and B be arbitrary matrices subject only to the condition that the product AB exists.
 - (a) (10%) Consider these two inclusion relations: $\operatorname{Col}(AB) \subseteq \operatorname{Col}(A)$ and $\operatorname{Col}(AB) \subseteq \operatorname{Col}(B)$. Select the one of these that is always correct and prove it.
 - (b) (5%) Under what condition(s), the selected inclusion relation in above becomes an equality relation.
- 6. (15%) Please show that the span of a nonempty set in a vector space is the smallest subspace containing that set. (Hint: A subspace W of a vector space V is called the smallest subspace containing a nonempty subset X of V if $X \subseteq W$ and for any subspace U of V such that $X \subseteq U$, we have $W \subseteq U$.)