EECS205003 Linear AJgebra, Fall 2020 Quiz $# 8$, Solutions

Prob. 1:

 \blacktriangle

- (a) No. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ are both invertible, but $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not invertible. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- (b) Denote $S = \left\{ \begin{bmatrix} -a & a-b \\ b & a-c \end{bmatrix} \mid a, b \text{ and } c \in \mathbb{R} \right\}$. It is clear that S is a nonempty subset of $\mathbb{R}^{2\times 2}$.

(i)
$$
\forall \begin{bmatrix} -a_1 & a_1 - b_1 \\ b_1 & a_1 - c_1 \end{bmatrix}
$$
 and $\begin{bmatrix} -a_2 & a_2 - b_2 \\ b_2 & a_2 - c_2 \end{bmatrix} \in S$,

$$
\begin{bmatrix} -a_1 & a_1 - b_1 \\ b_1 & a_1 - c_1 \end{bmatrix} + \begin{bmatrix} -a_2 & a_2 - b_2 \\ b_2 & a_2 - c_2 \end{bmatrix}
$$

$$
= \begin{bmatrix} -(a_1 + a_2) & (a_1 + a_2) - (b_1 + b_2) \\ (b_1 + b_2) & (a_1 + a_2) - (c_1 + c_2) \end{bmatrix} \in S.
$$

(ii) $\forall \begin{bmatrix} -a & a - b \\ b & a - c \end{bmatrix} \in S$ and $\forall \alpha \in \mathbb{R}$,

$$
\alpha \cdot \begin{bmatrix} -a & a-b \\ b & a-c \end{bmatrix} = \begin{bmatrix} -\alpha \cdot a & \alpha \cdot a - \alpha \cdot b \\ \alpha \cdot b & \alpha \cdot a - \alpha \cdot c \end{bmatrix} \in S.
$$

Thus S is closed under the vector addition and the scalar multiplication and then is a vector subspace of $\mathbb{R}^{2\times 2}$.

Prob. 2:

(a)

$$
T(U) = \{(x_1 - x_2 - 2x_3, -2x_1 + x_3)| - x_1 + 2x_2 - x_3 = 0, x_1, x_2, x_3 \in \mathbb{R}\}
$$

= $\{(x_1 - x_2 - 2x_3, -2x_1 + x_3)| - x_1 + 2x_2 = x_3, x_1, x_2, x_3 \in \mathbb{R}\}$
= $\{(x_1 - x_2 - 2(-x_1 + 2x_2), -2x_1 + (-x_1 + 2x_2))|x_1, x_2 \in \mathbb{R}\}$
= $\{(3x_1 - 5x_2, -3x_1 + 2x_2)|x_1, x_2 \in \mathbb{R}\}$
= $\{x_1(3, -3) + x_2(-5, 2)|x_1, x_2 \in \mathbb{R}\}$
= \mathbb{R}^2 .

 (b)

$$
T^{-1}(V) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | (x_1 - x_2 - 2x_3) - (-2x_1 + x_3) = 0 \}
$$

= $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | 3x_1 - 3x_3 = x_2 \}$
= $\{(x_1, 3x_1 - 3x_3, x_3) | x_1, x_3 \in \mathbb{R} \}$
= $\{s(1, 3, 0) + t(0, -3, 1) | s, t \in \mathbb{R} \}.$

<u>Prob. 3:</u>

Let

$$
A = \begin{bmatrix} 1 & -3 & -2 & 2 \\ 0 & 1 & 2 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -2 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 3 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 & -1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -5 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{5} \\ 0 & 1 & 0 & -\frac{3}{5} \\ 0 & 0 & 1 & -\frac{1}{5} \end{bmatrix}
$$

and

$$
B = \begin{bmatrix} -1 & 0 & -2 & 2 \\ 2 & 1 & 0 & -1 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & -4 & 3 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & -4 & 3 \\ 0 & 0 & -2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -2 \end{bmatrix}.
$$

Thus A and B are not row equivalent, so that A and B do not have the same row space.

<u>Prob. 4:</u>

Of course, U is a nonempty set. Let $x = (x_1, x_2, \dots)$ and $y = (y_1, y_2, \dots)$ be two elements in U and $\alpha \in \mathbb{R}$. There are N and M such that $x_i = 0$ for all $i > N$ and $y_j = 0$ for all $j > M$. Let $z = x + y = (x_1 + y_1, x_2 + y_2, \dots)$. Then for all $i >$ $\max(N, M)$, we have

$$
z_i = x_i + y_i = 0 + 0 = 0.
$$

Thus $z \in U$ and U is closed under the vector addition. Let $w = \alpha x = (\alpha x_1, \alpha x_2, \dots)$. Then for all $i > N$,

$$
w_i = \alpha x_i = \alpha 0 = 0.
$$

Thus $w \in U$ and U is closed under the scalar multiplication. This proves that U is a subspace of \mathbb{R}^{∞} .

$Prob. 5:$

(a) Since the product AB exists, we can assume that A is an $m \times n$ matrix and B is an $n \times k$ matrix. From matrix multiplication, we have

$$
AB = \left[Ab_1 \quad Ab_2 \quad \cdots \quad Ab_k \right],
$$

where \mathbf{b}_i is the *i*-th column of matrix B. $\forall \mathbf{u} \in \text{Col}(AB)$, there exist $\alpha_1, \alpha_2, \cdots, \alpha_k$ in R such that

$$
\mathbf{u} = \alpha_1 A \mathbf{b}_1 + \alpha_2 A \mathbf{b}_2 + \cdots + \alpha_k A \mathbf{b}_k
$$

= $\alpha_1 \sum_{i=1}^n \mathbf{a}_i b_{i1} + \alpha_2 \sum_{i=1}^n \mathbf{a}_i b_{i2} + \cdots + \alpha_k \sum_{i=1}^n \mathbf{a}_i b_{ik}$
= $(\sum_{i=1}^k \alpha_i b_{1i}) \mathbf{a}_1 + (\sum_{i=1}^k \alpha_i b_{2i}) \mathbf{a}_2 + \cdots + (\sum_{i=1}^k \alpha_i b_{ni}) \mathbf{a}_n,$

where a_i is the *i*-th column of matrix A and b_{ij} is the (ij) -th entry of matrix B. It is obvious that $\mathbf{u} \in \text{Col}(A)$, we can conclude that $\text{Col}(AB) \subseteq \text{Col}(A)$.

(b) $Col(AB) = Col(A)$ if and only if $Col(AB) \subseteq Col(A)$ and $Col(A) \subseteq Col(AB)$. We have shown that the former inclusion relation is always true in part (a) . $Col(A) \subseteq Col(AB)$ only if every column of A is in $Col(AB)$. It means that for each column a_i of A where $1 \leq i \leq n$, there exists $\alpha_{i1}, \dots, \alpha_{ik} \in \mathbb{R}$ such that $\alpha_{i1}Ab_1 + \alpha_{i2}Ab_2 + \cdots + \alpha_{ik}Ab_k = \mathbf{a}_i$, i.e.,

$$
\begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_k \end{bmatrix} \begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \vdots \\ \alpha_{ik} \end{bmatrix} = a_i.
$$

Therefore if $[AB|a_1 \cdots a_n] = [AB|A]$ is consistent, then $Col(AB) = Col(A)$.

<u>Prob. 6:</u>

Let A be a nonempty subset in a vector space V. It has been shown that $Span(A)$ is a subspace of V. It is clear that $A \subseteq \text{Span}(A)$. Suppose that there is a subspace W of V which contains the set A and is smaller than $Span(A)$. Then there is an element $\mathbf{b} \in \text{Span}(A)$ but $\mathbf{b} \notin W$. Since $\mathbf{b} \in \text{Span}(A)$, there exist $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ in A and $\alpha_1, \alpha_2, \cdots, \alpha_k$ in $\mathbb R$ such that

$$
\mathbf{b} = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \cdots + \alpha_k \mathbf{a}_k.
$$

Since $A \subseteq W$, $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k$ in W. Also since W is a subspace, any linear combination of $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_k$ must be in W by the closure properties of vector spaces. Thus we have $\mathbf{b} \in W$, a contradiction. We conclude that $\text{Span}(A)$ is the smallest subspace containing A .