EE205003 Linear Algebra, 2020 Fall Semester

Quiz $# 6$

DATE: Oct. 28th, 2020

- 1. Test each of these sets of real-valued functions defined on $\mathbb R$ for linear dependence or linear independence.
	- (a) (10%) $u_1(t) = 1$, $u_2(t) = 1 t + t^2$, $u_3(t) = 2 t^2$.
	- (b) (5%) $u_1(t) = \sin^2 t$, $u_2(t) = \cos^2 t$, $u_3(t) = \sin 2t$.
- 2. (15%) In the axioms for a vector space, can we dispense with the axiom of the existence of additive inverses (Axiom 4), and still prove that $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$? (Hint: Use Theorem 2.4.A: In a vector space, there is one and only one zero vector.)
- 3. (20%) Let V be the set of all positive real numbers together with new definitions of vector addition and scalar multiplication as follows:

$$
u \oplus v \triangleq uv
$$
 and $\alpha \odot v \triangleq v^{\alpha}$,

for all $u, v \in V$ and $\alpha \in \mathbb{R}$. Please show that (V, \oplus, \odot) is a vector space over R. (Hint: Show that both vector addition and scalar multiplication have the closure property and the 7 axioms listed in the class lecture are satisfied.)

- 4. (15%) Consider $p_1(t) = 1 t + t^2$, $p_2(t) = 6 t + 3t^2$, $p_3(t) = 2 + 3t t^2$. Does $\{p_1(t), p_2(t), p_3(t)\}\$ span \mathbb{P}_2 ? Please give reason(s), otherwise no credits. (Note that \mathbb{P}_2 is the vector space of all polynomials of degree \leq 2.)
- 5. (15%) Explain this: If S is a linearly dependent set in a vector space, then there is a vector **v** in S such that $Span(S) = Span(S\{v\})$. If there are two such vectors in S , can we remove them both without changing the span?
- 6. (20%) Is the following example a vector space over \mathbb{R} ? $V = \mathbb{R}, x \oplus y =$ $x + y + 1, \alpha \otimes x = \alpha x + \alpha$, where $x, y \in V$ and $\alpha \in \mathbb{R}$. Please give reasons, otherwise no credits.

The following axioms must be fulfilled by a vector space V :

- (1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \ \forall \ \mathbf{u}, \mathbf{v} \in V$. (Commutativity of vector addition)
- (2) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \forall \mathbf{u}, \mathbf{v}$ and $\mathbf{w} \in V$. (Associativity of vector addition)
- (3) There is an element $0 \in V$ such that $u + 0 = u \forall u \in V$. (Existence of a additive identity)
- (4) For each $u \in V$, there exists an element $\tilde{u} \in V$ such that $\tilde{u}+u=0$. (Existence of additive inverses)
- (5) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$ and $(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u} \ \forall \ \mathbf{u}, \mathbf{v} \in V$ and $\alpha, \beta \in \mathbb{R}$. (Distributive law)
- (6) $(\alpha\beta)\mathbf{u} = \alpha(\beta\mathbf{u}) \forall \mathbf{u} \in V$ and $\alpha, \beta \in \mathbb{R}$. (Associativity of scalar multiplication)
- (7) $1 \cdot \mathbf{u} = \mathbf{u} \ \forall \ \mathbf{u} \in V$. (Unitary property)