EECS205003 Linear Algebra, Fall 2020
Quiz # 6, Solutions

(a) Consider an arbitrary linear relation in the set {ui(t), ua(t), us(t)},

ayup (t) + agua(t) + azus(t) = a1 + ag(l —t + ) + az(2 — 1) =0,

where a, az, as are real numbers. By evaluating the linear relation at ¢ = —1,0,1,
we have
a1+ 3a; +a; = 0,
a; + ag + 2&3 = 0,
a)+ag;+az =

To solve this homogeneous linear system, we find the reduced row echelon form of
the coefficient matrix as follows:

1 31 1 3 1 1 00
111 0 -2 0 001
which shows that a; = a; = az = 0 is the only solution. We conclude that

{u1,uz2,us} is a linearly independent set.
(b) Consider an arbitrary linear relation in the sel {u. (t), un(t), us(t)},
auy + Bug + yus = asin®t i Aeos” t + ysin 2t = 0,

where a, 3,y are real numbers. By evaluating the linear relation at ¢t = 0,7 /4,7/2,
we have

which shows that @ = 8 = v = 0. We conclude that {uy,ug, us} is a linearly
independent set.

Prob. 2:
Let V = {0,1}.
Define @ as logical OR and a ® ¢ = zVz € V,a € R.

Al zy=y®avz,yeV.

A2za(ydz)=c&(ydz)Vr,yand z€ V.



A3 0 is the additive identity since 0@ 0=0and 160 = 1.

AD aQ(rdy) = r®y = a®r®a®y and (a+6)®z =z = 28T = a®rB LRIV, y € V
and a € R.

Ab (af)Qe=0=3®2x=a®(fQz)Vz eV and a,f € R.
A7 1lQ@r=avVreV.
We can see that 0 is the additive identity, but 1 doesn’t have an additive inverse.
Thercfore the other 6 axioms don’t imply the axiom 4, and 1@ (-1)® 1 =1 # 0.

Prob. 3:

Let u,v be vectors in V and a a scalar in R. Since u,v are positive real numbers,
their product v is also a positive number. Also for any positive number v and any real
number «, u® is a positive number. Thus we have

v@viweVandauvi2*eV

and then both the vector addition @ and the scalar multiplication ® have the closure
property. We next verify the 7 axioms as follows. Let u,v,w € V and «, 8 € R.

1. (Commutativity of vector addition)

uDv=uy —=vu=vOu.

b

(Associativity of vector addition)
(uBv)Ow=(w)®w = (w)w=ulvw)=ud (vw) =ud (vdw).

3. (Existence of a zero vector)

UD =l =,

which shows that 1 is a zero vector for the vector addition 6.
4. (Existence of an additive inverse) < is in V' such that

1 1
- Qu=—u=1,
U u

which shows that % is an additive inverse of .

5. (Distributive laws)
aOudv)=a0 (w)= () =u"r*=u*"®1*=(a0u)® (a Ov)

and
(@+f)ou=ul =y b =y v’ = (@0 u) @ (o).

6. (Associativity of scalar multiplication)
a®(fou)=a0r’ = W) =u = (af) Ou
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7. (Unitary property) 1
lou=u =u.

Prob. 4:

The answer is no.

The sct {p1(t), p2(t), pa(t)} spans P, if and only if for any p(t) = ag + art + axt? € Py,
there exists r,y, 2z € R such that

ap+ art +axt? = zpi(t) + ypa(t) + 2p3(t) = (1 — t + %) + y(6 — t + 3t2) + 2(2 + 3t — t2)
= (z+6y+22)+ (—z—y+32)t+ (z + 3y — 2)t2,

which is equivalent to solving the linear system

1 6 2]

T ap
-1 -1 3 v = |a
1 3 -1f (= ap

By elementary row operations on the augmented matrix, we have

1 6 2 |a [1 6 2 ag
-1 -1 3 |a | ~|10 &5 5| a+t+a
1 3 -1as i 0 -3 —-3|—ag+ay
1 6 2 ap 10 —4 —%ao— gﬂ.g
~1011 %&0 + %al ~ 101 1 %ag + %al
000 —%ag + gal + a 00 0 —%ao - %al + as

which says that when —%ao + 3a1 +az # 0. p(t) is noi in the Span({pi(t), p2(t), ps(£)})-
We conclude that the set {p;(t),pa(t), p3(l)} cannot span Pe.

Prob. 5:

Consider a linearly dependent subset .S in & vector space. Then there is a non-trivial
linear relation on S, i.e.,
a1 vy + aavo + -+ a,v, =0

for some distinct vectors vy, va,...,v, in S and scalars a;,as, ..., a,, not all zeros, for
some n > 1. Since scalars ay, g, ..., a, are not all zeros, a; # 0 for some 1 < < n. Let
v = v; and then
a; a;—1 @it an
V=——V] — -+ — —Vi] — Vigl — - — —Vp.
ai ai i a;

Consider an arbitrary vector u € Span(S),
u = aju; + @gUg + - - - + aglUg,

where u;, uy, ..., u; are distinct vectors in S and ay, @y, ..., ai are scalars with k > 1. If
u; # v for all 1 <4 <k, then u € Span(S\{v}). If there is a u; = v, then

u = o+ + 05U+ Vg e 4 oglg
= oquy + - oo+ Al e gy
i ;1 Q441 Qg
- V== Vi) — Vigl = — ———Vp
(1 a; a; a;



which is in Span(S \ {v}) since uy,...,wj_y, Wj41,.. ., and vi,..., Vi1, Vigl, ..., Vp
are vectors in S\ {v}. Thus we have Span(S) C Span(S \ {v}). But since S\ {v} C S,
we have Span(S \ {v}) C Span(S). We can conclude that Span(S) = Span(S\ {v}).

If there arc two such vectors in S, we cannot remove them both without changing
ey . 1] |0 |1 Il |1 0
the span in gencral. For example, S = {[01| , [1] , [J }, where [1] = [0] + |:1] and
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Prob. 6:

No.
For any vectors z,y € V = R and any scalar o € R, we have

.r@yé.r+y+1EV:Randa@méam+aeV=R

since real numbers are closed under multiplication and addition. Thus both the vector
addition @ and the scalar multiplication ® have the closure property. We next verify the
7 axioms as follows.

1. (Commutativity of vector addition)

rPy=crz+y+l=y+z+1l=yPuz

2. (Associativity of vector addition)

(zoy)dz = (z+y+1)d=z

= (z+y+1)+z+1

= o4 (utz+1)+1

= w iy oz 1)

= TP (y & z:)
3. (Existence of a zero vector)

z@®(-l)=z+(-1)+1==z
which shows that (-1) is a zero vector for the vector addition @.
4. (Existence of an additive inverse)
(—z—-2)®z=(—2z—-2)+z+1=—1,

which shows that (—z — 2) is an additive inverse of .

ot

(Distributive laws)

a®(z®y) = a®(@+y+1)
= az+y+1)+a
= oar+ay+ 2«



(az + a) ® (ay + )
= ar+ay+2a+1
# a@(zdy).

(a®r)d(a®y)

and

(@+B8)®x = (a+P)z+ (a+p)

(c@z)@(f®z) = (az+0a)® (Bz+))
= az+fz+a+pf+1
# (a+8) Q.

6. (Associativity of scalar multiplication)

a®(B®z) = a®(Br+p)
= affz+af+a

(@f)®z = afz+af
# a®(f®x).

7. (Unitary property)
1@z =z+1+#rz.

Thus while Axioms 1, 2, 3, 4 are fulfilled, but Axioms 5, 6, 7 are not fulfilled.
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