Quiz # 2

DATE: Sept. 30, 2020

1. (10%) What is the column space Col(A) of the matrix $A = \begin{bmatrix} 0 & 1 & -1 & 8 \\ -1 & -2 & 0 & 1 \\ 2 & 0 & -2 & -3 \end{bmatrix}$.

2. (15%) Find the general solution of a linear system with augmented metrix

0	1	3	0	0	1	
0	0	0	-1	0	-3	
0	0	0	0	2	$-3 \\ 2$	

3. (15%) Under what conditions on a, b, c, d does the augmented matrix correspond a consis- $\begin{bmatrix} -1 & 0 & 3 & -9 \\ a \end{bmatrix}$

		-	-			
tent linear system:	2	-3	-3	-3	b	?
tent miear system.	0	1	-1	7	с	
	1	2	1	5	d	

- 4. (10%) Let $A = [\mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_n]$ be two row equivalent $m \times n$ matrices. For $1 \le k \le n$, let $A_k = [\mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_k]$ and $B_k = [\mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_k]$ be submatrices of A and B respectively. Please show that A_k and B_k are also row equivalent.
- 5. (10%) Under what circumstances is this implication not true? $[(P \text{ or } Q) \text{ and } (P \text{ or } R)] \Rightarrow (Q \text{ or } R).$
- 6. (10%) If $P \Rightarrow Q$, does it follows that P is true whenever Q is true? Provide the truth table for $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$.
- 7. (15%) What is the negative (denial) of the assertion that there exists an $\epsilon > 0$, for all positive integer m such that there exists an integer $n \ge m$, $|P(n) P(m)| < \epsilon$.
- 8. (15%) Is the assertion $P \Rightarrow Q$ equivalent to the assertion $\neg Q \Rightarrow \neg P$? Provide the truth table for $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$ and the truth table for $(\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q)$.