
EECS205C103 Linear Algebra, Fall 2020 
Quiz # 1, Solutions 

Prob. 1: We have 
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where the last two matrices are in row echelon form. 
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Prob. 3: 

1. Consider a matrix A =固] with integer entries only. In the process of Gaussian 
elimination, a swap row operation is used to establish a pivot. A matrix with integer 
entries only is also a matrix with integer entries only after a swap operat ion. And 
a replacement row operation is used to eliminate a nonzero entry a」k below a pivot 
aik , which may result in non-integer entries. Instead, a scaling row operation Sj因）
is used to multiply the 」th row by aik, which results only integer entries, and then a 
replacement row operation E土曰 is used to eliminate the nonzero entry aik的k
below the pivot aik, which results only integer entries. For example, we have 
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In this version of C·l'· 遁uss1 an e 1mmation , a matrix with integer entries only will be 
. 1 row eqmva ent to a matrr.x m row echelon form having only integer entries. 

2. No. A counterexample is 

且~! ] ➔[~ ~i] 
Prob. 4: 

1. \Ve claim that f(几 A) 旦几 J(Ai)- Here is a proof. If f(几 Ai) = 0, then of 
course we have f (几 A) 呈几 f(Ai). Assume J(n占） =/= 0. Let y E f (几 Ai)
Then there is an X E n占 such that f(x) = y. Since x E 几 Ai, x E Ai for all 
i. This implies that y E f (Ai) for all i and then y E 几 J(A) . We conclude that 
J(几 Ai) 戶 ni !(A). 

2. In general, we cannot have J(n i Ai) = 几 f(Ai) - For example, let A = {1, 2, 3} , 
B = {a, b,c} , and f be a function from A to B with f(l) = a, f (2) = b, f(3) = a . 
Let A1 = {1 , 2} and A2 = {3}. Then A1 n A2 = 0 so that J (A1 n A2) = J (0) = 0 
But we have f(A1) n J(品） = {a, b} n {a}= {a} =I= (/J = f(A1 n A2) 

Thus the relationship between f (几 Ai) and 几 f(Ai ) 」s f(n i Ai) ~ 几 f(A;).

Prob . 5: 

No. 

P Q P ➔ Q -,p ,Q -,p~,Q 

F F T T T T 
F T T T F F 
T F F F T T 
T T T F F T 

Prob. 6: 

\,\Then n = 1, 1 + 1 + 1 = 3 is an odd number. Assume that n = k is true, i.e., 
k2 + k + I = 2a + 1 for some a E Z. Consider n = k + I. We have 

(k + 1)2 + (k + 1) + 1 = (2a + 1) + 2k + 2, 

which is also an odd number. Therefore by induction, we conclude that n2 + n + 1 is an 
odd number Vn E N. 
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Prob. 7: 

Let .4 = i, B = ~, a., b, c, d E Z with b, d =I= 0 be two arbitrary rational numbers. Also 
kt C be an a.rbitrru·y irrational number. It is clear that C =I= 0. 

1. Correct. This is because that A + B = ! 宅!!f with ad+ be, bd E .Z and bd =I= 0. 

2. Correct. Suppose that D =A+ C is ra1tional. Then we have C = D + (-A) to be 
rational by 1 in above, a contradiction. Thus D must be irrational. 
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