
EECS205003 Linear Algebra, Fall 2020 
Midterm # 1, Solutions 

Prob. 1: 

For all positive integers n, there exists a positive integer m~n such that x~Am. 

Prob. 2: 
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Prob. 3: 

A point x = (x1, x2, X3, X4丐） E 股5 is in the 3-dimensiona.l affine space H if and only 
if there exist s, t, u E 沢 such that x - w = .sp + tq + ur, i.e., the following linear system 
is consistent: 
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Prob. 4: 

L 頤e. If T is a linear transformation from 配 to 记 then x H T(x) = Ax, where 
A is a matrix in 竄4x3. Therefore, the reduced row echelon form of A will have at 
least one row which has no pivot. By Theorem 1.2.4, we can conclude that A is not 
onto. 

2.'1\-ue. For example, let A~[~ ~ 問 and B~ ~ ~. Then we have AB~ 

[~ ~ 釓 ［＼＼］＝卫 ~] - [o 」
3. False. For example, let A =卫叮 and h'= [~-1~] . Then we have AB = 

[~ ~] [~1~] = [悶~] # [~ ~] = [~l~] [~ ~] = BA 

4. True. To check whether a subset of a vector space is a subspace or not, we only 
need to check the closure property under vector addition and scalar multiplication, 
the existence of a zero vector, and the exist叩＼．， ； 战 ；m 叫ditive inverse. 

(a) (Closure under additon) For all B and C thrit commute with A, A(B + C) = 
AB+ AC= BA+ CA = (B + C')A. which shows that B + C' is also commute 
with A. 

(b) (Closure under scalar multiplication) For all a, E 民 and C commute with A, 
A(aC) = aAC = aCA = (aC)A, which shows that aC is also commute with 
A. 

(c) (Existence of a zero vector) Since O + A = A = A + 0, the zero matrix 0 
commutes wit A. 

(d) (Existence of an additive inverse) For all D that commute with A, A(- D) = 
- (AD)= -(DA)= (-D)A, which shows that the additive inverse -D of D 
is also commute with A 

$ . False. Consider an arbitrary linear relation in the set {p0(t),p1(t),p2(t) ,p3(t)} , 

aoPo(l) + a 」p」 (l) + a2p2(t) + a:,P:i(t) = au +a1 t+ a2t2 + a」{l = 0, Vt EA = {-1,0, l} , 

2 



when'n心 a1 , a2西画 real numbers, Since the domain of these functions is A = { 
-1 , 0, 1 } , t he linear relation of the four functions is equivalent to its evaluation at 
all points t E A, i.e., 

ao + a1(-l) + a2(-1)2 + a正1)3 = 0 
ao + a1(0) + a2(0)2 + a3(0)3 = 0 
ao + a1(l) + a2(1)2 + a3( 1)」= 0 

To solve the homogeneous linear system in above, we consider the coefficient matrix 

［＼］｝汀
which has at most three pivot positions and the variables corresponding to columns 
without a pivot are free variables so that the homogeneous linear system has a 
nontrivial solution. Thus the set {Po(t),P1(t),P2(t), p3(t)} is linearly dependent. 

Prob. 5: 

［一~l~} ] ~ [~ e~bbd f~\ ] 
By Theorem 1.2.4, we know that if the linear transformation is onto, then there is a 
pivot in every row of the reduced row echelon form of A. Therefore, if e + bd =I= 0 or 
f + d =I= 0, then the linear transformation x t-t T(x) = A.x will map 配 onto 配

Prob. 6: 

(a) Domain: IR.3 . Co-domain: 配

(b) s;nce [ t I i6] ~ [t ; !l K er(A)~{O} w,d T;s ;n」ect;ve
(c) Since the reduced row echelon form of A has a zero row, there exists b E 配 such

that Ax = b is inconsistent by Theorem 1.2.4. Therefore T is not surjective. 

Prob. 7: 

No, since there is no zero vector for (V, EB, 0 ). Suppose O = (a, b) is a zero vector of V. 
For all ;,;, y E 民 such that y =I= 0, (x, y) EB (a, b) = (x + a, 0) # (x, y). Therefore (V, EB, 0) 
has no zero vector and it is not a vector space over 艮

Prob. _8_:_ 

1 

, 

-- 0O1 

4 

11l 

7 

21

_ 

O1O 1OO -- 

~ 

-- 0O1 O1O 

3 

11

-

3 

T1

4 

1OO -- 

~ 

-- O01 01O 1OO 1 
一
2
1

1 
1

一
3

-- 



.. 

\\'hic-h i~ inrnnsist.ent so that A h邸 no right inverse. 

2. Suppose C is a left inverse of A, then CA= /2 and AT包＝耳= /2 such that 

[~l~1 i I~ ~] ~ [~ ~1 ! I! ~] ~ [~ ~: Ii ! ] 
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are all left inverses of A, where s, t are real numbers. 

Prob. 9: 

Let B be a left inverse of AAr, i.e., B(AA叮= I . Since AA r is a square matrix, B is 
also a right inverse of AAT by Theorem 3.2.4, i.e. , (AA勺B = I mxm => A(AT B) = Imxm 
and A has a right inverse. By Theorem 3.2.B , Col(A) =艮叭 i.e . , the linear system 
Ax = b is consistent for every b E 艮m_ By Theorem 1.2.4, each row of A has a pivot 
position. And by Theorem 1.3.11, the rows of A form a linearly independent set. 

Prob. 10: 

An m x n matrix A has a left inverse if and only if Ker(A) = {O} by Theorem 3.2.A 
if and only if every column in the reduced row echelon form of A has a pivot if and only 
if Rank(A) = n. 
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