2018 Fall EECS205003 Linear Algebra - Quiz 2 Solution

Name: ID:

- 1. Let a set of linear equations be $\begin{cases} x_1 x_2 + 3x_3 = -1 \\ 2x_1 + x_2 x_3 = 1 \\ x_1 + 3x_2 + 2x_3 = 2 \end{cases}$
 - (1) If we write the linear equations into matrix form $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \\ 1 & 3 & 2 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

(2) Find out the first and the second pivot.

The first pivot we can find out directly from first equation $\Rightarrow 1$

Eliminate A_{21} according to the first pivot

 \Rightarrow (row 2 of A) $-2 \times$ (row 1 of A)

$$\Rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \\ 1 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -7 \\ 1 & 3 & 2 \end{bmatrix}$$

Then we have the second pivot $\Rightarrow 3$

(3) Find out elimination matrices E_{21} , E_{31} and E_{32} .

According to (2), the first pivot is 1

We eliminate A_{21} via (row 2 of A) – $2 \times$ (row 1 of A)

$$\Rightarrow E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Similarly, we eliminate A_{31} via (row 3 of A) – 1×(row 1 of A)

$$\Rightarrow E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

After elimination by the first pivot

$$\begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \\ 1 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -7 \\ 1 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -7 \\ 0 & 4 & -1 \end{bmatrix} \stackrel{\text{let}}{=} A'$$

We eliminate A'_{32} by the second pivot 3

 \Rightarrow (row 3 of A') $-\frac{4}{3} \times$ (row 2 of A')

$$\Rightarrow E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{4}{3} & 1 \end{bmatrix}$$

And we can get the triangular matrix $\begin{bmatrix} 1 & -1 & 3 \\ 0 & 3 & -7 \\ 0 & 0 & \frac{25}{2} \end{bmatrix}$