2018 Fall EECS205003 Linear Algebra - Midterm

1. (13%) Consider two vectors
$$\mathbf{u} = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \in R^3$$
 and $\mathbf{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \in R^3$.

- (a) (3%) Find $||\mathbf{u}||$, $||\mathbf{v}||$ and the angle θ between \mathbf{u} and \mathbf{v} .
- (b) (3%) Find the perpendicular projection of ${\bf v}$ on ${\bf u}.$

(Hint: $\frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \mathbf{u}$)

- (c) (4%) Find a vector $\mathbf{w} \in \mathbb{R}^3$ such that \mathbf{w} is perpendicular to both \mathbf{u} and \mathbf{v} .
- (d) (3%) Consider the space P_2 with inner product:

$$< p, q >= p(0)q(0) + p(\frac{1}{2})q(\frac{1}{2}) + p(1)q(1).$$

Is $p(x) = 4x^2 - 4x + 1$ orthogonal to $q(x) = 4x^2 - 1$? Please give your reason. (**Hint:** $P_n \equiv \{f(x) | f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_i \in R\}$)

2. (10%) For
$$A\mathbf{x} = \mathbf{b}$$
 where $A = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 8 & 7 \\ -1 & -4 & 6 \\ 3 & 12 & 7 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$:

- (a) (3%) Describe the column space $\mathbf{C}(A)$ of A. What is the rank of A?
- (b) (4%) For which **b** (find a condition on b_1, b_2, b_3, b_4) is $A\mathbf{x} = \mathbf{b}$ solvable?
- (c) (3%) If we remove a column from A and $A\mathbf{x} = \mathbf{b}$ is still solvable, which column would it be? Please give your reason.
- 3. (12%) Test if the following sets of vectors form subspaces.
 - (a) $(2\%) \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 0 \}$
 - (b) $(2\%) \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 2x_2 + 3x_3 = 4 \}$
 - (c) (2%) The set of all symmetric matrix.
 - (d) (2%) The set of all nonsingular matrix.

(e) (2%) {
$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in M \mid a+b+c=0$$
 }
(f) (2%) { $\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in M \mid \forall a, b, c \in R$ }

4. (15%) Let matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 6 \\ 1 & 4 & 8 \end{bmatrix}$.

- (a) (4%) Find the LU factorization of A. Use the answer to solve $A\mathbf{x} = \begin{bmatrix} 5\\ 8\\ -12 \end{bmatrix}$.
- (b) (4%) Use Gauss-Jordan Elimination method to find L^{-1} and U^{-1} . Use the answers to find A^{-1} .

Please turn over to continue.

(c) (3%) Consider the following linear equations, solve for x and y by using elimination and back substitution.

$$2x + 3y = 5$$
$$6x + 15y = 12$$

- (d) (2%) Prove for any permutation matrix $P, PP^T = I$.
- (e) (2%) Find 3×3 permutation matrices with $P^3 = I$ (but not P = I).
- 5. (18%) Consider the system of linear equations:

$$x - y + 4z = -11$$
$$x - 2y + 3z = -13$$
$$-2x + y - 3z = 8$$

- (a) (6%) For elimination, find l_{21}, l_{31}, l_{32} and E_{21}, E_{31}, E_{32} .
- (b) (6%) Use EA = U to get U and solve for **x**.
- (c) (6%) Use A = LU, solve $L\mathbf{c} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{c}$ sequentially to get \mathbf{c} and \mathbf{x} .
- 6. (12%) Consider matrix $M = \begin{bmatrix} A_{m \times m} & U_{m \times n} \\ V_{n \times m} & D_{n \times n} \end{bmatrix}$, please answer the following questions:
 - (a) (4%) Please use block matrices A, U, V, D to find M^2
 - (b) (4%) Suppose A is invertible and I_m , I_n are $m \times m$ and $n \times n$ identity matrices. Please use block matrices A, V, U, D or thier inverses to find $W_{m \times m}$, $X_{n \times m}$, $Y_{m \times n}$, and $Z_{n \times n}$ satisfying

$$\begin{bmatrix} W & 0 \\ X & I_n \end{bmatrix} \begin{bmatrix} A & U \\ V & D \end{bmatrix} = \begin{bmatrix} I_m & Y \\ 0 & Z \end{bmatrix}$$

(c) (4%) Suppose Z is invertible. Find the inverse of $\begin{bmatrix} I_m & Y \\ 0 & Z \end{bmatrix}$.

(d) (4%) Use the results of (a) and (b) to compute the inverse of $\begin{bmatrix} A & U \\ V & D \end{bmatrix}$.

- 7. (20%) Given a system \mathbf{S} : $y = f(x_a, x_b, x_c)$, where $x_a, x_b, x_c \in \mathbb{R}$ are inputs and $y \in \mathbb{R}$ is the output. By experiments, we get three samples whose inputs are $(x_a, x_b, x_c) = (1, 2, 3), (2, 1, 2)$ and (3, 2, 1), and output y = 1, 1 and 1 respectively. Try to answer following questions:
 - (a) (2%) To solve **S**, firstly we model **S**. The simplest one is to assume that S as a linear model, where $y = \theta_a x_a + \theta_b x_b + \theta_c x_c$ with real-number parameters. Write down the equations for the three experiments in matrix form.
 - (b) (12%) According to (a), what are the elimination matrix E and decomposed matrices L and U?
 - (c) (2%) Please solve θ_a, θ_b and θ_c .
 - (d) (4%) Under what condition \mathbf{S} does have no solution? Why? If we change y to 2, 1 and 3, is there solution to \mathbf{S} under that condition?