Name:

1. (a) Find the basis for the subspace S in \mathbb{R}^4 spanned by all solutions of $x_1 + x_2 + x_3 - x_4 = 0$.

ID:

- (b) Find a basis for the orthogonal complement S^{\perp} .
- (c) Find b_1 in S and b_2 in S^{\perp} so that $b_1 + b_2 = b = (1, 1, 1, 1)$.
- 2. If A is m by n and B is n by m, block multiplication gives det M = det AB:

M =	0	$A]_{-}$	$\begin{bmatrix} AB \end{bmatrix}$	A]	$\begin{bmatrix} I \end{bmatrix}$	0]
	$\left\lfloor -B\right\rfloor$	$I \rfloor^{=}$	0	I	$\lfloor -B$	I

If A is a single row and B is a single column what is detM? If A is a column and B is a row what is detM? Do a 3 by 3 example of each.

- 3. Let b = C + Dt be closest line to the points (b, t) = (0, 0), (8, 1), (8, 3), and (20, 4). Find the least squares solution $\hat{\mathbf{x}} = (C, D)$.
- 4. Find the determinants of rotations and reflections:

1		.:0		[1 020	9	
	cost einA	$-sin\theta$	and	$1 - 2\cos^2\theta$	$-2\cos\theta\sin\theta$ $1-2\sin^2\theta$	
	51110	0050		2cososino	1 - 2sin 0	

- 5. Given five sample points (t, b) = (0, 0), (2, 1), (-1, -3), (1, 2) and (-2, 1). Please answer the following questions.
 - (a) Solve the closest line to sample points via least square approximation.
 - (b) If we want to fetch a closest parabola $C + Dt + Et^2$ instead of a line, try to solve it by least square approximation.
 - (c) Compare the error E between line and parabola, describe what you haved discovered. If we fit a higher order polynomial to sample points, guess what will happen to error E according to you discovery.

6. Use row operations to show that the 3 by 3 "Vandermonde determinant" is

(a) det
$$\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix} = (b-a)(c-a)(c-b)$$

(b) det $\begin{bmatrix} 1 & a & a^2 \\ 1 & a & 1 \\ a^2 & a & 1 \end{bmatrix} = (1-a^2)^2$