2018 Fall EECS205003 Linear Algebra - Homework 2

ID:

Name:

1. Factor the following matrix into PA = LU. Factor it also into $A = L_1P_1U_1$ (hold the exchange of row 3 until 3 times row 1 is subtracted from row 2):

	0	1	2	
A =	0	3	8	
	2	1	1	

- 2. Construct a 3×3 matrix whose column space contains (1,1,0) and (1,0,1) but not (1,1,1). Construct a 3 by 3 matrix whose column space is only a line.
- 3. Decide the dependence or independence of
 - (a) the vectors (1, 3, 2) and (2, 2, 3) and (3, 3, 5)
 - (b) the vectors (1, -3, 2) and (2, 1, -3) and (-3, 2, 1).

4. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$. Find bases of four subspaces without computing A.

- 5. Assume two $m \times n$ matrices $A = \begin{bmatrix} I & F_A \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} I & F_B \\ 0 & 0 \end{bmatrix}$ have the same four subspaces. Prove $F_A = F_B$.
- 6. Show that $A^2 = 0$ is possible but $A^T A = 0$ is not possible (unless A = zero matrix).
- 7. Use Gauss-Jordan Elimination (session 7 p.6) to find K^{-1} (Please provide complete derivation to get full credit)
 - $K = \left[\begin{array}{rrrr} 1 & 2 & 2 \\ 0 & 1 & -1 \\ 0 & 2 & 1 \end{array} \right]$

8. Find solution \mathbf{x} of the following equations, by using A = LU, then solve $L\mathbf{c} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{b}$ sequentially to get \mathbf{x} .

$$x + 2y - z = -1$$

$$2x - y + 3z = 8$$

$$x - 2y + z = 5$$