2017 Fall EE203001 Linear Algebra - Homework 7 solution Due: 2018/1/5

1. (10%) Compute $A^T A$ and $A A^T$ and their eigenvalues and unit eigenvectors for V and U

Rectangular matrix = $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$

- 2. (10%) Suppose $(T(v_1) = w_1 + 2w_2 + 3w_3 \text{ and } T(v_2) = 2w_2 + 3w_3 \text{ and } T(v_3) = 3w_3$. Find the matrix A for T using these basis vectors. What input vector $vgivesT(v) = w_1$
- 3. (10%) Show that A and B are similar by finding M so that $B = M^{-1}AM$:

(a) $A = \begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 4 \end{bmatrix}$	$B = \left[\begin{array}{cc} 0 & -1 \\ 6 & 5 \end{array} \right]$
(b) $A = \begin{bmatrix} 3\\4 \end{bmatrix}$	$\begin{bmatrix} -2\\9 \end{bmatrix}$	$B = \left[\begin{array}{cc} 9 & 4 \\ -2 & 3 \end{array} \right]$

4. (10%) Find the eigenvalues and unit eigenvectors v_1 , v_2 of $A^T A$. Then find $u_1 = A v_1 / \sigma$:

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \text{ and } A^T A = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} \text{ and } AA^T = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$$

Verify that u_1 is a unit eigenvectors of AA^T . Complete the matrices U, Σ, V .

- 5. (10%)
 - (a) If U and V are unitary matrices, show that U^{-1} and UV are also unitary.
 - (b) A is a matrix with independent columns. Show that $A^H A$ is not only Hermitian but also positive definite.
- 6. (10%) If A is a Hermitian matrix, show the property of its' real and imaginary part.(symmetric, Hermitian, ...etc.)
- 7. (10%) Which classes of matrices does P belong to: invertible, Hermitian, unitary? Compute P^2 , P^3 , and P^{100} . What are the eigenvalues of P?

$$P = \left[\begin{array}{rrr} 0 & i & 0 \\ 0 & 0 & i \\ i & 0 & 0 \end{array} \right].$$

- 8. (10%) Compute $\mathbf{y} = F_8 \mathbf{c}$ by the three FFT steps for $\mathbf{c} = (1, 0, 1, 0, 1, 0, 1, 0)$. Repeat the computation for c = (0, 1, 0, 1, 0, 1, 0, 1).
- 9. (10%) Prove that if A is a real symmetric matrix, then all eigenvalues of A are real numbers.
- 10. (10%) The columns of the Fourier matrix F are the *eigenvectors* of the cyclic permutation P. Multiply PF to find the eigenvalues λ_1 to λ_4 :

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & 3 \\ 1 & i^2 & i^4 & 6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & 3 \\ 1 & i^2 & i^4 & 6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ \lambda_2 & & \\ & \lambda_3 & \\ & & \lambda_4 \end{bmatrix}$

This is $PF = F\Lambda$ or $P = F\Lambda F^{-1}$. The eigenvector matrix (usually S) is F.