2017 Fall EE203001 Linear Algebra - Homework 3 Due: 2017/11/10

- 1. (10%) Suppose **S** is spanned by the vectors (1, 2, 1, 4) and (1, 3, 3, 4). Find two vectors that span \mathbf{S}^{\perp} . This is the same as solving $A\mathbf{x} = \mathbf{0}$ for which A?
- 2. (10%) Project the vector **b** onto **a** to find **p**. Let $\mathbf{e} = \mathbf{b} \mathbf{p}$ and show that **e** is perpendicular to **a**.
 - (a) $\mathbf{b} = (1, 2, 3), \mathbf{a} = (1, 0, 1).$
 - (b) $\mathbf{b} = (1, 3, 5, 7), \mathbf{a} = (0, 1, 0, 1).$
- 3. (12%) Project $\boldsymbol{b} = (0, 2, 8, 20)$ onto the line $\boldsymbol{a} = (2, 1, 1, 2)$. Find
 - (a) $\hat{x} = ?$
 - (b) Projection p = ?
 - (c) Is e = b p perpendicular a? Please explain it.
 - (d) $||\boldsymbol{e}||$
- 4. (8%) Let b = C + Dt be closest line to the points (b, t) = (1, 2), (13, 4), and (11, 3). Find the least squares solution $\hat{x} = (C, D)$.
- 5. (10%) Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$
 - (a) Find a basis for the null space of A.
 - (b) Given $\boldsymbol{x} = \begin{bmatrix} 2 & 3 & -1 \end{bmatrix}^T$, split it into a row space component \boldsymbol{x}_r and \boldsymbol{x}_n .
- 6. (12%) If A is a matrix and W^{\perp} is the orthogonal complement of a vector set W, which of the following are false? Why?
 - (a) W^{\perp} is always a subspace.
 - (b) $C(A)^{\perp} = C(A^T)$
 - (c) $C(A) = N(A)^{\perp}$
 - (d) $C(A)^{\perp} = N(A^T)$

- 7. (8%) What linear combination of (-1, 1, 1) and (1, -1, 2) is closest to b = (3, -1, 7)?
- 8. (10%) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\mathbf{b} = (1, 3, 4, 2)$ onto the column space of A. What shape is the projection matrix P and what is P?
- 9. (10%) Consider the matrix

$$P = \frac{1}{6} \left[\begin{array}{rrrr} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{array} \right]$$

Show that the length squared of column 2 equals P_{22} . Prove that the relation is true for any column n of P and P_{nn} . (Hint: use the properties of projection matrices).

10. (10%) Please prove the statement: If $A^T A \mathbf{x} = 0$, then $A \mathbf{x} = 0$ by examine which subspaces $A \mathbf{x}$ shall fall into.