2017 Fall EE203001 Linear Algebra - Homework 7 solution Due: 2017/12/22

1. (10%) Compute $A^T A$ and $A A^T$ and their eigenvalues and unit eigenvectors for V and U

$$\mathbf{Rectangular} \quad \mathbf{matrix} = \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \end{array} \right]$$

Solution:

$$AA^{T} = \begin{bmatrix} 5 & 2\\ 2 & 5 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 7 \text{ with } u_{1} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } \sigma_{2}^{2} = 3 \text{ with } u_{2} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$
$$A^{T}A = \begin{bmatrix} 4 & 2 & 0\\ 2 & 5 & 2\\ 0 & 2 & 1 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 7 \text{ with } v_{1} = \begin{bmatrix} \frac{2}{\sqrt{10}}\\ \frac{3}{\sqrt{10}}\\ \frac{1}{\sqrt{10}} \end{bmatrix} \text{ and } \sigma_{2}^{2} = 3 \text{ with } v_{2} = \begin{bmatrix} -\frac{2}{\sqrt{6}}\\ \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{6}} \end{bmatrix} \text{ and } v_{3} = \begin{bmatrix} -\frac{1}{\sqrt{21}}\\ -\frac{2}{\sqrt{21}}\\ \frac{4}{\sqrt{21}} \end{bmatrix}$$
$$\text{Then } \begin{bmatrix} 2 & 1 & 0\\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} u_{1} & u_{2} \end{bmatrix} \begin{bmatrix} \sqrt{7} & 0 & 0\\ 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix}^{T}$$

2. (10%) Suppose $(T(v_1) = w_1 + 2w_2 + 3w_3 \text{ and } T(v_2) = 2w_2 + 3w_3 \text{ and } T(v_3) = 3w_3$. Find the matrix A for T using these basis vectors. What input vector $vgivesT(v) = w_1$

Solution:

Solution:
The matrix A for T is
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

For output $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ choose $v = A^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = > \begin{bmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = v$

3. (10%) Show that A and B are similar by finding M so that $B = M^{-1}AM$:

(a)
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & -1 \\ 6 & 5 \end{bmatrix}$
(b) $A = \begin{bmatrix} 3 & -2 \\ 4 & 9 \end{bmatrix}$ $B = \begin{bmatrix} 9 & 4 \\ -2 & 3 \end{bmatrix}$

Solution:

$$A = S_A \Lambda_A S_A^{-1}$$

$$B = S_B \Lambda_B S_B^{-1}$$

If A is similar to B, then $\Lambda_A = \Lambda_B$

$$\Lambda_{A} = S_{A}^{-1}AS_{A}, B = S_{B}\Lambda_{A}S_{B}^{-1} = S_{B}(S_{A}^{-1}AS_{A})S_{B}^{-1} = M^{-1}AM$$
(a)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix}$$
$$M = S_A S_B^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
(b)
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$M = S_A S_B^{-1} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

4. (10%) Find the eigenvalues and unit eigenvectors v_1 , v_2 of $A^T A$. Then find $u_1 = Av_1/\sigma$: $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ and $A^T A = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$ and $AA^T = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$ Verify that u_1 is a write eigenvectors of AA^T . Correlate the metrice $U \Sigma V$

Verify that u_1 is a unit eigenvectors of AA^T . Complete the matrices U, Σ, V .

Solution:

$$det(A^T A - \lambda I) = 0, \lambda = 10, 0$$
$$\lambda = 10, u_1 = \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad \lambda = 0, u_2 = \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

$$det(AA^{T} - \lambda I) = 0, \lambda = 10, 0$$
$$\lambda = 10, v_{1} = \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}}\\\frac{2}{\sqrt{5}} \end{bmatrix} \quad \lambda = 0, v_{2} = \begin{bmatrix} 2\\-1 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}}\\\frac{-1}{\sqrt{5}} \end{bmatrix}$$
$$V = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\\\frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}$$

Then $A = U \Sigma V^T$

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}$$

We can find that $u_1 = Av_1/\sigma$.

5. (10%)

- (a) If U and V are unitary matrices, show that U^{-1} and UV are also unitary.
- (b) A is a matrix with independent columns. Show that $A^{H}A$ is not only Hermitian but also positive definite.

Solution:

- (a) $U^{H}U = I, U-1(U^{H})^{-1} = U-1(U^{-1})^{H} = I \Rightarrow U^{-1}$ is unitary. Also, $(UV)^{H}(UV) = U^{-1}$ $V^H U^H U V = I \Rightarrow U V$ is unitary.
- (b) $(A^{H}A)^{H} = A^{H}A^{HH} = A^{H}A$. By the definition of definite positive, we check $(\mathbf{z}^{H}A^{H})(A\mathbf{z}) =$ $||A\mathbf{z}||^2$, which is positive unless $A\mathbf{z} = 0$. Since A has independent columns, $A\mathbf{z} = 0$ only if $\mathbf{z} = \mathbf{0} \Rightarrow A^H A$ is positive definite.
- 6. (10%) If A is a Hermitian matrix, show the property of its' real and imaginary part. (symmetric, Hermitian, ...etc.) Solution:

Let $A = R + iS = (R + iS)^H = R^T - iS^T \Rightarrow$ the real part is symmetric while the imaginary part is skew-symmetric.

7. (10%) Which classes of matrices does P belong to: invertible, Hermitian, unitary? Compute P^2 , P^3 , and P^{100} . What are the eigenvalues of P?

	0	i	0]
P =	0	0	i	.
	i	0	0	

Solution:

This *P* is invertible and unitary. $P^2 = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $P^3 = \begin{bmatrix} -i & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & -i \end{bmatrix} = -iI$. Then $P^{100} = (-i)^{33}_{4\pi i/3} P = -iP$. The eigenvalues of *P* are the roots of $\lambda^3 = -i$, which are *i* and

 $i \exp^{2\pi i/3}$ and $i \exp^{4\pi i/3}$.

8. (10%) Compute $\mathbf{y} = F_8 \mathbf{c}$ by the three FFT steps for $\mathbf{c} = (1, 0, 1, 0, 1, 0, 1, 0)$. Repeat the computation for c = (0, 1, 0, 1, 0, 1, 0, 1).

Solution:

- $\mathbf{c} \to (1, 1, 1, 1, 0, 0, 0, 0) \to (4, 0, 0, 0, 0, 0, 0, 0) \to (4, 0, 0, 0, 4, 0, 0, 0) = F_8 \mathbf{c}.$ $\mathbf{c} \to (0, 0, 0, 0, 1, 1, 1, 1) \to (0, 0, 0, 0, 4, 0, 0, 0) \to (4, 0, 0, 0, -4, 0, 0, 0) = F_8 \mathbf{c}.$
- 9. (10%) Prove that if **A** is a real symmetric matrix, then all eigenvalues of **A** are real numbers.

Solution:

$$egin{array}{rcl} Ax&=\lambda \ x\ o \ (Ax)^H&=(\lambda \ x)^H\ o \ x^HA^H&=ar\lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^H\ o \ x^HA&=ar\lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ o \ x^HA&=ar\lambda \ x^H\ egin{array}{rcl} \lambda \ x^H\ o \ x^HA&=ar\lambda \ x^HA&=bar\lambda \ x^HA&=ar\lambda \ x^HA&=ar\lambda \ x^HA&$$

- $\begin{array}{l} \rightarrow \ x^{H}A^{H}x = \ \overline{\lambda} \ x^{H}x \\ \rightarrow \ \lambda \ x^{H}x = \ \overline{\lambda} \ x^{H}x \\ \rightarrow \ (\lambda \overline{\lambda}) \|x\|^{2} = 0 \\ \rightarrow \ \because x \neq 0 \quad \therefore \|x\|^{2} \neq 0 \\ \rightarrow \ \lambda = \overline{\lambda} \ \rightarrow \ \lambda \text{ is real} \end{array}$
- 10. (10%) The columns of the Fourier matrix F are the *eigenvectors* of the cyclic permutation P. Multiply PF to find the eigenvalues λ_1 to λ_2 :

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & \\ & & & \lambda_4 \end{bmatrix}$$

This is $PF = F\Lambda$ or $P = F\Lambda F^{-1}$. The eigenvector matrix (usually S) is F.

Solution:

$$\begin{split} det(P-\lambda I) &= \lambda^4 - 1 \\ \rightarrow \lambda = 1, i, i^2 = -1, i^3 = -i \end{split}$$