2017 Fall EE203001 Linear Algebra - Homework 7 solution Due: 2017/12/22

1. (10%) Compute $A^T A$ and $A A^T$ and their eigenvalues and unit eigenvectors for V and U

Rectangular matrix =
$$
\left[\begin{array}{cc} 2 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right]
$$

Solution:

$$
AA^{T} = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 7 \text{ with } u_{1} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } \sigma_{2}^{2} = 3 \text{ with } u_{2} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}
$$

$$
A^{T}A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 5 & 2 \\ 0 & 2 & 1 \end{bmatrix} \text{ has } \sigma_{1}^{2} = 7 \text{ with } v_{1} = \begin{bmatrix} \frac{2}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix} \text{ and } \sigma_{2}^{2} = 3 \text{ with } v_{2} = \begin{bmatrix} -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \text{ and}
$$

$$
v_{3} = \begin{bmatrix} \frac{1}{\sqrt{21}} \\ -\frac{2}{\sqrt{21}} \\ \frac{4}{\sqrt{21}} \end{bmatrix}
$$

Then
$$
\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} u_{1} & u_{2} \end{bmatrix} \begin{bmatrix} \sqrt{7} & 0 & 0 \\ 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix}^{T}
$$

2. (10%) Suppose $(T(v_1) = w_1 + 2w_2 + 3w_3 \text{ and } T(v_2) = 2w_2 + 3w_3 \text{ and } T(v_3) = 3w_3$. Find the matrix A for T using these basis vectors. What input vector $vgivesT(v) = w_1$

Solution:

The matrix A for T is
$$
\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix}
$$

For output $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ choose $v = A^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = v$

3. (10%) Show that A and B are similar by finding M so that $B = M^{-1}AM$:

(a)
$$
A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}
$$
 $B = \begin{bmatrix} 0 & -1 \\ 6 & 5 \end{bmatrix}$
\n(b) $A = \begin{bmatrix} 3 & -2 \\ 4 & 9 \end{bmatrix}$ $B = \begin{bmatrix} 9 & 4 \\ -2 & 3 \end{bmatrix}$

Solution:

$$
A=S_A \Lambda_A S_A^{-1}
$$

$$
B=S_B\Lambda_B S_B^{-1}
$$

If A is similar to B, then $\Lambda_A = \Lambda_B$

$$
\Lambda_A = S_A^{-1} A S_A, B = S_B \Lambda_A S_B^{-1} = S_B (S_A^{-1} A S_A) S_B^{-1} = M^{-1} A M
$$
\n(a)\n
$$
A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}
$$

$$
B = \begin{bmatrix} 1 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix}
$$

\n
$$
M = S_A S_B^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}
$$

\n(b)
\n
$$
A = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}
$$

\n
$$
B = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}
$$

\n
$$
M = S_A S_B^{-1} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}
$$

4. (10%) Find the eigenvalues and unit eigenvectors v_1 , v_2 of A^TA . Then find $u_1 = Av_1/\sigma$: $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ and $A^T A = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$ and $A A^T = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix}$

Verify that u_1 is a unit eigenvectors of AA^T . Complete the matrices U, Σ, V .

Solution:

$$
det(A^T A - \lambda I) = 0, \lambda = 10, 0
$$

\n
$$
\lambda = 10, u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \quad \lambda = 0, u_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}
$$

\n
$$
U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}
$$

$$
det(AAT - \lambda I) = 0, \lambda = 10, 0
$$

$$
\lambda = 10, v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} \quad \lambda = 0, v_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} \end{bmatrix}
$$

$$
V = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}
$$

Then $A = U\Sigma V^T$

$$
A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{10} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} \end{bmatrix}
$$

We can find that $u_1 = Av_1/\sigma$.

1

5. (10%)

- (a) If U and V are unitary matrices, show that U^{-1} and UV are also unitary.
- (b) A is a matrix with independent columns. Show that $A^H A$ is not only Hermitian but also positive definite.

Solution:

- (a) $U^H U = I, U 1(U^H)^{-1} = U 1(U^{-1})^H = I \Rightarrow U^{-1}$ is unitary. Also, $(UV)^H (UV) =$ $V^H U^H U V = I \Rightarrow UV$ is unitary.
- (b) $(A^H A)^H = A^H A^{HH} = A^H A$. By the definition of definite positive, we check $({\bf z}^H A^H)(A{\bf z}) =$ $||A\mathbf{z}||^2$, which is positive unless $A\mathbf{z} = 0$. Since A has indpendent columns, $A\mathbf{z} = 0$ only if $z = 0 \Rightarrow A^H A$ is positive definite.
- 6. (10%) If A is a Hermitian matrix,show the property of its' real and imaginary part.(symmetric, Hermitian, ...etc.) Solution:

Let $A = R + iS = (R + iS)^{H} = R^{T} - iS^{T} \Rightarrow$ the real part is symmetric while the imaginary part is skew-symmetric.

7. (10%) Which classes of matrices does P belong to: invertible, Hermitian, unitary? Compute P^2 , P^3 , and P^{100} . What are the eigenvalues of P?

Solution:

This P is invertible and unitary. $P^2 =$ $\sqrt{ }$ $\overline{}$ 0 0 −1 −1 0 0 $0 \t -1 \t 0$ 1 $\Big\vert$, $P^3 =$ $\sqrt{ }$ $\overline{}$ $-i$ 0 0 $0 \quad -i \quad 0$ 0 $0 - i$ 1 $\vert = -iI.$

Then $P^{100} = (-i)^{33} P = -iP$. The eigenvalues of P are the roots of $\lambda^3 = -i$, which are i and $i \exp^{2\pi i/3}$ and $i \exp^{4\pi i/3}$.

8. (10%) Compute $\mathbf{v} = F_8 \mathbf{c}$ by the three FFT steps for $\mathbf{c} = (1, 0, 1, 0, 1, 0, 1, 0)$. Repeat the computation for $c = (0, 1, 0, 1, 0, 1, 0, 1)$.

Solution:

- $c \rightarrow (1, 1, 1, 1, 0, 0, 0, 0) \rightarrow (4, 0, 0, 0, 0, 0, 0) \rightarrow (4, 0, 0, 0, 4, 0, 0, 0) = F_8c.$ $\mathbf{c} \rightarrow (0, 0, 0, 0, 1, 1, 1, 1) \rightarrow (0, 0, 0, 0, 4, 0, 0, 0) \rightarrow (4, 0, 0, 0, -4, 0, 0, 0) = F_8 \mathbf{c}.$
- 9. (10%) Prove that if \vec{A} is a real symmetric matrix, then all eigenvalues of \vec{A} are real numbers.

Solution:

$$
Ax = \lambda x
$$

\n
$$
\rightarrow (Ax)^{H} = (\lambda x)^{H}
$$

\n
$$
\rightarrow x^{H}A^{H} = \overline{\lambda} x^{H}
$$

\n
$$
\rightarrow x^{H}A = \overline{\lambda} x^{H}
$$

- $\rightarrow x^H A^H x = \overline{\lambda} x^H x$ $\rightarrow \lambda x^{H}x = \overline{\lambda} x^{H}x$ $\rightarrow ~~ (\lambda - \overline{\lambda})\Vert x \Vert^{2} = 0$ \rightarrow ∵ $x \neq 0$ ∴ $||x||^2 \neq 0$ $\rightarrow \lambda = \overline{\lambda} \rightarrow \lambda$ is real
- 10. (10%) The columns of the Fourier matrix F are the eigenvectors of the cyclic permutation P. Multiply PF to find the eigenvalues λ_1 to λ_2 :

$$
\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^2 & i^3 \\ 1 & i^2 & i^4 & i^6 \\ 1 & i^3 & i^6 & i^9 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}
$$

This is $PF = F\Lambda$ or $P = F\Lambda F^{-1}$. The eigenvector matrix(usually S) is F.

Solution:

 $det(P - \lambda I) = \lambda^4 - 1$ $\to \lambda = 1, i, i^2 = -1, i^3 = -i$