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Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) alineR®* (b) aplaneirR® (c) all of R3,
2 v+ w=(2,3)andv —w = (6, —1) will be the diagonals of the parallelogram with
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andw as two sides going out frotfd, 0).

This problem gives the diagonals+ w andv — w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this exampte (3, 3) andw = (2, -2).

3v+w= (7.5 andcv +dw = (2c +d.c + 2d).

u+v=(=2,31)andu+v+w = (0,0,0) and2u+2v+w = (add first answeps=
(—2,3,1). The vectorsu,v, w are in the same plane because a combination gives
(0,0,0). Stated another wayt = —v — w is in the plane ob andw.

The components of everyw + dw add to zeroc = 3 andd = 9 give (3, 3, —6).

The nine combinations(2, 1) + d(0, 1) with ¢ = 0,1,2 andd = (0, 1,2) will lie on

a lattice. If we took all whole numbersandd, the lattice would lie over the whole
plane.

The other diagonal is — w (or elsew — v). Adding diagonals give@v (or 2w).

The fourth corner can b, 4) or (4,0) or (=2, 2). Three possible parallelograms!
i—j = (1,1,0)isinthe basex-y plane).i +j +k = (1, 1, 1) is the opposite corner
from (0,0, 0). Points in the cube have< x < 1,0 <y <1,0<z < 1.

Four more cornersl, 1,0), (1,0, 1), (0,1, 1), (1, 1,1). The center point |$2, 3 2)
Centers of faces arg,, 3.0). (3, 3. 1) and(0, 3. 1), (1, 4. Dy and(3.0. 1), (3. 1. 3).

A four-dimensional cube ha* = 16 corners an@ - 4 = 8 three-dimensional faces
and24 two-dimensional faces ari® edges in Worked Exampz4 A.

Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal
= (cosZ,sinZ) = (+/3/2,1/2).

Moving the origin to6:00 addsj = (0, 1) to every vector. So the sum of twelve vectors
changes fron®to 12j = (0, 12).

.3 I .
The pomtzv + yid is three-fourths of the way te starting fromw. The vector

1 1 . 1 1 .
—v + —w is halfway tou = 7Y + Tk The vecton + w is 2u (the far corner of the
parallelogram).

All combinations withc + d = 1 are on the line that passes throughand w.
The pointV = —v + 2w is on that line but it is beyond.

All vectorscv + cw are on the line passing through, 0) andu = ;v +
line continues out beyond + w and back beyond, 0). With ¢ > 0, h If
is removed, leaving ey that starts a0, 0).

The combinationsv + dw with 0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, iv = (1,0) andw = (0, 1) thencv + dw fills the unit
square.

With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant- 0,
y > 0. Question What if w = —v? The cone opens to a half-space.
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Solutions to Exercises 3

20 (a) u + 1v + Jwis the center of the triangle betweenv andw; u + Jw lies
betweern: andw (b) Tofillthe triangle keep >0,d >0,e>0,andc+d +e¢ = 1.

21 Thesumigv —u) + (w—v) + (u — w) = zero vector. Those three sides of a triangle
are in the same plane!

22 The vector} (u + v + w) is outsidethe pyramid because+d + e = 3 + 3 + 1 > 1.

23 All vectors are combinations of v, w as drawn (not in the same plane). Start by seeing
thatcu + d v fills a plane, then addingw fills all of R3.

24 The combinations of andv fill one plane. The combinations efandw fill another
plane. Those planes meet itirge: only the vectorswv are in both planes.

25 (a) Foraline, choose = v = w = any nonzero vector (b) For a plane, choose
u andv in different directions. A combination like = u + v is in the same plane.

26 Two equations come from the two componentst 3d = 14 and2¢ + d = 8. The
solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

27 The combinations of = (1,0,0) andi + j = (1, 1, 0) fill the xy plane inxyz space.

28 There areés unknown numbers;, v,, v3, w1, Wy, w3. The six equations come from the
componentsob + w = (4,5,6) andv —w = (2,5,8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

29 Two combinations out of infinitely many that produse= (0, 1) are —2u + v and
1w — 1v. No, three vectors:, v, w in the x-y plane could fail to producé if all
three lie on a line that does not contdin Yes if one combination produces then
two (and infinitely many) combinations will produde This is true even it = 0; the
combinations can have differe.

30 The combinations oé andw fill the planeunlessy and w lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the
“standard basis{1, 0, 0, 0), (0, 1,0, 0), (0,0, 1,0), and(0, 0,0, 1).

31 The equationsu + dv + ew = b are

2¢ —d =1 Sod = 2e c =3/4
—c+2d —e=0 thenc = 3e d=2/4
—d +2e=0 thende = 1 e =1/4

Problem Set 1.2, page 19

lu-v=—-184+32=14u-w=-48+48=0,v.-w=24+24=48=w - v.

2 ||lu|]| = 1and|v| = 5Sand||w| = 10. Thenl.4 < (1)(5) and48 < (5)(10), confirming
the Schwarz inequality.

3 Unit vectorsv/|v]| = (2. %) = (.6..8) andw/||w|| = (£, 2) = (.8,.6). The cosine
of B is ﬁ . H“’—” = 2% The vectoraw, u, —w make0°, 90°, 180° angles withw.

4 @v-(—v) =—1 b)v+w - w—w)=v-v+w-v—v-W—W-W
I1+( )—( )—1=0s00 = 90° (noticev-w = w-v) () (v—2w):(v+2w)
vev—4w-w=1—-4=-3.



4

5

10

11
12

13

14

15
16

17

18

19

20

21

22

Solutions to Exercises

u; = v/|vl| = 3,1)/+/10 anduy = w/||w| = (2,1,2)/3. U, = (1,-3)/+/10is
perpendicular tar; (and so is(—1,3)/+/10). U, could be(1,—2,0)/+/5: There is a
whole plane of vectors perpendiculari#g, and a whole circle of unit vectors in that
plane.

All vectorsw = (c,2c) are perpendicular te. All vectors(x, y,z) withx+y+z =0
lie on aplane All vectors perpendicular t6l, 1, 1) and(1, 2, 3) lie on aline.

(@) co =v-w/|v|||lw]| = 1/(2)(1) sof = 60° or =/3 radians (b) co§ = 0
sof = 90° or w/2 radians (c) co8 = 2/(2)(2) = 1/2s06 = 60° or n/3
(d) cosd = —1/+/2 5060 = 135° or 37 /4.

() Falsew andw are any vectors in the plane perpendiculag to (b) True:u - (v +
2w) =u-v+2u-w=0 (c) True,||u—v|> = (u—v)- (u— v) splits into
u-u+v-v=2whenu-v=v-u=0.

If vowy/viw; = —1thenv,w, = —vywg Orvywy +vwy = v-w = 0: perpendicular!
Slopeg/1 and—1/2 multiply to give—1: thenv-w = 0 and the vectors (the directions)
are perpendicular.

v - w < 0 means angle- 90°; thesew’s fill half of 3-dimensional space.

(1, 1) perpendicular tq1,5) —c(1,1)if 6 —2c = 00orc = 3;v-(w—cv) =0 if
¢ =v-w/v-v. Subtracting-v is the key to perpendicular vectors.

The plane perpendicular 1@, 0, 1) contains all vectorsgc, d, —c). In that planep =
(1,0,—1) andw = (0, 1, 0) are perpendicular.

One possibility among many = (1,-1,0,0),v = (0,0,1,—1),w = (1,1,—1,—1)
and(1, 1, 1, 1) are perpendicular to each other. “We can rotate tlsew in their3D
hyperplane.”

1(x+y)=(2+8)/2=5;cosf = 2v16/+/10+/10 = 8/10.

o> =1+1+---+1=9s0|v|| =32 =v/3=(3,...,3) isaunitvectoriroD;
w = (1,—1,0,...,0)/+/2is a unit vector in th&D hyperplane perpendicular o
cosa = 1/4/2, cosp = 0, cosy = —1/+/2. For any vectow, co$ a +cos +cos y
= (i +v3+v)/lv]> =1

[v]|> = 4% + 22 = 20 and||w||?* = (—1)? + 22 = 5. Pythagoras i§(3,4)||> = 25 =
20 + 5.

Start from the rulesl), (2), (3) forv-w = w-v andu-(v+w) and(cv)-w. Use rule(2)
for(v+w)-(v+w) = (v+w)-v+(v+w)-w. Byrule(1) thisisv-(v+w)+w-(v+w).
Rule(2) againgive v+ v-w+w-v+w-w=v-v+2v-w+ w-w. Notice
v-w = w - v! The main point is to be free to open up parentheses.

We know that(v —w) - (v —w) =v:v—2v-w + w - w. The Law of Cosines writes
lv]|]|w] cose for v-w. Whenf < 90° thisv - w is positive, so in this case-v + w - w
is larger thanj|v — w||?.

2v-w < 2| v||w| leadsto|v+w|? = v-v+2v-w+w-w < [[v]2+2|v|[|w]+||w]|>.
Thisis(||v]| + ||w]|))?. Taking square roots givée + w| < ||v| + [|w].

V2w? + 201wy vaws + V3w < v2w? 4+ viw? +v3w? + viw? is true (cancel terms)
because the differenceig w3 + v3w? — 2v;wyvaw, Which is(viwy — vawy)? > 0.
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cosp = wy/|w| and sin = w,/||w|. Then cogp —a) = cosp cosa +sing sina =
viwy/||v|[|w| + vawa/||v|[||w| = v - w/||v]||||w]. Thisis co¥ becausgp — o = 6.
Example 6 givesu, ||Uy| < $(u? + U?) and|uz||U| < 3 (u3 + UZ). The whole line
becomes96 < (.6)(.8) + (.8)(.6) < 1(.6% + .8%) + 1(.82 4+ .6%) = 1. True:.96 < 1.

The cosine o isx/+/x2 + y2, near side over hypotenuse. TH&osf|? is not greater
than 1:x2/(x? + y?) < 1.

The vectorsw = (x, y) with (1,2) - w = x + 2y = 5 lie on a line in thexy plane.
The shortestv on that line is(1, 2). (The Schwarz inequalityw| > v - w/||v|| = /5

is an equality when cas = 0 andw = (1,2) and||w| = +/5.)

The length||v — w|| is betweer2 and8 (triangle inequality whetjv| = 5 and|jw| =
3). The dot product - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater 3hamvith each other: for
example(1,0), (—1,4), (—1,—4). Four vectors couldhot do this 360° total angle).
How many can do this iiR? or R"? Ben Harris and Greg Marks showed me that the
answer iz + 1. The vectors from the center of a regular simpleXRifhto itsn + 1
vertices all have negative dot productsu - 2 vectors inR” had negative dot products,
project them onto the plane orthogonal to the last one. Nawhaven + 1 vectors in
R™~! with negative dot products. Keep going to 4 vector®fit no way!

For a specific example, pick = (1,2, —3) and therw = (-3, 1, 2). In this example
cosd = v-w/|v||w| = —=7/v/14/14 = —1/2 andf = 120° . This always
happenswhen + y +z = 0:

1 1
v.w:xz+xy+yz:§(x+y+z)2_5(x2+y2+zz)
This is the same as- w =0 — > lv|l[|w]. Then co® = 5

Wikipedia gives this proof of geometric meah = 3/xyz < arithmetic mean
A = (x + y + z)/3. First there is equality in case = y = z. OtherwiseA is

somewhere between the three positive numbers, say for égampA4 < y.

Use the known inequality < « for thetwo positive numbers andy + z — A. Their

meana = L(x + y +z — A)is 134 — 4) = same asA! Soa > g says that
AP > g?A=x(y+z—-AA. But(y +z—A)A = (y —A)(A—2z2)+ yz > yz.

Substitute to findd3® > xyz = G as we wanted to prove. Not easy!

There are many proofs @ = (x;xz---x,)/" < A = (x; + X2 + -+ 4+ x,)/n. In

calculus you are maximizing on the planer; + x, + -+ + x, = n. The maximum
occurs when alk’s are equal.

The columns of the 4 by 4 “Hadamard matrix” (timezls) are perpendicular unit
vectors:
1 1 1 1
1 I |11 —1 1 -1
SH=511 1 21 2
1 -1 -1 1

The command$ = randn (3,30); D = sqrt (diag (V' * V)); U = V\D: will give
30 random unit vectors in the columns@f Thenu’ x U is a row matrix of 30 dot
products whose average absolute value may be clasénto



6 Solutions to Exercises

Problem Set 1.3, page 29

1 2s1 + 35, +4s3 = (2,5,9). The same vectdr comes fromS timesx = (2, 3, 4):

1 0 0792 (rowl)-x 2
[1 1 Oi| |:3i|:[(r0W2)-x}:|:5i|.
1 1 1]]4 (row?2)-x 9

2 The solutionsare; = 1, y, = 0, y3 = 0 (right side= columnl) andy; = 1, y, = 3,
y3 = 5. That second example illustrates that the firstdd numbers add te?.

1 = B i = B 1 0 0 B
3 1+ = B, gives Yy, = —B; +B; =|—-1 1 0]|]| B,
yity2+ys = Bs V3 = —B, +B; 0 —1 1][B3

1 00 1 00
The inverse of = |:1 1 Oi| iSA= |:—1 1 Oi|: independent columns i andS'!
1 1 1 0-1 1

4 The combinatior0w; + Ow, + Ow3; always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors atependentthey lie in a plane):
w, = (w; + w3)/2 so one combination that gives zerogwl —wy + %w3.

5 The rows of the3 by 3 matrix in Problem 4 must also likependentr, = %(rl +r3).
The column and row combinations that prod@care the same: this is unusual.

r1 3 57
6c=3 1 2 4] hascolumm = 2 (columnl) + column2
(1 1 3
r1 0—1T
c=-1 1 1 0| hascolumrs = — columnl + column2
|0 1 1]
0 0 07
c=0 2 1 5| hascolummB = 3 (columnl) — column2
3 36

7 All three rows are perpendicular to the solutierfthe three equations; - x = 0 and
ro-x = 0andr;-x = 0tell us this). Then the whole plane of the rows is perpendicul
to x (the plane is also perpendicular to all multiptas).

Xl—O = bl X1 = b] 1 0 0 O b]

8 Xo—Xx1 = by Xo = by + by |11 0 0 by — 4-1p
X3 — Xy = bs x3 = by +by+ b3 “ |1 1 1 0 by | —
X4 — X3 = by X4 = by + by + b3+ by 1 1 1 1 by

9 The cyclic difference matrixC has a line of solutions (i dimensions) taCx = O:

0 0 -1 X1 0 c
L0010 hene = | €| = any constant vector
0 -1 1 0 X3 0 c ’

0 0 -1 1 X4 0 c



Solutions to Exercises 7

Zp —Z1 = b] zZ1 = —bl—bz—b:; -1 -1 -1 bl
10 Z3 —Zp = b2 Zy = —b2 —b3 = |: 0 —1 —1:| |:b2:| = A_lb
0—23 = b3 Zz = —b3 0 0 —1 b3

11 The forward differences of the squares @re- 1) — 12 = 2 + 2t + 1 —1% = 2t + 1.
Differences of thesth power arg(t 4+ 1)” —t* = t" —t" +nt"~! +.... The leading
term is the derivativa:"~!. The binomial theorem gives all the terms(of+ 1)".

12 Centered difference matrices @fensize seem to be invertible. Look at eqiisand4:

0 1 0 0 X1 bl First X1 —b2 — b4
—1 0 1 0 X2 | _ b2 solve Xo . b]

0 -1 0 1 X3 - b3 Xy = b] X3 - —b4

0 0 —-1 0 X4 b4 —X3 = b4 Xa b] + b3

13 Odd size The five centered difference equations leadte- b3 + bs = 0.

X2 =b;
X3 —x1 =by
X4 — X2 = b3
X5—X3:b4

—X4=b5

14 An example iS(a,b) = (3,6) and(c,d) = (1,2). The ratiosu/c andb/d are equal.
Thenad = bc. Then (when you divide byd) the ratiosa /b andc/d are equal!

Add equationd, 3,5

The left side of the sum is zero

The right side i$ + b3 + b5

There cannot be a solution unlédss+ b3 + bs = 0.

Problem Set 2.1, page 40

1 The columns aré = (1,0,0) andj = (0,1,0) andk = (0,0, 1) andb = (2,3,4) =
2i +3j + 4k.

2 The planes are the sank: = 4isx = 2,3y = 9isy = 3,anddz = 16isz = 4. The
solution is the same poitk = x. The columns are changed; but same combination.

3 The solution is not changed! The second plane and row 2 of #iexyand all columns
of the matrix (vectors in the column picture) are changed.

4 1f z =2thenx + y = 0andx — y = z give the point(1,—1,2). If z = 0 then
x 4+ y = 6andx — y = 4 produce(5, 1, 0). Halfway between those (8, 0, 1).

5 If x, y,z satisfy the first two equations they also satisfy the thirdagipn. The line
L of solutions contains = (1,1,0) andw = (3.1.1) andu = v + Lw and all
combinationgv + dw withc +d = 1.

6 Equationl + equatior2 — equatior3 is now0 = —4. Line misses planeio solution

7 Column3 = Column 1 makes the matrix singular. Solutiapsy,z) = (1,1,0) or
(0,1,1) and you can add any multiple ¢£1,0,1); b = (4,6,c) needsc = 10 for
solvability (thenb lies in the plane of the columns).

8 Four planes in 4-dimensional space normally meetodiat The solution toAx =
(3,3,3,2) is x = (0,0,1,2) if A has columng(1,0,0,0),(1,1,0,0),(1,1,1,0),
(1,1,1,1). Theequationsare+y +z+t =3,y +z+t =3,z 4+t =3t =2.

9 (@) Ax = (18,5,0)and (b) Ax = (3,4,5,5).
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Multiplying as linear combinations of the columns gives tagneAx. By rows or by
columns:9 separate multiplications fdr by 3.

Ax equals(14,22) and(0,0) and 0, 7).

Ax equaly(z, y, x) and(0,0,0) and 3, 3, 6).

(&) x hasn components andx hasm components (b) Planes from each equation
in Ax = b are inn-dimensional space, but the columns arehdimensional space.

2x +3y +z+ 5t = 8is Ax = b withthel by 4 matrix4 = [2 3 | 5]. The
solutionsx fill a 3D “plane” in 4 dimensions. It could be callechgperplane

@[t 1] w0

90° rotation fromR = [ 01

—1 0]’ 180° rotation fromR? = [_1 O} =—1I.

0 —1

o 1 0 0 0 1

P=]0 0 1|producegy,z,x)andQ =|1 0 0 |recoverdx,y,z). Q isthe
1 0 0 010

inverse ofP.

-1 1 0 1

- 1 0 0
E = ! 0] andE = [—1 1 Oi| subtract the first component from the second.
0

1 0 0 1 0 0
E=|0 1 0landE"'=| 0 1 0], Ev = (3,4,8) and E~"'Ev recovers
1 0 1 -1 0 1

8 projects onto thec-axis andP, = 8 (1)] projects onto they-axis.

5 5 0
vV = |:7j| haSPlv = |:O:| anszPlv = |:Oj|

1Tv2 —v2

R=- rotates all vectors by 45 The columns ofR are the results from
2| V2 ﬁ] Y

rotating(1, 0) and(0, 1)!

X

The dot producdx = [1 4 5] |:y] = (1 by 3(3 by 1) is zero for pointqx, y, z)
zZ

on a plane in three dimensions. The columngl@fre one-dimensional vectors.

A=[1 2 ; 3 4]andx =[5 —2]"andb =[1 7]".r = b— Axx prints as zero.
Axv=1[3 4 5]"andv’ x v = 50. Butv x A gives an error message from 3 by 1
times 3 by 3.

ones(4,4) xones(4,1)=[4 4 4 4]";Bxw =[10 10 10 10]’.

The row picture has two lines meeting at the solutiér2j. The column picture will
have4(1, 1) + 2(-2,1) = 4(column 1)+ 2(column 2)= right side(0, 6).

The row picture show& planesin 3-dimensional space The column picture is in
2-dimensional spaceThe solutions normally lie onlane.
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28 The row picture shows foulines in the 2D plane. The column picture is four-
dimensional space. No solution unless the right side is eawation ofthe two columns

29 u, = ; andu; = gg . The components add to 1. They are always positive.

u7,v7, w7 are all close td.6, .4). Their components still add to 1.

30 [g ﬂ [ﬂ = [2] = steady state. No change when multiplied b@i ;]

8 3 4 54u 5—u+v 5-—v
I M=|1 5 9|=|5—u—v 5 S54u-+v|; Ms(1,1,1) = (15,15,15);
6 7 2 54v 54+u—v 5-—u

My(1,1,1,1) = (34,34,34,34) becausd + 2 + --- + 16 = 136 which is4(34).

32 A is singular when its third columm is a combinatiorru + dv of the first columns.
A typical column picture has outside the plane af, v, w. A typical row picture has
the intersection line of two planes parallel to the thirdy@al hen no solution

33 w = (5,7)is5u + Tv. ThenAw equals5 timesAu plus7 timesAv.

2 —1 0 0 X1 1 X1 4
—1 2 -1 0 X2 _ 2 . X2 _ 7
3| g 1 2 _1||x]|=/|3]hasthesolution > =g
O 0 —1 2 X4 4 X4 6
35 x = (1,....1) givesSx = sum of each row= 1+---+9 = 45 for Sudoku matrices.

6 row orders(1, 2, 3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1) are in Section 2.7.
The same permutations oblocksof rows produce Sudoku matrices, b = 1296
orders of thed rows all stay Sudoku. (And alsi296 permutations of thé columns.)

Problem Set 2.2, page 51

1 Multiply by £, = % = 5 and subtractto findx + 3y = 14 and—6y = 6. The pivots
to circle are 2 and-6.

2 —6y = 6 givesy = —1. Then2x + 3y = 1 givesx = 2. Multiplying the right side
(1, 11) by 4 will multiply the solution by 4 to give the new solutign, y) = (8, —4).

3 Subtract—% (or add%) times equation 1. The new second equatioByis= 3. Then

y=1andx =5. If the right side changes sign, so does the solutigny) = (-5, —1).
4 Subtractt = 7 times equation 1. The new second pivot multiplyings d — (cb/a)
or (ad —bc)/a. Theny = (ag — cf)/(ad — bc).
5 6x + 4y is 2 times3x + 2y. There is no solution unless the right sideis10 = 20.

Then all the points on the lirkex +2y = 10 are solutions, including, 5) and(4, —1).
(The two lines in the row picture are the same line, contgmithsolutions).

6 Singular system ib = 4, becausdx + 8y is 2 times2x + 4y. Theng = 32 makes
the lines become theame infinitely many solutions likg8, 0) and(0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row pictyreThe equations
have no solution. Witlh = 0, elimination will stop for a row exchange. Than = —3
givesy = —1 and4x + 6y = 6 givesx = 3.
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If & = 3 elimination must fail: no solution. Ik = —3, elimination givexd = 0 in
equation 2: infinitely many solutions. f = 0 a row exchange is needed: one solution.
On the left sidepx — 4y is 2 times(3x — 2y). Therefore we neetl, = 2b; on the
right side. Then there will be infinitely many solutions (tyarallel lines become one
single line).
The equatiory = 1 comes from elimination (subtragt+ y = 5 from x + 2y = 6).
Thenx = 4 and5x —4y = ¢ = 16.
(a) Another solution i%(x +X,y+Y,z+Z). (b) If 25 planes meet at two points,
they meet along the whole line through those two points.
Elimination leads to an upper triangular system; then coim&sk substitution.

2x +3y+ z=28 x =2

y+3z=4 gives y =1 |Ifazerois atthe start of row 2 or 3,

8z =38 z =1 that avoids a row operation.
2x — 3y =3 2x —3y =3 2x —3y =3 x=3
4x -5y + z=7 gives y+ z=1 and y+ z=1 and y=1
2x — y—3z=5 2y +3z=2 —5z=0 z=0

Subtract 2< row 1 from row 2, subtract ¥ row 1 from row 3, subtract  row 2 from
row 3

Subtrac® times row 1 from row 2 to reactl —10)y—z = 2. Equation (3) iyy—z = 3.
If d = 10 exchange rows 2 and 3. df = 11 the system becomes singular.

The second pivot position will contair2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equatioris— z = 0. A solution is(1, 1, —1).
Ox +0y +2z=4 Exchange Ox +3y +4z=4
Example of
() 2 exchanges xX+2y+2z=5 (b) but then xX+2y+2z=5
9 Ox +3y+4z=6 break down Ox + 3y +4z=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 =row 2, then row 2 is zero after the first step; exchange therosvavith row
3 and there is nthird pivot. If column2 = column 1, then columf has no pivot.

Examplex +2y + 3z = 0,4x 4+ 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becoiie= 0: infinitely many solutions.

Row 2 become8y — 4z = 5, then row 3 becomeg; + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Therrit= 5 the third equation i® = 0. Choosing
z = 1the equatiorsy — 4z = 5 givesy = 3 and equation 1 gives = —9.

Singular if row 3 is a combination of rows 1 and 2. From the eiaglthe three planes
form a triangle. This happens if rowis+2 =row 3 on the left side but not the right
side:x+y+z=0,x—2y—z=1,2x—y=4. No parallel planes but still no solution.

() Pivots2, % %,% in the equation@x + y = 0, %y +z=0, %z +1t=0, %t =5
after elimination. Back substitution gives= 4,z = -3,y = 2,x = —1.  (b) If
the off-diagonal entries change frofl to —1, the pivots are the same. The solution is
(1,2,3,4) instead of(—1,2, -3, 4).

The fifth pivot isg for both matrices (1's or1's off the diagonal). Theth pivot is

n+1
-
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23 If ordinary elimination leads ta + y = 1 and2y = 3, the original second equation
could be2y + £(x + y) = 3 + £ for any£. Then{ will be the multiplier to reach
2y =3.

24 Elimination fails on[z 2] ifa=2o0ora =0.

25 a = 2 (equal columns) = 4 (equal rows)a = 0 (zero column).

26 Solvable fors = 10 (add the two pairs of equations to get » +c +d on the left sides,
12 and2 + s on the right sides). The four equations farb, ¢, d aresingular! Two

1 1 0 0 1 1 0 0

. 1 3 0 4 1 01 0 0 -1 1 0
solutlonsare{l 7}and[2 6}"4: 00 1 1 andU = 0 0 1 1
0 1 0 1 0O 0 00

27 Elimination leaves the diagonal matrix di@g2, 1) in 3x = 3,2y = 2,z = 4. Then
x=1y=1:z=4.
28 A(2,:) = A(2,:) — 3 % A(1,:) subtracts3 times rowl from row 2.

29 The average pivots for rand(@jthoutrow exchanges Weri[n, 5, 10in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averagesaatually infinite ! With
row exchangesn MATLAB's lu code, the averages/5 and.50 and.365 are much
more stable (and should be predictable, also for randn vathal instead of uniform
probability distribution).

30 If A(5,5)is7 not11, then the last pivot will bé& not4.

31 Rowj of U is a combination of rows, ..., j of A. If Ax = 0thenUx = 0 (not true
if b replaced®). U is the diagonal o4 when 4 is lower triangular.

32 The question deals with 100 equatiofis = 0 when A is singular.

(a) Some linear combination of the 100 rowstie row of 100 zeros
(b) Some linear combination of the 1@6lumnsis the column of zeros

(c) A very singular matrix has all onest = eyg100). A better example has 99
random rows (or the numbets, ..., 100" in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination oféhosvs with no
Zeros).

(d) The row picture has 100 planegeting along a common line through0. The
column picture has 100 vectors all in the same 99-dimenkiyeerplane.

Problem Set 2.3, page 63

100 10 0 10077010 010
1 Ey=|-510|,Ep=|010[,P=|001]|100]|=|001].
001 (071 010]l00°1 100

2 ExErh = (1,—5,-35) but E>; Es»b = (1,—5,0). When E3, comes first, row 3
feels no effect from row 1.

1 0071 0071 0 0 1 0 0
3|—4 1 0[,]0 1 0f,]0 1 0| M=EnEyEy =|-4 1 0].

0 0 1 2 0 14 L0 =2 1 10 =2 1
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1 1 1 1
E E E
Elimination on column 4:6 = | 0 U I e L VR Bt ol e The
0 0 2 10

original Ax = b has becomé&/x = ¢ = (1,—4,10). Then back substitution gives
z=-5y= %,x = % This solvesdx = (1,0,0).

Changingas; from 7 to 11 will change the third pivot from 5 to 9. Changiags from
7 to 2 will change the pivot from 5 tno pivot

2 3 7 1 4
Example: |2 3 7 3| = |4/|. Ifall columns are multiples of columa,
2 3 7|]-1 4

there is no second pivot.
To reverseEs;, add 7 times row1 to row 3. The inverse of the elimination matrix

100 1 0 0
E=| 01 0|isE"'={0 1 0
-7 0 1 70 1
M= ¢ 2 andM*:[ ¢ b } detM* = a(d — tb) — b(c — La)
c—4la d-—1Ub

reduces tard — bc!

1 00
M= [ 00 1}. After the exchange, we nedd}; (not E,;) to act on the new row 3.
-1 10

1 0 1 1 0 1 2 0 1
Eiz=|0 1 0f;]0 1 0]|;E3;1E;3=|0 1 0].Teston the identity matrix!
0 0 1 1 0 1 1 0 1
1 2 2
An example with two negative pivots i$ = [1 1 2] The diagonal entries can
1 2 1

change sign during elimination.

9 8 77 rowsand 1 2 3
The first productig 6 5 4| also columns The second productis0 1 -2 |.
3 2 1] reversed. 0 2 -3
(a) E times the third column oB is the third column ofEB. A column that starts

at zero will stay at zero. (b)E could add row2 to row 3 to change a zero row to a
Nnonzero row.

Eai has—{y; =1, E3; has—{3; =3, E43 has—{43 = . Otherwise theE’s match/ .

—1 —4 —7 -1 —4 -7
ai; =2 —3j1 A= [ 1 -2 —5} — [ 0 -6 —12}. The zero became12,
3 0 -3 0 —12 -24

1 0 0
an example ofill-in. To remove that-12, chooseE;, = [O 1 O}.
0 -2 1
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7 when

(&) The ages o andY arex andy: x —2y = 0andx + y = 33; x
y =11 (b) Theliney = mx + ¢ containsx = 2,y = 5andx = 3, y
2m + ¢ = 5and3m + ¢ = 7. Thenm = 2 is the slope.

a+ b+ c= 4
The parabola = a+bx+cx? goes through tha given points whena+ 2b+ 4c = 8.

a+ 3b+ 9c =14
Thena = 2, b = 1, andc = 1. This matrix with columng1, 1, 1), (1,2, 3), (1,4,9)
is a “Vandermonde matrix.”

1 0 O 1 0 0 1 0 O 1 0 O
EF=|:a 1 0:|,FE:[ a 1 0:|,E2=|:2a 1 0],F3:|:0 1 }
b ¢ 1 b+ac ¢ 1 2b 0 1 0 3¢

01 0 0 0 1
PO = [0 0 1}. In the opposite order, two row exchanges give = [1 0 0},
1 00 0 1 0

If M exchanges rowdand3 thenM?2 = I (also(—M)? = I). There are many square

roots of /: Any matrix M = [Ccl _Z} hasM? = [ if a* + be = 1.

— O

(&) Each column of£B is E times a column ofB (b) [i (1)} [i g ﬂ =

[; i g}-AllrowsofEB aremultiplesof [1 2 4].

1 0 1 1] .. 1 1 2 1
No.E:[1 1}andF=[0 1]gweEF:[1 2}butFE:[1 1]

(@ Y azjx; (b) az1 —ainn  (C) azi —2a11 (d) (EAx); = (Ax)1 =) aqjx;.

E(EA) subtracts4 times row 1 from row 2 (EEA does the row operation twice).
AE subtract® times columr2 of A from columnl1 (multiplication by £ on the right
side acts orolumnsinstead of rows).

12 3 1 2 3 1 . . 2x1 + 3x5
[A b]_ 4 1 171710 =5 15].Thetrlangularsystemls —5x,

Back substitution gives; = 5 andx, = —3.

The last equation becom@s= 3. If the original 6 is 3, then row % row 2 = row 3.

(a) Add two columns andb™ [1 41 O} - [l 41 O] —>x = [_7}

27 01 0 -1 =2 1 2
andx*:[_?].

(&) No solution ifd =0 andc #0 (b) Many solutions itZ =0=c. No effect froma, b.
A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.
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1 0 0 O 1 0 0 0
-1 1 00 Lﬁ 1 00
29 E= 0 —] 1 0 subtracts each row from the nextrow. The resylt 11 0
0 0 —1 1 01 2 1
still has multipliers= 1 in a3 by 3 Pascal matrix. The produdt of all elimination
1 0 0 0
matrices is _i _; (1) 8 . This “alternating sign Pascal matrix” is on page 88.
-1 3 -3 1

30 Given positive integers withd — bc = 1. Certainlyc < a andb < d would be
impossible. Alsac > a andb > d would be impossible with integers. This leaves

rowl <row?2 OR row2 < row 1. An example isM = [; g] Multiply by

0 1

Ll then multiply twice by[_i 1] to get[O ” This shows

1
0 1:|t09€t|:2 30

e

1 1 1
1/2 1 0 1 0 1
31 o = 0 0 1 I 2/3 1 R R ’
0 o 0 0 0 1 0 0 3/4 1
12 1
Ey43 E33 Eoy = [ 13 2/3 1 ‘|
1/4 2/4 3/4

Problem Set 2.4, page 75

1 If all entries ofA, B, C, D arel,thenBA = 3 o0neg5)is5by5; AB = 50neg3)is3
by 3; ABD = 150neg3,1)is3 by 1. DBA andA(B + C) are not defined.

2 (a) A (column 3 ofB) (b) (Row 1 0ofA) B (c) (Row 3 ofA)(column 4 ofB)
(d) (Row 1 ofC)D(column 1 ofE).

3 AB + AC is the same ad (B + C) = [2 g] (Distributive law.

4 A(BC) = (AB)C by theassociative law In this example both answers a{rg 8}

from columnl of AB and row2 of C (multiply columns times rows).

, _[1 2b . _[1 nb , _[4 4 W27 2n
5(a)A_[0 1}andA_[O 1] (b)A_[0 O}andA_[O 0].

6(A+B)2=[1(6) g}=A2+AB+BA+BZ.ButA2+2AB+B2:[lg g]

7 (a) True (b) False (c) True (d) False: usudlyB)? # A?B2.
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The rows ofDA are3 (row 1 of A) and5 (row 2 of A). Both rows ofE A are row2 of A.
The columns ofd D are3 (columnl of A) and5 (column2 of A). The first column of
AE is zero, the second is columrof A + column2 of A.

a a+b
AF = L i| and E(AF) equals(EA)F because matrix multiplication is
c C
associative
a+c b+d a+c b+d )
FA = and thenE (FA) = . E(FA)is not
c d a+2c b+2d
the same ag'(E A) because multiplication is not commutative.
0 0 1
(@ B=41 (b) B=0 (c) B= [0 1 Oi| (d) Every row of B is 1,0, 0.
1 00
a 0 a b ) )
AB = = BA = givesb = ¢ = 0. ThenAC = CA gives
¢ 0 0 0

a = d. The only matrices that commute with andC (and all other matrices) are
multiplesof/: A = al.

(A—B)> =(B—A)? = A(A—B)— B(A— B) = A> — AB — BA + B?. In a typical
case (WheM B # BA) the matrixA? — 24 B + B? is different from(A — B)?2.

(a) True (2 is only defined whem is square) (b) False (#l ism byn andB isn
by m, thenAB ism by m and BA is n by n). (c) True (d) False (tak& = 0).

(@) mn (use every entry oft) (b) mnp = pxpart(a) (c)n> (n? dot products).

(&) Useonly column2oB (b) Useonlyrow2ofd (c)—(d) Use row 2 of first.
I 1 1 I -1 1
A=|1 2 2 |hasa; =min(i,j).A=| -1 1 =1 |hasg; = (-1)\"/ =
1 2 3 1 —1 1
1/1 12 1/3
“alternating sign matrix’A = | 2/1 2/2 2/3 | hasa;; = i/j (this will be an
3/1 3/2 3/3

example of @ank one matrix

Diagonal matrix, lower triangular, symmetric, all rows atjiZero matrix fits all four.
(@) an (b) €31 = asz1/an (c) azx2 — (2%)6112 (d) az — (%)Cllz-
0040 0008
0004 0000 . . .
A% = , A3 = ., A* = zero matrix forstrictly triangular A.
0000 0000
0000 0000
X 2y 4z 8t
2z 41 0
Thendv = A Y = L A%y = L A3 = L A% =0.
z 2t 0 0
t 0 0
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5 5 5 ,
21 A=A2=4A3=... = s s butAB = s s and(AB)? = zero matrix!

[o 1 s oo 1 =171 17 _[o o]
22 a= [0 Vst =-rinc=[1 21 1]=] 1]

0 1 0 1 -1 0 '
DE = [1 O} [_1 O] = [ 0 1} = —ED. You can find more examples.

0 1
23 A = [ 0 0 i| hasA4? = 0. Note: Any matrixA = column times row= uv" will

01 0 0 0 1
haved? = uvTuv’ = 0if v'u=0. A=| 0 0 1 lhasa2=| 0 0 0
0O 0 O 00 0

but 43 = 0; strictly triangular as in Problem 20.

24 (A])n _ |:2(;’ 2”1— l], (A2)n — on—1 |:i 1], (A3)n — |:a(;1 a”glb:|.
[

a b ¢ 1 00 a|[1 0 0] [d]|[0 1 0] [c ][0 0 1]
25 (d e fI||O0O 1 O0f=|d +| e + f
g h i 0 0 1 g h i

1 0 3 3
Columns of 4
26 fimes rows of B [2}[3 3 O]+[4}[1 2 1]=|:6 6
2 1 6 6
3 30
|:10 14 4i|=AB.
7 8 1
27 (a) (row 3 ofA) - (column 1 ofB) and (row 3 ofA4) - (column 2 of B) are both zero.

X 0 x x X 0 0 x
(b) [x}[o x x]:[o x x} and[x}[o 0 x]=|:0 0 x]:bothupper.
0

ozt {1} [— 1 [0 1=

1 0 1
29 Ey = |:1 1 0:| andE31 = |: 0
0 0 1 —4

} produce zeros inth2, 1 and3, 1 entries.

0 1 0 1 3
result of bothE’s since(E31 Ex1)A = Ez(Ex A).

0
1
0
1 0 0 2 1 0
Multiply E’sto getE = E31Ey = |: 1 1 O] ThenEA = [O 1 1} is the
—4

30 In29, ¢ = [_é} D= [2 ;] D—ch/a = [i ;] in the lower corner o A.

31 A —B||x|_| Ax — By |real part Complex matrix times complex vector
B A||ly | | Bx + Ay | imaginary part. need# real times real multiplications.



Solutions to Exercises 17

32

33

34

35

36

37

AtimesX = [x; x, x3]willbetheidentity matrixl = [Ax; Ax, Axs].

3 3 1 0 0
b= |5|givesx =3x; +5x,+8x3=| 8|; A=|-1 1 0| will have
8 16 0 -1 1

thosex; = (1,1,1),x, = (0,1, 1), x3 = (0,0, 1) as columns of its “inverseA—!.

a+b a+b
c+d c+d

a b
Then4d = [b a].
1
0
1

A* ones= [

} agrees witlonesx A4 = [a te b+ b} whenb = ¢

a+c b+d| anda =d

0 0 1 2.0 20 aba,ada cba,cda These show
A= 1 1 0 42 0 2 0 2 bab, bcb dab, dcb 16 2-step
— 10 0 1] ~ 12 0 2 0| abc,adc cbc,cdc pathsin
1 01 0 0 2 0 2 bad, bcd dad, dcd the graph

Multiplying AB =(m by n)(n by p) needsnnp multiplications. ThenAB)C needs
mpg more. Multiply BC = (n by p)(p by ¢) needsipg and thend(BC) needsnng.

@) fm,n, p,qgare2,4,7,10 we comparg2)(4)(7) + (2)(7)(10) = 196 with the
larger numbex2)(4)(10) + (4)(7)(10) = 360 So AB first is better, so that we
multiply that7 by 10 matrix by as few rows as possible.

(b) If u,v,wareN by 1, then(u"v)w™ need2 N multiplications but«" (vwT) needs
N2 tofindvw™ and N2 more to multiply by the row vectar™. Apologies to use
the transpose symbol so early.

(c) We are comparinginp + mpq with mnq + npq. Divide all terms bymnpq:
Now we are comparing™ ! +n~! with p~! +m~!. This yields a simple important
rule. If matricesA andB are multiplyingv for A Bv, don’t multiply the matrices
first.

The proof of(AB)c = A(Bc) used the column rule for matrix multiplication—this
rule is clearly linear, column by column.

Even for nonlinear transformationd( B(c¢)) would be thé‘composition” of A with B
(applying B then A). This compositioM o B is justA B for matrices.

One of many uses for the associative law: The left-invé#se right-inverseC from
B = B(AC) = (BA)C = C.

Problem Set 2.5, page 89

0 1 19 7 —4
-1 __ 4 -1 _ 2 -1 _
14 _[% O]andB _[_1 1] and C _[_5 3]

2

2

0 0 1

A simple row exchange haB? = ] soP~! = P. HereP~! = |:1 0 Oi|. Always
01 0

P~1 =*“transpose” ofP, coming in Sectior.7.
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B I t] -2 a5 =2 , :
3 [y} = [_.2} and[z} = [ .1] SOA™ = o [_2 1] This question solved

AA~! = I column by column, the main idea of Gauss-Jordan elimination

4 The equations are+2y = 1 and3x + 6y = 0. No solution becausgtimes equation
1 gives3x + 6y = 3.

5 An upper triangulat/ with U? = I isU = [(1) _ﬂ for anya. And also—U.

6 (@) Multiply AB = AC by A~ ! to find B = C (sinceA is invertible) (b) As long

asB — C hasthe forn{_i _ﬂ,we havedB = AC for A = [} }]
7 (@) In Ax = (1,0,0), equation 14 equation 2— equation 3 i9 = 1 (b) Right
sides must satisfiy; +b, = b; (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vectorx = (1,1,—1) solvesdx = 0 (b) After elimination, columns 1
and 2 end in zeros. Then so does coluna columnl + 2: no third pivot.

9 If you exchange rows and2 of A4 to reachB, you exchangeolumns1 and2 of A~!
to reachB~!. In matrix notationB = PAhasB~! = A71P~1 = A1 P for this P.

o 0 0 1/5 3. -2 0 0
8 1(/)3 1(/)4 8 andB~! = ‘;‘ (3) (6) _2 (invert each
/2 0 0 0 0 0 -7 6

block of B).

10 A7! =

11 (a) If B = —A then certainlyd + B = zero matrix is not invertible. (b4 = [(1) 8}

0 0
0 1
12 Multiply C = AB on the left byA~! and on the right by’ ~!. ThenA~! = BC~!.

13 M~! = C7 !B~ 147! so multiply on the left byC and the right byd : B~! =
CM~'4.

andB = [ } are both singular but + B = I is invertible.

—1
14 B71 =471 [} (1)] = A1 [_} (1)} subtract column 2 oft~! from column 1.

15 If A has a column of zeros, so doBd. ThenBA = I isimpossible. There isna~!.

16 | ¢ b d —b| _|ad—bc 0 The inverse of each matrix is
¢c d||-c al| 0 ad —bc | the other divided byid — be

1 1 1 1
17 E3pE3 Es = 1 1 -1 1 = |-1 1 - E.
-1 1][1 1 1 0 —1 1

1
Reverse the order and changeto +1 to getinverses, ' E5 ' E3)' = [1 1 } =
1 1

L = E~!. Notice thel’s unchanged by multiplying in this order.
18 A?B = I can also be written ad(4AB) = I. Therefored~! is AB.
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19 The (1, 1) entry requiresta — 3b = 1; the(1,2) entry requireb —a = 0. Then

20

21

22

23

24

25

26

27

28

29

b = %anda = % For the5 by 5 case5a — 4b = 1 and2b = a giveb = % and

a2
=2z

A x ones(4, 1) is the zero vector sd cannot be invertible.
Six of the sixteer® — 1 matrices are invertible, including all four with three 1's.

1 0 1 3 1 0 1o 7 3] .
[2 1}_)[0 1 -2 1]_’[0 ) 1}—[1A I

o] [t 4 1 0] [t 0 =3 473 .
1}_’[0 -3 -3 1]_’[0 1o —1/3}=[1 A7),

1
W)
O~ I W
S = O =

21 0|1 0 0 2 10 1 0 0
(A 1]=[1 2 100 1 0:|—>|:0 3/2 1]-1/2 1 o]_>

01 2(0 0 1 0o 1 2 0 0 1
2 10 1 0 0 2 1 0 1 0 0
0 3/2 1]-1/2 1 0:|—>|:0 3/2 0|-3/4 32 —3/4}_>
0 0 4/3| 1/3 —2/3 1 0 0 4/3| 1/3 -2/3 1
20 0] 3/2 -1 1/2 1 0 0| 3/4 —1/2 1/4
0 3/2 0]|-3/4 32 —3/4} N {o 1 0|-1/2 1 —1/2} —
0 0 4/3| 1/3 —2/3 1 00 1| 1/4 —1/2 3/4
1471
'l a b 1 0 O 1 a 01 0 —=b 1 0 01 —a ac—b»b
016010:|—>|:01001—c:|—>|:0100 1 —c:|.
001 0 0 1 001 00 1 0010 0 1
PRI 2 —1 1711 0
1 2 1} :—[—1 3 —1};[—1 2 —1“1]:[0} so B~! does
11 2 411 -1 3] =1 =1 2] 0

not exist.

1 o171 21 [1 2 I 117 1 o 10
EﬂA:[—z 1“2 6]=[O 2]'E12’521A:[o 1][—2 1}‘:[0 2]'

Multiply by D = [(1) l/g} to reachDE ,E;1A = I. ThenA™! = DE,E» =

1| 6 =2
21 -2 L

1 0 O 2 -1 0
A7l = {—2 1 —3} (notice the pattern)d—! = {—1 2 —1}.
o 0 1 0 —1 1

0210_)2201_)20—11_)10—1/21/2
2 2 0 1 02 10 02 10 o1 1/2 o0}

This is[l A1 ]: row exchanges are certainly allowed in Gauss-Jordan.
(&) True (If A has a row of zeros, then eveAyB has too, andd B = [ is impossible)

(b) False (the matrix of all ones is singular even with diegdrs: ones(3) has 3 equal
rows) (c) True (the inverse of ! is 4 and the inverse afi? is (47 1)?).
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This A is not invertible forc = 7 (equal columns)¢ = 2 (equal rows)c = 0 (zero
column).

- . 1 a 0-b
Elimination produces the pivotsanda—b anda—b. A™' = —— | —a a 0 |.
a(a—>b) 0—-a a
1 1.0 0
A7l = 8 (1) % (1) . When the triangulad alternates 1 and1 on its diagonal,
0 0 0 1

A~ is bidiagonalwith 1’s on the diagonal and first superdiagonal.
x=(1,1,...,1) hasPx = Qx so(P — Q)x =0.

0] gl 47 0 a2 1
—c 1|34 _p-1icyt p-r|a@Y9 oo

A can be invertible with diagonal zeroB.is singular because each row adds to zero.
The equation. DL D = I says that. D = pascal (4, 1) is its own inverse.

hilb(6) is not the exact Hilbert matrix because fractions areded off. Sanv(hilb(6))
is not the exact either.

The three Pascal matrices haRe= LU = LLT and therinv(P) = inv(L")inv(L).

Ax = b has many solutions whe# = ones (4, 4) = singular matrix and = ones
(4,1). A\b in MATLAB will pick the shortest solutiorx = (1,1, 1, 1)/4. This is the
only solution that is combination of the rows of (later it comes from the
“pseudoinverse’”dA™ = pinv(4) which replacesA—! when 4 is singular). Any vec-
tor that solvesAx = 0 could be added to this particular solutien

1 —a 0O o 1 a ab abc
: /o 1 - O|..,4 |0 1 b bc .
The inverse ofd = 0 0 1 is A7 = 00 1 . (This
0 0 0 1 0 0 O 1
would be a good example for the cofactor formudia! = C T/ detA in Section 5.3)
1 1 1 1
a 1 0 1 1 a 1
The productl o 0 d 1 1 =|b» a 1
c 0 0 1 0 e 0 1 o1 c e f 1

that in this order the multipliers shows b, c¢,d, e, f are unchanged in the product
(important for A = LU in Section 2.6.

MM~ = {1,-UV) (I, +U(I,—VU)~'V) (thisis testing formula)
=1,-UV+UI,—VU)"'V-UVU(,—-VU)"'V (keep simplifying
=1,-UV+UIn—VU)I,—VU)"'V =1, (formulasl, 2, 4 are similay

4 by 4 still with 77, = 1 has pivotsl, 1, 1, 1; reversing tol * = UL makesT,, = 1.

Add the equation€’x = b to find0 = by + b, + b3 + by. Same forFx = b.

The block pivots ared and S = D — CA™'B (and d —ch/a is the correct
second pivot of an ordinary 2 by 2 matrix). The example pnobldas

SHESHEEE
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46 Inverting the identityd(/ + BA) = (I + AB)A gives(I + BA) 'A™! = A~1(I +
AB)™!. Sol + BA andI + A B are both invertible or both singular whelnis invertible.
(This remains true also whetis singular: Problem 6.6.19 will show thdtB and BA
have the same nonzero eigenvalues, and we are looking here atl.)

Problem Set 2.6, page 102

1 {7 = 1 multipliedrow 1; L = ! (1) times[1 (1) [x] = [5] =cisSAx = b:

R G E——

_ . 1 0 C1 _ 5 _ 5 . .
2 Lc=bis [1 1] [62] = [7} solved bye = 5| as elimination goes forward.

Ux =cis [(1) ” [;] = [;] solved byx = [;} in back substitution.

3 {31 = 1 and{3, = 2 (and{33 = 1): reverse steps to getu = b from Ux = c:
Ltimes(x+y+z = 5)+2times(y+2z = 2)+1times(z = 2) givesx+3y+6z = 11.

el JOCT o FIEE -1

1 2 10 2 10
5EA=|:O 1 i||:0 4 2i|=|:0 4 2}=U.WithE—1asL,A=LU=
-3 0 1][6 3 5 0 0 5
1
|:01 i|U.
301

1 1 11 1 1 0 0
6 10 1 -2 1 A=10 2 3| =U. Thend =2 1 0| Uis
0-2 1 0 01 0 0-6 0 2 1

the same a&;;' E3,)U = LU. The multiplierst,;, {3, = 2 fall into place inL.

1 1
7 E3xEz1Ex A = |: 1 :| |: 1 :| |: :| |:2 2 2:| This is
-2 1 -3 1 3 4 5

1 0 1 1
0 2 0| =U.Putthose multiplier, 3,2 into L. ThenA4 2 1
0 0 2 3 1

1 1 7
8 £ = E32E31E21 = 1 1 —da 1 = —dad 1 .
—c 1]L-b 1] 1 ac—b —c 1

The multipliers are just, b, ¢ and the upper trianguldr is /. In this cased = L and
its inverse is that matri¥, = L1,
1107 1 Ard e g7 d =1,e=1,thenl =1
9 2by2:d =0nota||owed[1 12 =|:l 1 |: f h} f = 0is not allowed
121] mn 1] i | nopivotinrow 2

i|U—LU
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10 ¢ = 2 leads to zero in the second pivot position: exchange rowsnandingular.
¢ = 1 leads to zero in the third pivot position. In this case therinds singular.

2 4 8 2
11 A = [O 3 9} hasL = I (A is already upper triangular) and = [ 3 };
0 0 7 7

1 2 4
A= LU hasU = A; A= LDU hasU = D714 = [O 1 3} with 1's on the

0 0 1
diagonal.
2 47 1 o2 47 _[1 o]f2 ol[1 27_ R
12A—[4 11}—[2 1“0 3}—[2 1“0 3] [o 1]—LDU’U'5L
1 1 4 0 1 1 1 4 0
4 1 } [0 —4 4} = [4 1 } [ —4 } {0 1 —1]=LDLT.
10 —1 1 0O 0 4 0 —1 1 41L0 0 1
fa a a a 1 a a a a a # 0 All of the
abbb| |11 b—a b—a b- b # a multipliers
Bilabee|T|111 c—b c¢c—b Needc;ﬁbare@,-jzl
la b cd 1111 d—c d # cforthis A
fa r r r 1 a r r r a#0
a b s s | |1 b—r s—r s—r b#r
Yla b e |71 11 c—s§s t—s 'Needc;és
la b ¢ d 1 1 1 1 d—t d#t
15 41‘ ﬂc = [1%} givesc = [g] Then[g T]x = [g] givesx = [_g}
2 4 2 2 4 2
Ax =b is LUx = [8 17] = [ } Forward to[o 1]x = [3] =c.
1 0 O 1 1 4 3
16 |1 1 Oi|c = |: i|g|ve5c = [ } Then[ 1 li|x = [1} givesx = |:Oi|
11 1 0 0 1 1 1

Those are the forward elimination and back substitution psstefor

1 I 1 1 4
Ax{l | M H}mH.
I 11 1 6

17 (a)L goestol (b) I goestoL~! (c)LU goes toU. Elimination multiply byZ~!!

18 (a) Multiply LDU = L,D,U, by inverses to geL'LD = D;U,U~'. The left
side is lower triangular, the right side is upper triangutamboth sides are diagonal.
(b) L,U, Ly,U; have diagonal’s soD = Dy. ThenL{!L andU,; U~ are both/.

1 1 1 0 a a 0 a
19 [1 1 }[ 1 1} = LIU;{a a+b b } = (sameL)[ b }
0 1 1 1 0 b b+c c

(samel). A tridiagonal matrix4 hasbidiagonal factors L andU .

20 A tridiagonalT has 2 nonzeros in the pivot row and only one nonzero belowitrod p
(one operation to find and then one for the new pivot!)T = bidiagonal L times
bidiagonalU .



Solutions to Exercises 23

21 For the first matrix4, L keeps the 3 lower zeros at the start of rows. Buiay not
have the upper zero whers, = 0. For the second matri®, L keeps the bottom left
zero at the start of row 4U keeps the upper right zero at the start of column 4. One
zero inA and two zeros irB are filled in.

5 3 1 4 2 0 2 00

22 Eliminating upwards |:3 3 1} — |:2 2 Oi| — [2 2 O} = L. We reach
1 1 1 11 1 I 11

alower triangularL, and the multipliers are in amppertriangularlU. A = UL with

I 1 1
U=[(0 1 1].
0 0 1
23 The 2 by 2 upper submatrit, has the first two pivots, 9. Reason: Elimination od
starts in the upper left corner with elimination dn.
24 The upper left blocks all factor at the same timedasdy, is L Uy.
25 Thei, j entryof L='is j/ifori > j. And L;;_, is (1 —i)/i below the diagonal
26 (K™Y;; = j(n—i+1)/(n+1)fori > j (and symmetric)(n + 1)K ~! looks good.

Problem Set 2.7, page 115

10 M9l o Tt 0], e 1 =37
1A—[9 3}“6‘“ —[0 3]/1 —[—3 1/3]’“‘ )= =10 g3
_|1l ¢ T_ N o L B
A_[C O}hasA = A andA4 _C_z[c _1]_(A ).
2 (AB)TisnotAT BT except whem B = BA. Transpose thatto findB8TA" = ATBT.
3@ (AB)™HT = (B1A™HT = A HT(B™HT. This is also(4")~1(BT)~ L.
(b) If U is upper triangular, so i&~!: then(U~!)T is lower triangular.

0 1
0 0

themselves. AT 4 = 0, zero dot productss zero columns= A = zero matrix.

0
5 (a) xTAy =0 1][}l : 2}[(1)]:5 (b) xTA=[4 5 6] (0) Ay=[§].

4 A= hasA4? = 0. The diagonal of4" 4 has dot products of columns dfwith

T T
6 M = [gT lC)T} MT = M needsA” = AandB" = C andDT = D.

7 (a) False{?1 ‘(ﬂ is symmetric only ifA = AT. (b) False: The transpose dfB

0 AT
A 0 AT 0|
So0(AB)" = AB needsBA = AB. (c) True: Invertible symmetric matrices have

symmetric in verses! Easiest proof is to transpdse! = 7. (d) True:(ABC)Tis
CTBTAT(= CBA for symmetric matrices!, B, andC).

8 Thel inrow 1 hasn choices; then thé in row 2 hasn — 1 choices . ..{! overall).

is BTAT = BA when 4 and B are symmetri transposes tt{
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Solutions to Exercises

0 1 0771 0 0 00 1 010
P1P2:|:001}[001i|:|:01Oi|butP2P1:|:100i|.
1 0 0Jlo 1 0 1 00 00 1

If P3 and P, exchangalifferentpairs of rows,P; P4 = P4 P3 does both exchanges.

(3,1,2,4) and(2, 3, 1, 4) keep4 in place;6 more evenP’s keep 1 or 2 or 3 in place;
(2,1,4,3)and(3,4, 1,2) exchange 2 pairg1,2,3,4),(4,3,2,1) makel2 evenP’s.

0 1 0770 0 6 1 2 3
PA = [O 0 1i| |:1 2 3} = [O 4 5} is upper triangular. Multiplyingon
1 0 0JLO 4 5 0 0 6

the rightby a permutation matri®, exchanges theolumns To make this4 lower tri-

1
angular, we also need®; to exchange rows 2 and 3P AP, = |: 1]
1

1 6 0 0
A[ | }:[5 : 0}.
1 321

(Px)"(Py)=x"PTPy=xTysinceP"P=1I.IngeneralPx-y=x-P'y # x-Py:

01 0 1 1 1 0O 1 0 1
Non-equality where? # PT: |:O 0 1i| [2} . [1} £ |:2i| . |:O 0 1i| [1}
1 0 0]L3 2 3 1 0 042

01 0

AcyclicP = [0 0 1 |oritstranspose willhav®3 =1 :(1,2,3) — (2,3.1) —
1 0 0

1 0

(3,1,2) > (1,2,3). P = [0 e

] for the sameP hasP* = P # 1.

The “reverse identity’P takes(1,...,n)into (n,...,1). When rows and also columns
are reversed,PAP);; iS (A)n—i+1,n—j+1. In particular(PAP )1 is Apy.

(a) If P sends rowl to row4, thenPT sends romd torow1 (b) P = [g g} =

PTwith E = [(1) (1)} moves all rows: and2 are exchanged, and4 are exchanged.

A% — B? (but not(4 + B)(A — B), this is different) and alsd BA are symmetric if4
and B are symmetric.

(@4 =] ||= AT isnotinvertible (b)A = [

(c)Az[i (l)]hasDz[(l) _01}

(@ 5+4+3+24+1=15independent entriesif = AT (b) L has 10 and has 5;
total 15inLDLT (c) Zero diagonal ifAT = —A, leaving4 +3 42+ 1 = 10 choices.

(@) The transpose ak"AR is RTATR'T = RTAR = n byn whenA™ = A4 (anym
byn matrixR) (b) (RTR);; = (columnj of R)- (column; of R) = (length squared
of columnj) > 0.

0 1
11 needs row exchange
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25

26

27

28

I 3] |1 0]]1 o1 3. 1 b |1 Off1 0 1 b
32113 1|10 =710 1} b c| |b 1|0 ¢c=b%2]|]|0 1
1 2 _1
2 -1 0 . 3 1 5 0 .
-1 2 ~1|=|—3 1 > 1 _% = LDL".
_ 2 4
0 1 2 0 -3 1 3 1

Elimination on a symmetric 3 by 3 matrix leaves a symmetniedoright 2 by 2 matrix.

2 4 8 1 b ¢ )
The example£4 3 9} and[b d e } lead to[:g __3;] and[d —é) e —bcz].
890 c e f e—bc f—c

1 1 1 0 1 1 1 1 2 0
[l }Az[o | M 1 1H 1}1:[1 | M | 1}
1 2 3 1 —1 1 2 0 1 1
0 0 0 1
|1 0 0 0] _ o This cyclic P exchanges rows-2 then
A4=10 10 0 =PandL =U=1. rows2-3 then rows3-4.
0010

1770 1 2 1 2 1 1
PA:LUis|: 1 Mo 3 8}=|:0 1 M 3 8i|.|fwewait
1 2 1 1 0 1/3 1 -2/3

1 1 2 1 1
to exchange and, is the pivot,A = L, P1U; = [3 1 } [ 1} [0 1 2}.
1 1 0 0 2

Thesplu code will not end wheabs(A(k, k)) < tol line 4 of theslu code on page 100.
Insteadsplu looks for a nonzero entry below the diagonal in the currehirom k, and
executes a row exchange. The 4 lines to exchangecraith row r are at the end of
Section 2.7 (page 113). Tind that nonzero entryi(r, k), follow abs(A(k, k)) < tol
by locating the first nonzero (or the largefitr, k) out ofr = k + 1,...,n).

One way to decide even vs. odd is to count all pairs thags in the wrong order. Then
P is even or odd when that count is even or odd. Hard step: Shatathexchange
always switches that count! Then 3 or 5 exchanges will lebsedount odd.

1 1 0 0
@) Ex= [—3 1 }putso inthe, 1 entry of £, A. ThenEzlAEzT1 = |:O 2 4i|
1 0 4 9

1
is still symmetric, with zero also inits 1, 2 entry.  (b) NoweuSs;, = [ 1 }
—4 1
to make the 3, 2 entry zero arEi;zEZIAEZTl E3T2 = D also has zero inits 2, 3 entry.
Key point: Elimination from both sides gives the symmefiD LT directly.

01 2 3
1 230 T , :

A= 230 11= A" has0, 1,2, 3 in every row. (I don’t know any rules for a
301 2

symmetric construction like this)
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29 Reordering the rows and/or the columns| ff | will move the entrya. So the result
cannot be the transpose (which doesn’'t maje

1 0 17 Tysc YBC + YBS
30 (a) Total currents ared'y = -1 1  Of|yes | = |—-yBc+Yycs |

0 -1 —1]Lyss —Ycs — VBS
(b) Either way(Ax)"y = x"(A"y) = xgygc + xByBs — XcyBc + Xcycs —
Xsycs —XSYBS-

1 50 700
1 40 2 6820 1 truck
31 |40 1000 |:x1]=Ax;ATy=|: ][3}:[ ]
[2 50 :| X2 50 1000 50 3000 188000 | 1 plane
32 Ax -y is thecostof inputs whilex - ATy is thevalueof outputs.

33 P3 = I so three rotations f@60°; P rotates aroundl, 1, 1) by 120°.

34 [}‘ g} = B (1)} [; ﬂ = EH = (elementory matrix) times (Symmetric matrix).

35 L(UT)~!is lower triangular times lower triangular, so lower triatay. The transpose
of UTDU isUTDTUTT = UTDU again, s?U"DU is symmetric. The factorization
multiplies lower triangular by symmetric to gétD U which is A.

36 These are groups: Lower triangular with diagotia) diagonal invertibleD, permuta-
tions P, orthogonal matrices witld T = Q1.

37 Certainly BT is northwest. B2 is a full matrix! B~! is southeast[ 1 3]™" = [9 _1].
The rows of B are in reverse order from a lower triangulay so B = PL. Then
B~! = L='P~! has thecolumnsin reverse order froni.~!. So B~! is southeast
NorthwestB = PL times southeasP U is (PLP)U = upper triangular.

38 There aren! permutation matrices of order. Eventuallytwo powers ofP must be
the samelf P" = PSthenP” ~5 = I. Certainlyr —s < n!

P 0 1 010
p=|""72 is 5 by 5 with P, = andP;=|0 0 1|andP®=1.
P5 1 0 10 o

39 To splitA into (symmetricB) + (anti-symmetriaC), the only choice i = %(A-i-AT)
andC = (4 —A").

q1 10
40 StartfromQTQ =1, as in[ _lr} (41 42]= [0 1}
9>

(@) The diagonal entries givelg, = 1 andgJq, = 1: unit vectors
(b) The off-diagonal entry isy{¢, = 0 (and in generag/q ; = 0)

cosh — sine]

(c) The leading example fa@ is the rotation matrl{ sinf  cosf
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Problem Set 3.1, page 127

lx+y#y+xandx+(y+z)#(x+y)+zand(c; + c2)x # c1x + cox.

2 Whenc(x, x2) = (cx1,0), the only broken rule is 1 times equalsx. Rules (1)-(4)
for additionx + y still hold since addition is not changed.

3 (a) ¢x may not be in our set: not closed under multiplication. Als®rand no—x
(b) c(x + y) isthe usualxy)¢, whilecx + cy is the usual(x¢)(y¢). Those are equal.
Withc =3,x =2,y = 1 thisis3(2+ 1) = 8. The zero vector is the number 1.

: : . [o 0o].., [1 -1 [-2 2
4 The zero vector in matrix spadé is | ()]EA =17 _jland-4A=]|_; 2]
The smallest subspace i containing the matrixd consists of all matricesA.
5 (a) One possibility: The matricesA form a subspace not containiiy (b) Yes: the
subspace must contaith— B = I (c) Matrices whose main diagonal is all zero.
6 When f(x) = x? andg(x) = 5x, the combinatior8 f — 4g in function space is
h(x) =3f(x) —4g(x) = 3x2 — 20x.
7 Rule 8 is broken: lfc f(x) is defined to be the usudf (cx) then(cy + ¢2) f =
f ((c1 + c2)x) is not generally the same agsf + co f = f(c1x) + f(c2x).
8 If (f + g)(x)isthe usualf (g(x)) then(g + f)x is g(f (x)) which is different. In
Rule 2 both sides arg (g (h(x))). Rule 4 is broken there might be no inverse function
f Y (x) such thatf (£ ~!(x)) = x. If the inverse function exists it will be the vector
9 (a) The vectors with integer components allow addition,rfmitmultiplication by%
(b) Remove ther axis from thexy plane (but leave the origin). Multiplication by any
¢ is allowed but not all vector additions.
10 The only subspaces are (a) the plane with= b, (d) the linear combinations af
andw (e) the plane witth; + b, + b3 = 0.
a b
0 0

12 Forthe planer + y —2z = 4, the sum oi4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go throu@ho, 0).)

13 The parallel plan®, has the equation + y — 2z = 0. Pick two points, for example
(2,0,1) and(0, 2, 1), and their sum2,2,2) is in Py.

14 (a) The subspaces Bf areR? itself, lines through0, 0), and(0, 0) by itself (b) The
subspaces dR* are R* itself, three-dimensional planes- v = 0, two-dimensional
subspacegn; - v = 0 andn, - v = 0), one-dimensional lines throudh, 0, 0, 0), and
(0,0,0,0) by itself.

15 (a) Two planes througl®, 0, 0) probably intersect in a line throudh, 0, 0)

(b) The plane and line probably intersect in the pginoy, 0)
(c) If x andy are in bothS andT, x + y andcx are in both subspaces.

16 The smallest subspace containing a plBrad a linel is either P (when the lind. is
in the planeP) or R3 (whenL is notinP).

17 (a) The invertible matrices do not include the zero matrixiley are not a subspace

(b) The sum of singular matric{% 8] + [8

a a

11 (a) All matrices[ } (b) AIImatrices[O O] (c) Alldiagonal matrices.

0. . ]
1 | is not singular: not a subspace.
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(&) True The symmetric matrices do form a subspace To)e The matrices with
AT = —A do form a subspace (dfalse The sum of two unsymmetric matrices
could be symmetric.

The column space ofl is the x-axis = all vectors(x,0,0). The column space aB
is thexy plane= all vectors(x, y,0). The column space df is the line of vectors
(x,2x,0).

(2) Elimination leads t® = b, — 2b; and0 = by + b3 in equations 2 and 3:
Solution only ifb, = 2b; andbz = —b; (b) Elimination leads t® = b, + 2b;
in equation 3: Solution only ib; = —b;.

A combination of the columns_df is also a combination of the columns af Then

1 3 1 2
C=26andA=24

different column space.

(&) Solution for everyp (b) Solvable only ifh; = 0 (c) Solvable only ifbz = b,.

The extra columi enlarges the column space unléss already inthe column space.
(4 b]= 1 0 1] (largercolumnspace) [1 0 1| (bisincolumn space)
10 0 1| (nosolutiontoAx =b)|0 1 1| (Ax = b has a solution)

The column space ofl B is contained in(possibly equal to) the column space 4f
The exampleB = 0 andA # 0 is a case whenl B = 0 has a smaller column space
thanA.

The solutiontodz = b + b* isz = x + y. If b andb™ are inC (A) soish + b*.

The column space of any invertible 5 by 5 matrixR$. The equationdx = b is
always solvable (byw = A~'b) so everyb is in the column space of that invertible
matrix.

(a) False \Vectors that arenot in a column space don't form a subspace.
(b) True Only the zero matrix ha€ (4) = {0}. (c) True C(A) = C(24).

(d) False C(A—1) # C(A)whend = I or A = [1 0

have the same column spacB. = ; é has a

0 0

1 10 1 1 2 1 20
A=1]1 0 Ofland|1 O 1|donothavel,1,1)inC(4). A=]2 4 0
0 10 0 1 1 3 60

hasC (A) = line.

WhenAx = b is solvable for alb, everyb is in the column space of. So that space
isR®.

(@) If u andv are both inS + T, thenu = s +t; andv = s, + t5. Sou + v =
(s1+52)+ (t1 +ty)isalsoinS + T. And soiscu = cs; + cty: a subspace

(b) If S andT are different lines, the§ U T is just the two linesr{ot a subspagebut
S + T is the whole plane that they span.

If § = C(A)andT = C(B) thenS + T isthe columnspacedf =[A B].
The columns ofd B are combinations of the columns af So all columnsof A AB |

are already irC (4). But4 = 8 (1)

For square matrices, the column spacR’tsvhen A is invertible

} (or other examples).

has a larger column space thdh = [8 8]
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Problem Set 3.2, page 140

1 2 2 4 6 . 2 4 2
Free variables,, x4, x5 Freexs
1@U=/0 0 1 2 3|, \ X4 (b)y U=|0 4 4|,
[O 00 0 0i| Pivot variablesy;, x3 00 0 Pivotxy, x;

2 (a) Freevariables,, x4, x5 and solutiong—2, 1,0, 0, 0), (0,0,—2,1,0), (0,0,—3,0, 1)
(b) Free variablecs: solution(1, —1, 1). Special solution for each free variable.

3 The complete solution telx = 0is (—2x3, X2, —2x4 — 3x35, X4, X5) With x5, x4, x5
free. The complete solution tBx = 0is (2x3, —x3, x3). The nullspace contains only
x = Owhen there are no free variables.

1 2000 1 0 -1
4R=[0 01 2 3]R=[O 1 1},RhasthesamenullspacelasandA.

00000 0 0 0

13 5 1 o][-1 3 57, [-1 3 5] _T[1o0
5A=[—2610]:[2 1][000}’3_[—267}_[2 1}
13 5

0 0 —3] =LU.

6 (a) Special solutioné3, 1,0) and(5,0,1) (b) (3,1,0). Total of pivot and free i&.

7 (a) The nullspace afl in Problem 5 is the planex + 3y + 5z = 0; it contains all the
vectors(3y + 5z,y,z) = y(3,1,0) + z(5,0,1) = combination of special solutions.
(b) Thelinethrough(3, 1,0) has equationsx +3y+5z = 0and—2x+6y+7z = 0.
The special solution for the free variabigis (3, 1, 0).

1 -3 =57 . o, 1 =3 o] ... [1 0
8R=|:0 0 0i|WIth]=[l],R—|:0 0 1]Wlth1_|:0 1]

9 (a) False Any singular square matrix would have free variables Tbo)ye An in-
vertible square matrix has free variables. (c)True(only n columns to hold pivots)
(d) True(only m rows to hold pivots)

10 (a) Impossiblerow 1 (b)4 = invertible (c) A =allones (d)A=2I,R=1.

(o 1 1 1 1 1 1 I 11 1 1 11 000 I 1 1 1
11 000 1 1 1 1 001 1 1 11 000 0 O0T1 1
000 01 1 1 000 0 O0 1 1 0000 O0O0OO O
|10 0OOO OO0 O0]J]|O O0OOO0OO0O0 1 0000 O0O0OTO O
(1L 1 0 1 1 1 0 O 011001 11
001 1 1100 00010111 . . :
21000000 10lloooo111 1l Notice the identity
000 0O0O0OO01 0000 O0OTO0OTO 0

matrix in the pivot columns of theseducedrow echelon forms.

13 If column 4 of a 3 by 5 matrix is all zero thevy is afreevariable. Its special solution
isx = (0,0,0,1,0), because 1 will multiply that zero column to givier = 0.

14 If column 1= column 5 therxs is a free variable. Its special solution(is1, 0, 0, 0, 1).

15 If a matrix has: columns and- pivots, there ara — r special solutions. The nullspace
contains onlyx = 0 whenr = n. The column space is all ®” whenr = m. All
important!
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Solutions to Exercises

The nullspace contains onty = 0 when A has 5 pivots. Also the column spaceRs,
because we can solvex = b and eveny is in the column space.

A=1][1 —3 —1]givesthe plane — 3y — z = 0; y andz are free variables. The
special solutions arg3, 1,0) and(1,0, 1).

X
Fill in 12 then4 then1 to get the complete solution to — 3y — z = 12: |:y] =

zZ
12 4 1
[ 8 } +y [(1)} +z [ﬂ = Xparticular™ *nullspace

If LUx = 0, multiply by L7 to find Ux = 0. ThenU and LU have the same
nullspace.

Column 5 is sure to have no pivot since it is a combination ofiexracolumns. With
4 pivots in the other columns, the special solutios is (1,0, 1,0, 1). The nullspace
contains all multiples of this vectar(a line inR>).

For special solutiong2,2,1,0) and (3,1,0, 1) with free variablesx;,xs: R =

[(1) (1) :g :ﬂ andA can be any invertible 2 by 2 matrix times thits
1 0 0 —4
The nullspace oft = [0 1 0 —3} is the line through4, 3,2, 1).
00 1 -2
10 —1/2
A=|1 3 —2} has(1,1,5) and(0,3,1) in C(A4) and(1, 1,2) in N(A). Which
5 1 -3
other A’s?

This construction is impossible: 2 pivot columns and 2 fragables, only 3 columns.
. -1 0 0

A=|1 0 -1 O} has(1, 1, 1) in C(A) and only the lindc, ¢, c,c) in N (A).
L1 0 0 -1

00 00

If nullspace= column space (withr pivots) therw —r = r. If n = 3 then3 = 2r is
impossible.

If Atimesevery column oB is zero, the column space 8fis contained in thaullspace
} } andB = [_i _i] HereC (B) equalsN (A).
(For B = 0,C(B) is smaller.)

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely
to be ! with fourth row of zeros. What about a random 3 by 4 matrix?

If N(A) = line throughx = (2, 1,0, 1), A hasthree pivotg4 columns and 1 special
1 0 0 =2

solution). Its reduced echelon form canRe= [O 1 0 —1} (add any zero rows).
0 01 O

A= [0 1 ] hasN (4) = C (4) and also (a)(b)(c) are all false. Notigef(AT) = [1 0]_

of A. An example isd =
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01 0

33 (a) [(1) (1)][(1) 8] [(1) (1)} [8 (1)} [8 8] (b) All 8 matrices areR’s!

34 One reason thak is the same ford and—A: They have the same nullspace. They also
have the same column space, but that is not required for tviamato share the same
R. (R tells us the nullspace and row space.)

32 Any zero rows come after these ron®:=[1 —2 —-3], R = [1 0 0], R=1.

35 The nullspace oB = [A A] contains all vectors = [_;’] for y in R*.
36 If Cx =0thenAx = 0andBx = 0. SoN(C) = N(A) N N(B) = intersection

37 Currents yy —y3+ys = —yi+y2++ys =—y2+ya+ys = —ya—ys—ye = 0.
These equations add o= 0. Free variabless, ys, y¢: watch for flows around loops.

Problem Set 3.3, page 151

1 (a) and (c) are correct; (b) is completely false; (d) is fdlseausekR might havel'’s
in nonpivot columns.

4 4 4 47 1 1 1 17
2A=| 4 4 4 4| hasR=| 0 O 0 O0]. Therankis =1;
L 4 4 4 4] . 0 0 0 0]
T 1 2 3 47 T 10 -1 =27
A= 2 3 4 5| hasR = 0 1 2 3|. Therankis = 2;
. 3 4 5 6] L 0 0 0 0]
—1 1 -1 17 Tl =1 I —17
A=|-1 1 -1 1{haskR=| 0 O O 0. Therankis =1
| —1 1 -1 1] . 0 0 0 0]
1 20
_ . R4 O Zero rows go
3 RA_|:0 0 1} Rp =[Ra Rl RC_>[ 0 RA} to the bottom
0 00
, , [0 1 o 1
4 If all pivot variables come last theR = 0 0 . The nullspace matrix i&/ = ol
5 Ithink Ry = Ay, R, = A, istrue. ButR; — R, may have-1’s in some pivots.
6 A andA' have the same rank= number of pivots. Bupivcol (the column number)
0 1 0
is 2 for this matrixA and 1 fordA™: A=|0 0 O}.
|0 0 0
7 Special solutionsinv =[-2 —4 1 0; -3 =5 0 1] and[l O 0;0 —2 1].
1 2 4 2 6 -3
8 The new entries keep rank 14 = |2 4 8|, B = |1 3 =3/2],
4 8 16 2 6 -3

b
M = |:Ccl bc/a]'
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9 If A hasrank 1, the column space ibree in R”. The nullspace is planein R” (given
by one equation). The nullspace matNxis n by n — 1 (with n — 1 special solutions
in its columns). The column space df is alinein R”.

36 6] [3][1 2 2]

0|12 2= wa 226 4[]0
4 8 8 4

11 Arank one matrix has one pivot. (That pivotis in row 1 aftesgible row exchange; it
could come in any column.) The second rowlbis zero.

Invertibler by r submatrices , |1 3 _ {1 0
12 Use pivot rows and cqumnsS - [1 4] and§ =[1] andS = [O 1]'

13 P hasrank (the same adl) because elimination produces the same pivot columns.

14 The rank ofR" is alsor. The example matrixl has rank with invertible S

1 3
B + 1 22 + 1 2 1 3
R A I T I

15 The product of rank one matrices has rank one or zero. TheSeysar matrices have
rank(AB) = 1;rankAM) = 1 exceptAM =0if ¢ = —1/2.

16 (uv")(wz") = u(v"w)z" has rank one unless the inner produaiis = 0.

17 (a) By matrix multiplication, each column of B is A times the corresponding column
of B. So if column; of B is a combination of earlier columns, then colughiof AB
is the same combination of earlier columns4B. Then rank(AB) < rank(B). No
new pivot columns!  (b) The rank @® is r = 1. Multiplying by 4 cannot increase
this rank. The rank ofi B stays the same fot; = 7 andB = [} }]. It drops to zero

for 4, = [_1_1].

18 If we know that rankBT AT) < rank(AT), then since rank stays the same for transposes,
(apologies that this fact is not yet proved), we have (aik) < rank(A).

19 We are gived B = I which has ranle. Then rankAB) < rank(A) forces rank4) =
n. This means thadl is invertible. The right-inversé® is also a left-inverseBA = [
andB = A~ L.

20 Certainly A and B have at most rank Then their producd B has at most rank
SinceBA is 3 by 3, it cannot bel evenifAB = 1.

21 (a) A and B will both have the same nullspace and row space afttieey share.
(b) A equals annvertiblematrix timesB, when they share the sanke A key fact!

1 0 11 0 1 1 0
22 A = (pivot columng(nonzerorowsoR) = |1 4 =(1 1 0]+
1 8 001 1 1 0

882 B_2210_co|umns_20+02
008. 12 31|10 1|~ timesrows ~ |2 0 0 3
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1 1 2 2 1 0 2 2
23 Ifc=1,R = |:0 0 0 0:| hasx,, x3,x4 free. Ifc # 1I,R = |:O 1 0 0:|
0 0 0 O 00 0 O
-1 -2 =2
. . . 1 0 0
hasxs, x4 free. Special solutions iV = 0o 1 0 (forc = 1)andN =
0 0 1
—2 =2
Y bltore#n.Mfe=1R= [8 (1)] andx, free; ifc = 2, R = [(1) ‘ﬂ
0 1

andx, free; R = [ if ¢ # 1,2. Special solutions iV = [(1)} (c=1orN =

2
1

] (c =2) or N =2 by 0 empty matrix.

24 A =1 I]hasN:[_I};B=[I I]hasthesamN;C:[l I I]has

1 0 0
-1 -1
N=|: 1 O:|.
0 I

1 1 2 4 1 1 1.0 2 3
25 A= [1 2 2 5} = [1 2} [0 10 1] = (pivot columns) timegR.
1 3 26 1 3

26 Them by n matrix Z hasr ones to start its main diagonal. Otherwigas all zeros.

|1 F|_ rbyr rbyn—r|, n_ |1 0f. Ty
27 R_[O 0]_[m_r byr m—r byn_r},rref(R )= 00 ;rref (R' R) =sameR

28 Therow-column reduced echelon forimalways[(l) 8] Iisrbyr.

Problem Set 3.4, page 163

2 4 6 4 by 2 4 6 4 b 2 4 6 4 b
1|:2 5 7 6 b2:|—>|:0 1 1 2 b2—b1:|—>|:0 1 1 2 bz—bl :|
2 3 5 2 b; 0—-1—-1-2 bsz—Db; 0 0 0 0 bz+hby—2b
Ax = b has a solution whebs + b, —2b; = 0; the column space contains all combi-
nations of(2, 2, 2) and(4, 5, 3). This is the planebs + b, —2b; = 0 (!). The nullspace
contains all combinations off = (—1,—1,1,0) ands, = (2,—-2,0,1); Xcomplete =
Xp + €181 + €282,

1 01 -2 4
[R d] = [O 1 1 2 —1} gives the particular solution, = (4, —1,0,0).
000 0 O
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2 1 3 by 2 1 3 by 1 1/2 3/2 5
2[6 3 9 b2i|—>[0 0 0 b2—3b1] Then[ R d]:|:0 0 0 0}
4 2 6 bs 0 0 0 bsz—2b 0o 0 o0 O
Ax = b has a solution wheh, — 3h; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbsz — 2b; = 0;
the nullspace contains all combinationssef= (—1/2,1,0) ands, = (—3/2,0, 1);
particular solutiornx , = d = (5,0, 0) and complete solutiom, + c¢151 + c252.

-2 -3
X complete = [ (1)} + xz|: (1)} The matrix is singular but the equations are

still solvable;b is in the column space. Our particular solution has freeatdeiy = 0.

1 1
X complete = ¥ 7 +xn =(5.0,5.0) + x2(=3,1,0,0) + x4(0,0, -2, 1).

1 2 =2 b 1 2 =2 b
5 |:2 5 —4 b2:| — |:0 1 0 bz —2b1 :| solvable |fb3 — 2b1 — b2 = 0.
4 9 -8 b3 0 0 0 b3—2by—by
Back-substitution gives the particular solution4A@ = b and the special solution to
5b1 —2b, 2
Ax =0 x = |:b2—2b1 i| + x3 |:Oi|
0 1

6 (a) Solvable ifb, = 25, and3b; — 3bs + by = 0. Thenx = [5’91 - 2’93} —x,

bz —2b;

5by — 2b3 —1
(b) Solvable ifb, = 2b; and3b; —3b3 + by = 0. x = [ bz —2b, } + x3 [—1}.
0 1

1 3 1 b 1 3 1 by One more step givd®d 0 0 0] =
[3 8 2 b2i|—>[0 -1 -1 b2—3b1i| row 3 — 2 (row 2) + 4(row 1)
2 4 0 b; 0 —2 -2 b3—2by provided b3—2br+4b;=0.

8 (a) Everyb isin C (A): independent rowsnly the zero combination givés
(b) We needv; = 2b,, becausérow3) — 2(row2) = 0.

1 0 0771 2 3 5 b 1 2 3 5 b
9 L[U c]:[z 1 o][o 0 2 2 by—2h }:[2 4 8 12 bz}
3 =1 1JL0 0 0 0 bs3+b,—5b; 3 6 7 13 b3

= [A b]; particularx , = (=9, 0,3,0) means-9(1,2,3) + 3(3,8.7) = (0,6, —6).
ThisisAx, = b.

0 [é | :”x - m hasx, = (2,4,0) andxpy|| = (c,¢, ).

11 A1 by 3 system has at leasto free variables. But | in Problem 10 only hasene.
12 (@) x1 —x, andOsolvedx =0 (b) A2x1 —2x2) =0,4AQ2x1 —x2)=05b
13 (a) The particular solution, is always multiplied by 1  (b) Any solution can bg

(c) B g} [;] = [2] Then[}] is shorter (length/2) than[g} (length 2)

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.
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14 If column 5 has no pivotys is afreevariable. The zero vectas notthe only solution
to Ax = 0. If this systemAx = b has a solution, it hasfinitely manysolutions.

15 If row 3 of U has no pivot, that is @aero row Ux = ¢ is only solvable provided
c¢3 = 0. Ax = b might not be solvabldecausé/ may have other zero rows needing
morec; = 0.

16 The largest rank is 3. Then there is a pivot in evieny. The solutionalways exists
The column space R>. An exampleisd = [/ F | for any3 by 2 matrix F.

17 The largest rank of a 6 by 4 matrix is 4. Then there is a pivotviergcolumn The

solution isunique The nullspace contains only the zerector An example isA =
R =[1 F]forany 4 by 2 matrixF.

18 Rank= 2; rank= 3 unless; = 2 (then rank= 2). Transpose has the same rank!
19 Both matricesd have rank 2. Alwayst™ 4 andA A" havethe same rankasA.

10 07[1 0 1 0
20A:LU:[; ?Hg . (1):|;A:LU 21 0[]0 2 2 3
03 1Jlo 0 11 -5

X 4 —1 -1 X 4 —1
21 () M _ Mﬂ[ I}H[ 0] o) M _ MH[ o]_Thesecond
z 0 0 1 z 0 1
equation in part (b) removed one special solution.

22 If Ax; = b and alsoAx, = b then we can adat; — x, to any solution ofAx = B:
the solutionx is not unique. But there will bao solutionto Ax = B if B is notin
the column space.

23 For A, q = 3 givesrank 1, every othergives rank 2. FoB, g = 6 givesrank 1, every
otherg gives rank 2. These matrices cannot have rank 3.

24 (a) [i] [x] = [z;] has 0 or 1 solutions, depending an (b) [1 1] [ij =
[b] has infinitely many solutions for evety (c) There are 0 oso solutions wherd
has rank- < m andr < n: the simplest example is a zero matrix.  @@)esolution
for all b when A is square and invertible (likd = 7).

25 (@) r<m,awaysr <n () r=m,r<nC)r<m,r=n()r=m=n.
2 4 4 10 -2 2 4 4

26 |0 3 6] >R=|0 1 2|and|0 3 6|—>R=1.
0 0 0 0 0 O 0 0 5

27 If U hasn pivots, thenR hasn pivotsequal to 1 Zeros above and below those pivots
makeR = 1.

e [1230]_[1200] _‘f,1235 120 -1
0040[Jootrol ™= Jljoo48[ o0l 2]
Freex, = 0 givesx, = (—1,0, 2) because the pivot columns contdin

1 0 0 O 0 1 0 0 -1

29 [Rd] = |0 0 1 O} leads tox, = [1}; [Rd] = [0 0 1 2}:

L0 0 0 O 0 0 0 0 5

no solution because of the 3rd equation
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1023 2 102 32 1020 -4 _g
301320 5/-]030-33|—-[(0100 34 0 |ixn=x3
204910 000 36 0001 2 )

1 1 1 0
31 ForA = [O 2 |, the only solutiontodx = | 2 | isx = [1} B cannot exist since
0 3 3

unknowns cannot have a unique solution.
1

2 equations in

sin3
31 1
2 3 . 2
32 A = 46 factors intoLU = 0 and the rank
1 5 0

SO = W

1 1

1 I 1
2 2 2
1 1 2

SO O

1

0 1
isr = 2. The special solution telx = O andUx = Oiss = (-7,2,1). Since
b = (1,3,6,5) is also the last column ofl, a particular solution todx = b is
(0,0, 1) and the complete solutionis= (0,0, 1) + c¢s. (Or use the particular solution
xp = (7,-2,0) with free variablexs = 0.)

Forb = (1,0,0,0) elimination leads td/x = (1,—1,0, 1) and the fourth equa-

tion isO = 1. No solution for thish.

. 1]. 1 0 1 0
33 If the complete solution telx = [3} isx = [0} + [C] thend = [3 O]'

34 (a) If s = (2,3,1,0) is the only special solution tdx = O, the complete solution is
x = c¢s (line of solution!). The rank ot must bed — 1 = 3.

1 0 -2 0
(b) The fourth variabler, is not freein s, and R must be[o 1 -3 0}.
00 01

(c) Ax = b can be solve for alb, becaused and R havefull row rank r = 3.

35 For the—1,2,—1 matrix K(9 by 9) and constant right side = (10,---,10), the
solutionx = K~'b = (45,80, 105, 120, 125, 120, 105, 80, 45) rises and falls along
the parabola; = 50i — 5i2. (4 formula for K1 is later in the text.)

36 If Ax = b andCx = b have the same solutiond,andC have the same shape and
the same nullspace (talle = 0). If » = column1 of 4, x = (1,0,...,0) solves
Ax =b soitsolvex =b. Thend andC share column. Other columns toad =C'!

Problem Set 3.5, page 178

1 1 1 c1
1 [O 1 1i| |:czi| = 0 givescz = ¢, = ¢; = 0. So those 3 column vectors are
0 0 1]|es

0 0 1 4 0
v; + vy — 4v3 + v4 = 0 (dependent).

2 v, v, v3 are independent (thel’s are in different positions). All six vectors are on
the plang(1, 1,1, 1) - v = 0 so no four of these six vectors can be independent.

1 1 1 2 0
independent. Bu[o 11 3} [c] = [0} is solved byc = (1,1,—4,1). Then
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3 If @ = 0then columnl = 0; if d = 0 thenb(columnl) —a(column2) = 0;if f =0
then all columns end in zero (they are all in the plane, they must be dependent).

a b c X 0
4 Ux = [0 d e } [y} = [0} givesz = 0 theny = 0thenx = 0. A square
0 0 fllL:z 0
triangular matrix has independent columns (invertiblerirptvhen its diagonal has no
zeros

2 3 1 2 3 1 2 3
5@ (3 1 2} — [0 =5 —7} — [0 =5 —7}: invertible= independent

12 3 1 0 -1 =5 0 0 -—-18/5

columns.
1 2 =3 1 2 3 1 2 =3 1 0

(b) | -3 1 2} — [0 7 —7} — [0 7 —7} ;A [1} = [0],columns
| 2 =3 1 0o -7 7 00 O 1 0

add to0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!)£or

7 The sumw; — v, + v3 = 0 becaus€w, — w3) — (w7 —w3) + (w; —w,) = 0. So the

I -1 0

8 If ci(wz +w3)+c2(wy +w3)+c3(w; +wy) = 0then(ez +c3)wy + (c1 +c3)wy +
(c1 4+ c2)w3 = 0. Since thew’s are independent, +¢3 =c¢; +c¢3 =c¢1 + ¢ =0.
The only solution is; = ¢, = ¢3 = 0. Only this combination o, v,, v3 givesO.

0 1 -1
difference arelependenand the difference matrix is singulat: = [1 0 -1 }

9 (a) The four vectors ifR? are the columns of a 3 by 4 matrik. There is a nonzero
solution toAx = 0 because there is at least one free variable (b) Two vecters ar
dependentifv; v, ]hasrank Oor 1. (OK to say “they are on the same line” or “one is
a multiple of the other” bumot“v, is a multiple ofv;” —sincev; mightbe0.) (c) A
nontrivial combination ob, and0 givesO: Ov; + 3(0,0,0) = 0.

10 The plane is the nullspace of = [1 2—3 —1]. Three free variables give three
solutions(x, y,z,t) = (2,—1 —0—0) and(3,0, 1,0) and(1,0,0, 1). Combinations
of those special solutions give more solutions (all sohgjo

11 (a) LineinR? (b) PlaneirR®  (c) Allof R®>  (d) All of R®.

12 b is in the column space whe#tix = b has a solutiong is in the row space when
ATy = ¢ has a solutionFalse The zero vector is always in the row space.

13 The column space and row space4odndU all have the same dimensior2=The row
spaces of4 and U are the samgbecause the rows &f are combinations of the rows
of A (and vice versa!).

14 v =3 +w) + 30 —w)andw = 3(v + w) — (v — w). The two pairspanthe
same space. They are a basis whemdw areindependent

15 Thern independent vectors span a space of dimensidrhey are dasisfor that space.
If they are the columns ofl thenm is not lessthann (m > n).
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16 These bases are not unique! @1,1,1) for the space of all constant vectors
(c,c,c,c) (b) (1,-1,0,0),(1,0,—1,0),(1,0,0,—1) for the space of vectors with
sum of components & (c) (1,—1,-1,0),(1,—1,0,—1) for the space perpendic-

ularto(1,1,0,0) and(1,0,1,1) (d) The columns of are a basis for its column
space, the empty set is a basis (by convention)Mér ) = {zero vector}.
1 01 0 1

17 The column space di = is R? so take any bases f&?; (row 1

01 0 1 0
and row2) or (row 1 and row1 + row 2) and (rowl and— row 2) are bases for the row
spaces ot/.

18 (a) The 6 vectorsnight notspanR* (b) The 6 vectorsre notindependent
(c) Any four might bea basis.

19 n-independent columnsy> rankn. Columns spafR™ = rankm. Columns are basis
for R"™ = rank = m = n. The rank counts the numberiodependentolumns.

20 One basis i92,1,0), (—3,0,1). A basis for the intersection with they plane is
(2,1,0). The normal vectofl, —2, 3) is a basis for the line perpendicular to the plane.

21 (a) The only solution tadx = 0is x = 0 becausdhe columns are independent
(b) Ax = b is solvable becausthe columns spaiR>. Key point: A basis gives
exactly one solution for every.

22 (a) True (b) False because the basis vectorRfomight not be inS.

23 Columnsl and?2 are bases for thel{fferent) column spaces oft andU; rows 1 and
2 are bases for theequal) row spaces ofi andU; (1,—1, 1) is a basis for thegqual)
nullspaces.

24 (a) FalseA = [1 1] has dependent columns, independentrow  Ralsecolumn
space# row space ford = 8 (1) (c) True Both dimensions= 2 if A is in-

vertible, dimensions= 0 if A = 0, otherwise dimensions: 1 (d) False columns
may be dependent, in that case not a basi€fod).

25 AhasrankRif c = 0andd = 2; B = [2 CCZ] has rank2 except wherr = d or

c=—d.

1 007 [0 0 07 [O
26 (a)[ooo},[o 1 0},[0
00 0] [0 o o] Lo
01 07 70 0 1

(b)Add[l 0 0},[0 0 0},[
00 0] [1 00

010 0 0 170 0 O
©) [—1 0 0},[0 0 0},[0 0 1}.
00 0] L-1 0 0] [0 -10

These are simple bases (among many others) for (a) diagatates (b) symmetric
matrices (c) skew-symmetric matrices. The dimension$ &6€3.

oo o OO0
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1 00 1 0 0 1 1 0 1 0 1 1 0 0
271,10 1 Of,]0 2 Of,|0 1 O),{0 1 O],|0 1 1]|;echelonmatri-
0 0 2 0 0 1 0 0 1 0 0 1 0 0 1

ces donot form a subspace; thegpan the upper triangular matrices (not evdvyis
echelon).

28lOO o 1 O OOl,l—lOandIO—l
-1 0 of|j0 -1 OO0 O —I|"|=-1 1 O -1 0 1|

29 (a) The invertible matrices span the space of3ally 3 matrices (b) The rank one
matrices also span the space ofaally 3 matrices (c)/ by itself spans the space of
all multiplesc!.

30—120—102 0 0 O 0 0 O
o o0 o'y 00 Of(-1 2 01"]—-1 0 2|
31 (a) y(x) = constaniC (b) y(x) = 3x this is one basis for the by 3 matrices with
(2,1, 1) in their nullspace4-dim subspace). (cy(x) =3x + C = y, + y, solves
dy/dx = 3.
32 y(0) = 0 requiresd + B + C = 0. One basis is cas — cos2x and cosc — C0S3x.

33 (a) y(x) = e?* is a basis for, all solutions to’ = 2y (b) y = x is a basis for all
solutions tady /dx = y/x (First-order linear equatioss> 1 basis function in solution
space).

34 y1(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x? (dim2) or x, x2, x3 (dim3).

35 Basisl, x, x2, x3, for cubic polynomials; basis — 1, x> — 1, x> — 1 for the subspace
with p(1) = 0.

36 BasisforS: (1,0,—1,0),(0,1,0,0),(1,0,0,—1); basisforT: (1,—1,0,0) and(0, 0,2, 1);
SN T = multiples of(3, —3,2, 1) = nullspace fo3 equation inR* has dimension 1.

37 The subspace of matrices that hat/& = SA has dimensiothree

38 (a) No,2 vectors don’t spaiR® (b) No, 4 vectors inR> are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

39 Ifthe 5 by 5 matrix[A b] is invertible,b is not a combination of the columns df
If [A b]is singular, and thé columns ofA4 are independeng, is a combination of
those columns. In this casex = b has a solution.

40 (a) The functionyy = sinx, y = cosx, y = e*, y = e~ * are a basis for solutions
tod*y/dx* = y(x).

(b) A particular solution taZ*y/dx* = y(x) + 1is y(x) = —1. The complete
solutionisy(x) = —1+c, sinx + ¢, COSx + c3e™ + c4e™* (or use another basis
for the nullspace of théth derivative).

1 1 1 1 1 i
The sixP’s
41 I = |:1 1:| — |:1 1:| + |:1 1 :|+|: | 1:| _|:1 : :| are dependent

Those five are independent: Thih hasP;; = 1 and cannot be a combination of the
others. Then thénd cannot be (fromP;, = 1) and alsasth (Ps, = 1). Continuing,

a nonzero combination of all five could not be zero. Furtheallehge: How many
independend by 4 permutation matrices?
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Solutions to Exercises

The dimension ofS spanned by all rearrangementsxofs (a) zero wherx = 0
(b) onewherx = (1,1,1,1) (c) three whemx = (1,1,—1,—1) because all rear-
rangements of this are perpendiculartol, 1,1, 1) (d) four when thex’s are not
equal and don’t add to zerdNo x givesdim § = 2. | owe this nice problem to Mike
Artin—the answers are the same in higher dimensions;n — 1, n.

The problem is to show that thes, v's, w’'s together are independent. We know the
u’s andv'’s together are a basis féf, and thex’s andw’s together are a basis fav .
Suppose a combination efs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination givin@, the partx from theu’s andv’sisin V. So the
part from thew’s is —x. This partis now iV and also inW. Butif —x isinV N W it
is a combination ofe’s only. Now the combination uses ondys andv’s (independent
in V1) so all coefficients of’s andv’s must be zero. Therm = 0 and the coefficients
of thew’s are also zero.

The inputs to amn by n matrix fill R”. The outputs (column space!) have dimension
r. The nullspace has — r special solutions. The formula becomes (n —r) = n.

If the left side of dim{V) + dim(W) = dim(V N W) + dim(V + W) is greater tham,
then dim(V N W) must be greater than zero. 8a0 W contains nonzero vectors.

If A2 = zero matrix, this says that each columnfs in the nullspace oft. If the

column space has dimensionthe nullspace has dimensiof — r, and we must have
r <10—randr <5.

Problem Set 3.6, page 190

1

2

(@) Row and column space dimensicas5, nullspace dimensioe: 4, dim(N (A"))

=2 sum=16=m+n (b) Column space iR3; left nullspace contains onlg.

A: Row space basis- row 1 = (1,2, 4); nullspace(—2, 1,0) and(—4,0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=

both rows= (1,2, 4) and(2, 5, 8); column space basis two columns= (1,2) and

(2, 5); nullspace(—4, 0, 1); left nullspace basis is empty because the space contains
onlyy = 0.

Row space basis rows ofU = (0, 1, 2, 3,4) and(0, 0, 0, 1, 2); column space basis

pivot columns (of4 notU) = (1,1,0) and (3,4, 1); nullspace basigl,0,0,0,0),
0,2,-1,0,0), (0,2,0, -2, 1); left nullspace(1, —1, 1) = last row of E~!!

1 0
(a) [1 O} (b) Impossibler+(n—r)mustbe3  (c)[1 1] (d) [‘? _ﬂ
0 1

(e) ImpossibleRow space= column space requires = n. Thenm —r = n —r;
nullspaces have the same dimension. Section 4.1 will pt¥yel) and N(AT)
orthogonal to the row and column spaces respectively—hesetare the same space.

A= [; i (1) has those rows spanning its row spate= [I —2 1] has the
same rows spanning its nullspace aw™ = 0.

A: dim 2,2,2,1: Rows (0,3,3,3) and (0,1,0,1); columns(3,0,1) and (3,0,0);
nullspace(1, 0, 0,0) and (0, —1,0,1); N(A") (0,1,0). B: dim 1,1,0,2 Row space
(1), column spacél, 4, 5), nullspace: empty basi®/ (A7) (—4, 1,0) and(—5,0, 1).
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7 Invertible3 by 3 matrix A: row space basis: column space basis (1,0, 0), (0, 1,0),
(0,0, 1); nullspace basis and left nullspace basiseampty Matrix B = [A A]: row
space basig1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0, 1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basis-1,0,0,1,0,0) and(0,—1,0,0,1,0) and
(0,0,—1,0,0, 1); left nullspace basis is empty.

8 [I O]and[/ I: 0 0]and[0]=3by2 haverow space dimensions 3,3,0 =
column space dimensionslispace dimensioris 3, 2; left nullspace dimensiorts 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of raee¥ps the same
(b) Same column space and left nullspace. Same rank (dioreacolumn space).

10 Forrand (3), almost surely rank 3, nullspace and left nullspace contain of(y0, 0).
Forrand (3, 5) the rank is almost surely and the dimension of the nullspaceis

11 (a) No solution means that < m. Alwaysr < n. Can’t comparen andn here.
(b) Sincem — r > 0, the left nullspace must contain a nonzero vector.

1 1 10 1 2 2 1
12 A neat choice ig 0 2 =12 4 0|; r+m—r)=n = 3does
1 oLt 20 10 1

not match2 + 2 = 4. Only v = 0 is in both N (4) andC (A47).

13 (a) False Usually row space column space (same dimension!) (bjue 4 and—A
have the same four subspaces Fg)se(choosed and B same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero rowé#/of(1,2,3,4), (0,1,2,3), (0,0,1,2);
nullspace basig0, 1,—2, 1) as forU; column space basid, 0, 0), (0, 1,0), (0,0, 1)
(happen to hav€(A4) = C(U) = R?); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;%ani, 3, 4) is in the
new left nullspace after the row exchange.

16 If Av = 0andv is arow ofA4 thenv-v = 0.

17 Row space= yz plane; column space xy plane; nullspace= x axis; left nullspace
= z axis. For/ 4+ A: Row space= column space= R3, both nullspaces contain only
the zero vector.

18 Row3—2row 2+ row 1 = zero row so the vectoeq1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accidehtfonatrix).

19 (a) Elimination ondx = 0 leads to0 = b3 — b, — by so(—1,—1,1) is in the left
nullspace. (b)4 by 3: Elimination leads td; — 2b; = 0 andby4 + by — 4b; = 0, SO
(—2,0,1,0)and(—4, 1,0, 1) are in the left nullspacaVhy? Those vectors multiply the
matrix to givezero rows Section 4.1 will show another approacii = b is solvable
(b isin C (A)) whenb is orthogonal to the left nullspace.

20 (a) Special solutiong—1,2,0,0) and(—i,o, —3, 1) are perpendicular to the rows of
R (and thenER). (b) ATy = 0 has! independent solutios last row of E~1.
(E~'A = R has a zero row, which is just the transpose1dy = 0).

21 (a) u andw (b) v andz (c) rank< 2 if # andw are dependent or if andz
are dependent (d) The rankmb"™ + wz' is 2.

1 2 10 3 27 hascolumn space spanned

2 A=[u w][v" zZT]=|2 2 [ ]: 4 2| byuandw, row space

4 1 b 5 1/ spanned by and:z.
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23 As in Problem 22: Row space bagi3 0, 3), (1, 1,2); column space basid, 4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than th& @freither
factor, so rank< 2 and the 3 by 3 product is not invertible.

24 A"y = d putsd in therow spaceof 4; unique solution if théeft nullspacenullspace
of AT) contains onlyy = 0.

25 (a) True(A4 andA' have the same rank) (falseA = [1 0]andAT have very
different left nullspaces (cFalse (A can be invertible and unsymmetric even if
C(A)=C(A") (d) True(The subspaces fot and— A are always the same. If
AT = A or AT = —A they are also the same fdr)

26 The rows ofC = AB are combinations of the rows &. So rankC < rankB. Also
rankC < rankA4, because the columns 6f are combinations of the columns af

27 Choosel = bc/a to make[ 2 B] arank-1 matrix. Then the row space has bési®)
and the nullspace has basish, a). Those two vectors are perpendicular !

28 B andC (checkers and chess) both have rank2 # 0. Row 1 and 2 are a basis for the
row space olC, BTy = 0 has 6 special solutions withl and 1 separated by a zero;
N(CT) has(-1,0,0,0,0,0,0,1) and (0,—1,0,0,0,0, 1,0) and columns3, 4, 5,6 of
I; N(C) is a challenge.

29 ayy = l,a12 =0,a13 =1,a20 =0,a3, = l,a31 = 0,a3 = 1,a33 =0,a; = 1.

30 The subspaces fad = uv' are pairs of orthogonal linew (and v+, u and ut).
If B has those same four subspaces tRes c A with ¢ # 0.

31 (a) AX = 0 if each column ofX is a multiple of(1, 1, 1); dim(nullspace = 3.
(b) If AX = B then all columns ofB add to zero; dimension of th8's = 6.
(©) 3 + 6 = dim(M3*3) = 9 entries in & by 3 matrix.

32 The key is equal row spaces. First row 4f= combination of the rows oB: only
possible combination (notick) is 1 (row 1 of B). Same for each row s = G.

Problem Set 4.1, page 202

1 Both nullspace vectors are orthogonal to the row space vgcR?*. The column space
is perpendicular to the nullspace 4f (two lines inR? because rank= 1).

2 The nullspace of a 3 by 2 matrix with rank 24s(only zero vector) s, = 0, and
row space= R2. Column space- plane perpendicular to left nullspaeeline in R3.

1 2 -3 2 1 1 1
3 (a)[ 2 -3 1i| (b) Impossible,[—3i| not orthogonal t({1i| (c) |:li| and|:0i| in
-3 5 =2 5 1 1 0

C (4) andN (A7) isimpossible: not perpendicular (d) Nedd = 0; takeAd = [1 _} ]

(e) (1,1, 1) in the nullspace (columns add @ and also row space; no such matrix.

4 If AB = 0, the columns ofB are in thenullspaceof A. The rows of4 are in theleft
nullspaceof B. If rank = 2, those four subspaces would have dimengiavhich is
impossible for3 by 3.

5 (a) If Ax = b has a solution andi"y = 0, theny is perpendicular td. b’y =
(Ax)Ty =xT(4Ty) = 0. (b) If ATy = (1,1,1) has a solution(1, 1, 1) is in the
row spaceand is orthogonal to every in the nullspace.
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10

11

12

13

14

15

16
17

18

19

20

21

22

23

Multiply the equations by, y,, y3 = 1,1, —1. Equations add t6 = 1 so no solution:
y = (1,1, =1) is in the left nullspacedx = b would need) = (y"4)x = y'b = 1.
Multiply the 3 equations by = (1,1, —1). Thenx; —x, = 1 plusx, —x3 = 1 minus
x; —x3 = 1is0 = 1. Key point: Thisy in N(A") is not orthogonal téd = (1,1, 1)
sob is not in the column space antk = » hasno solution

x = x, + x,, wherex, is in the row space and, is in the nullspace. Thedx, =0
andAx = Ax, + Ax, = Ax,. All Ax areinC (A).

Ax is always in thecolumn spacef A. If ATAx = 0thenAx is also in the nullspace
of AT. SoAx is perpendicular to itself. Conclusiodx = 0if ATAx = 0.

(@) WithAT = 4, the column and row spaces are the same xl§ in the nullspace
andz is in the column space = row space: so these “eigenvectovg’ha = 0.

For A: The nullspace is spanned I6y2, 1), the row space is spanned by, 2). The
column space is the line througdh, 3) and N (AT) is the perpendicular line through
(3,—1). For B: The nullspace oB is spanned byo0, 1), the row space is spanned by
(1,0). The column space and left nullspace are the same a&.for

x splitsintox, + x, = (1,—1) + (1,1) = (2,0). Notice N(A4") is a plang(1,0) =
(LD/2+1,-1)/2=x, + x,.

VTW = zero makes each basis vector #ororthogonal to each basis vector .
Then everyw in V is orthogonal to everw in W (combinations of the basis vectors).

Ax = Bx meansthafd B] [_;] = 0. Three homogeneous equations in four

unknowns always have a nonzero solution. Here= (3,1) andx = (1,0) and
Ax = Bx = (5,6,5) is in both column spaces. Two planesRA must share a line.

A p-dimensional and a-dimensional subspace Bff share atleastaline + ¢ > n.
(The p + ¢ basis vectors o andW cannot be independent.)

ATy = 0Oleads to(Ax)Ty = xTATy = 0. Theny L Ax andN (AT) L C(A).

If S is the subspace d®® containing only the zero vector, the§t- is R3. If S is
spanned by1, 1, 1), thenS is the plane spanned tgy, —1,0) and(1,0, —1). If S is
spanned by2, 0,0) and(0, 0, 3), thenS* is the line spanned b{p, 1, 0).

I 51

1 —
S~ is the nullspace oft = [2 2 9

}. ThereforeS * is asubspaceven if S is not.

L+ is the2-dimensional subspade plang in R? perpendicular td.. Then(L+)~* is
a 1-dimensional subspade line) perpendicular td.*. In fact (L)L is L.

If V is the whole spac&*, thenV* contains only theero vector Then(V+1)L =
RY=V.

1 1 2 2 3
Forexamplg—5,0, 1, 1) and(0, 1, —1, 0) spanS — =nullspace of4 = 1 3 3 2]

(1,1,1,1)is abasis forP*. A = [1 1 1 1]hasP as its nullspace an#* as
row space.

x in V= is perpendicular to any vector ii. SinceV contains all the vectors if§,
x is also perpendicular to any vector$h So everyx in ¥+ is also inS.
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24 AA™' = I: Columnl of A~ is orthogonal to the space spanned by the 2nd,.3td,
nth rows ofA.

25 If the columns of A are unit vectors, all mutually perpendécuthenA™4 = 1.

2 2 —17 This example shows a matrix with perpendicular columns.
26 A= |:—1 2 2}, ATA =9I isdiagonat (AT A4);; = (columni of A) - (column; of A).
2 —1 2] Whenthe columns anenit vectorsthenA™4 = I.
27 The lines3x + y = b; and6x + 2y = b, areparallel. They are the same line if
b, = 2b;. Inthat caséb,, b,) is perpendicular t¢—2, 1). The nullspace of the 2 by 2
matrix is the line3x + y = 0. One particular vector in the nullspacg(isl, 3).

28 (a) (1,—1,0) is in both planes. Normal vectors are perpendicular, butgdastill in-
tersect! (b) Needhreeorthogonal vectors to span the whole orthogonal complement
(c) Lines can meet at the zero vector without being orthofjona

[1 2 3} [1 1 —1} A hasv = (1,2, 3) in row space and column space
A= B B:

29 2 1 0 2 —1 0|; Bhasvinits column space and nullspace.

3 01 3 0 —1] wvcannotbeinthe nullspace and row space, or in
the left nullspace and column space. These spaces are onéandy 'v £ 0.

30 WhenAB = 0, the column space a8 is contained in the nullspace df. Therefore
the dimension o (B) < dimension ofN (A4). This means rank3) < 4 — rank(A4).

31 null(N’) produces a basis for thiew spaceof A (perpendicular tiN(A4)).
32 We needr'n = 0 ande ™ = 0. All possible examples have the fowar ™ with a # 0.

33 Bothr’s orthogonal to botle’s, bothce’s orthogonal to boti's, each pair independent.
All A’s with these subspaces have the fdeme,|M [r r»]" for a2 by 2 invertible M .

Problem Set 4.2, page 214

1@ a'b/a’a=5/3; p=>5a/3;e=(-2,1,1)/3(b) a'b/a’a=—1; p=a; e =0.

2 (a) The projection ofb = (cosh,sinf) ontoa = (1,0) is p = (cosh,0)
(b) The projection ob = (1, 1) ontoa = (1,—1)is p = (0,0) sincea™ = 0.

1 1 1 1 1 5 1 1 3 1 1
3 P1=—|:1 1 1:|andP1b=—|:5:|P2=—|:3 9 3:| andP2b=|:3:|
30111 315 iy 3 1
4 P — 1 0 P = 11 1 —1| Py projectsontdl,0), P, projects ontq1, —1)
=10 0""27 2|=1 1| PP, #0andP; + P, is not a projection matrix.

-2 4 4 -2 -2 1
matrices onto the lines through = (—1,2,2) anda, = (2,2,—1) P{ P, = zero
matrix becausa; L a,.

XXX Above solution does not fit in 3 lines.

6 py :(é’—%’—%) andl’z:(g’ %,—%) andp; = (é’—%, %)- Sop; +p,+p3=0b.

(f 1 -2 -2 (T4 4 2
5 P; =5 -2 4 4 ,P2=§ 4 4 =2|. Py and P, are the projection
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(-2 =2 (T4 42 (T4 2 4
7 P+ P+ P3=—-|-2 4 44+ - 4 4 2|14+ -|-2 1 =21 =1.
912 4 4 2 2 1] %4 —2 4
We canadd projections ontorthogonal vectorsThis is important.
8 The projections of1, 1) onto (1,0) and(1,2) arep, = (1,0) andp, = (0.6, 1.2).
Thenp, + p, # b.
9 Sinced is invertible,P = A(ATA)"'AT=AA"1(AT)"1AT =I: project on all ofR2.

02 04 0.2 1 0 0.2| Thisisnota; = (1,0
10 PZ:[OA 0.8]’1’2“1:[0.4}&:[0 0]’P1P2“1:[ 0 } No, Py P, ;él(Plg’z)z).

11 (@) p=A(ATA)"1ATh=(2,3,0),e=(0,0,4), ATe =0 (b) p=(4,4,6),e=0.

1 0 0
12 P = [O 1 Oi| = projection matrix onto the column space #4f(the xy plane)
0 0 O

P 82 82 8 _ Projection matrix onto the second column space.
2= : ~ Certainly(P,)? = P,.
0 0 1
1 00 1 00 O 1 1
010 : 01 0 0 2 2
BA=|4y o || P=squarematrix=| 5 o | o[.P=P|3|=]3
0 0 0 00 0 O 4 0

14 The projection of thi$ onto the column space of is b itself whenb is in that space.

1 5 8 —4 0
But P isnotnecessarily. P=—| 8 17 2|andb=Pb=p=|2|.
214 2 20 4
15 24 has the same column spaceAsr for 24 is half of x for A.
16 5(1,2,—1) + 5(1,0,1) = (2,1,1). Sob is in the plane. Projection showsh = b.
17 If P2 = Pthend = P)?=(I —P)I—P)=1—PI—IP+P2=1—P.When
P projects onto the column spade;- P projects onto théeft nullspace

18 (a) I — P is the projection matrix ont6l, —1) in the perpendicular direction 1@, 1)
(b) I — P projects onto the plane+ y + z = 0 perpendicular t@1, 1, 1).

19 e 1/6 5/6 —1/3
say(1,1,0) and(2,0, 1), the matrixP is 13 —1/3 13

For any basis vectors in the plane- y — 2z = 0, [5/6 1/6 1/3]
1 . 1/6 —1/6 —1/3 5/6 1/6 1/3
20 e = [—1}, Q=12 = [—1/6 1/6 1/3}, -0 = [1/6 5/6 —1/3].
—1/3  1/3  2/3 1/3 —1/3 1/3
21 (A(ATA)TAT)? = A(ATA) L(ATA)(ATA)'AT = A(ATA)'AT. SoP? = P.
Pb is in the column space (wher projects). Then its projectioR(Pb) is Pb.
22 PT=(A(ATA) 1A T = A((ATA) " H)TAT=A4(ATA)"1AT=P. (AT A is symmetric!)
23 If Ais invertible then its column space is allRf. SoP = [ ande = 0.

24 The nullspace ofi" is orthogonalto the column spac€ (A). Soif ATh = 0, the pro-
jection ofb ontoC (A4) should bep = 0. CheckPb = A(ATA)"1ATh = A(ATA)~10.
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25 The column space ofP will be S. Thenr = dimension ofS = n.
26 A~! exists since the rank is= m. Multiply 4> = Aby A~ to getd = I.

27 If ATAx = OthenAx is in the nullspace oftT. But Ax is always in the column space
of A. To be in both of those perpendicular spacés, must be zero. Sal andA™4
have thesame nullspace

28 P2 =P = PTgive PTP = P. Then the(2,2) entry of P equals thg2, 2) entry of
PT P which is the length squared of column 2.
29 A = BT has independent columns, 44 (which is BBT) must be invertible.
. . 3 aa’ 179 12
30 (a) The column space is the line through= [4} SO Pc = Py [12 25].
(b) The row space is the line through= (1,2,2) and Pg = vv'/vTv. Always
Pc A = A (columns of4 project to themselves) antlPr = A. ThenPc APr = A

31 The errore = b — p must be perpendicular to all tlass.

32 Since P1b is in C(A), Po(P1b) equalsP;b. So P,P, = P, = aa'/a"a where
a=(1,2,0).

33 If Py P, = P, P; thenS is contained ifl’ or T is contained inS.

34 BBT isinvertible as in Probler®9. Then(A"A)(BBT) = product ofr by r invertible
matrices, so rank. AB can’'t have rank r, sinceA™ andB " cannot increase the rank.
Conclusion A (m by r of rankr) times B (r by n of rankr) produces4 B of rankr.

Problem Set 4.3, page 226

=
NS
Il
—_—
W= O

1 —1
T aTp e~ |1 dp — A5 — 5 3
A'Ax = A'b givesx = 4| @n p=Ax = 13 ande =b—p = _s

171 E=|e|2=44 | 3

0 0

1{|C]| _| 8| ThisAx = bis unsolvabl
31D 8 |" Changeébtop = Pb =

4 0

1

51, ~ 1

BlIX=4 exactly solves
17

N
—_ e

2
AX = p.

3 InProblem 2,p = A(ATA)"'A™h = (1,5,13,17) ande = b — p = (—1,3,-5,3).
e is perpendicular to both columns df This shortest distandg || is v/44.

4 E = (C+0D)?+(C+1D —8)?+ (C +3D —28)?+ (C +4D —20)2. Then
0E/0C = 2C +2(C + D —8) +2(C +3D —8)+2(C +4D —20) = 0 and
0E/0D =1-2(C+D —8)+3-2(C +3D —8)+4-2(C +4D —20) = 0. These

. .4 8||C 36
normal equations are agaii . || | =] 12 |
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5 E=(C—0)2+(C—8)2+(C—8)2+(C—202.AT=[1 11 1]andA"4 = [4].
ATh = [36]and(ATA)"'ATh = 9 = best heighC. Errorse = (-9, —1,—1,11).

6 a=(l,1,1,1) andb = (0,8,8,20) givex = a'b/a’a = 9 and the projection is
Xa = p = (9,999). TheneTa = (=9,—1,—1,11)7(1,1,1,1) = 0 and|e| =
v 204.

7A=[01 3 4]", ATA=[26]andA™h = [112]. BestD = 112/26 = 56/13.

8 ¥=56/13, p=(56/13)(0,1,3,4). (C,D)=(9,56/13) don’'t match(C, D) = (1, 4).
Columns of4 were not perpendicular so we can’t project separately todirechd D.

Parabola [, 0 V]rC o 4 8 267[C 36
9 Projecth L 3 9 [D}: g .AM?:[ 8 26 92] [D}:[llz}.
4D to 3D 1 4 16 E 20 26 92 338 E 400
1 0 0 O07JC 0 C 07 Exactcubicsgp = b,e =0.
10 11 1 1(|D|_| 8 Then D | _1| 47| This Vandermonde matrix
1 3 9 27||E || 8 E | 73| —28 | gives exact interpolation
1 4 16 64 F 20 F 5] byacubican,1,3,4

11 (a) The bestlinec = 1 + 4¢ gives the center poirﬁ = 9whent = 2.
(b) The firstequatio€m + D> t; = Y. b; divided bym givesC + Dt = b.

12 @) a=(1,...,1)hasa’a = m,a'b = by + --- + b,,. Thereforex = a"b/m is the
meanoftheb’s (b) e =b—%a b = (1,2,b) |le||*> = Y/, (b; —%)* = variance

111
P:(3’3,3) T, _l
(c) e:(_z’_1’3)pe—O.P— 111

13 (ATA)"'AT(h — Ax) = X — x. Whene = b — Ax averages t@, so doest — x.

14 The matrix(x — x)(X —x)"Tis (ATA)"1AT(b — Ax)(b — Ax)TA(ATA)~!. When the
average ofb — Ax)(b — Ax)" is 021, the average ofx — x)(x — x)" will be the
output covariance matrixA" A)~'ATo2 A(AT A)~! which simplifies tao2(ATA4)~ 1.

15 When 4 has 1 column of ones, Probleid gives the expected errqik — x)? as

02(ATA)™! = 02?/m. By takingm measurements, the variance drops fromto

o?/m.

1 9

N 1 N . . ,
loblo + EXQ = E(bl + .-+ + byp). Knowingxy avoids adding alb’s.

1 —1 7
C PN 9 3 2 C 35
17 [% ﬂ [D} = |:21i| The solutionx = [4} comes from[2 6] [D] = [42}.

18 p = Ax = (5,13,17) gives the heights of the closest line. The errobis p =
(2,—6,4). This errore hasPe = Pb— Pp=p—p =0.

19 If b = errore thenb is perpendicular to the column spaceAfProjectionp = 0.

20 If b = Ax = (5,13,17) thenx = (9,4) ande = 0 sinceb is in the column space
of A.

21 eisinN(AT); pisinC(A4); xisinC(A"); N(A4) = {0} = zero vector only.

16
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22 The least squares equation[i% 18] [g} = [_1(5)] Solution:C =1, D = —1.

Line I —¢. Symmetrie’s = diagonald™ 4

23 e is orthogonal tgp; then|le||> = e¢"(b—p) =e"™b =b"b — b p.

24 The derivatives o Ax —b||> = xTATAx — 2b" Ax + b"b (this term is constant) are
zerowher2ATAx = 2ATh,orx = (ATA)"1ATb.

25 3 pointsonalineEqual slopesbh,—b1)/(t—t1) = (b3—b3)/(t3—12). Linear algebra:
Orthogonal tq1, 1, 1) and(z1, 12, t3) iSy = (t2—t3,13—11, 11 —1) in the left nullspace.
b is in the column space. Then'd = 0 is the same equal slopes condition written as
(bo —b1)(t3 — 12) = (b3 — b2) (12 — 11).

e 0 40 0 87 1C
26 D | = hasA™ = |0 2 0|, A" = |—=2|,|D |=
b=l 0 g 3 00 2 3] LE
1 0 —1 4
B 2
—1 . At x,y = 0,0 the best plan@ — x — %y has heightC = 2 = average of
| —3/2
0,1,3,4.
27 The shortest link connecting two lines in spacpéspendicular to those lines
28 Only 1 plane contain®, a;, a, unlessa, a, aredependentSame test foay, ..., a,.
29 There is exactly one hyperplane containingihgoints0, a1, . .. ,a,—; When the: — 1
vectorsay,...,a,—, are linearly independen{Forn = 3, the vectorst; anda, must

be independent. Then the three poibita,, a, determine a plane.) The equation of the
plane inR” will be a]x = 0. Herea, is any nonzero vector on the line (it is only a
line!) perpendicular tay,...,a,_1.

Problem Set 4.4, page 239

1 (a) Independentb) Independentind orthogonal(c) Independenand orthonormal
For orthonormal vectors, (a) becom@so0), (0, 1) and (b) is(.6, .8), (.8, —.6).

Lo 5/9 2/9 —4/9
2 QTQ=[O 1}bthQT:[ 2/9 8/9 2/9}.
-3)- —4/9 2/9  5/9
3 (a) ATA will be 161 (b) AT A will be diagonal with entries 1, 4, 9.

1 0

1 00
4(a)Q:|:8 (l)],QQT:|:8 (1) 8];&1. Any Q with n < m hasQ QT #

I. (b) (1,0) and(0,0) areorthogonal notindependentNonzero orthogonal vec-
tors are independent. (c) Starting fromp, = (1,1,1)/+/3 my favorite isq, =
(1,—1,0)/+/2 andg; = (1,1,-2)/+/b.

5 Orthogonal vectors are(1,—1,0) and (1,1, —1). Orthonormal are (%,—%,0),

Divide by length 3 to get

q, = (27 %7_%) q, = (_17%

(L L_L)
VRV RV T8
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6
7

10

11

12

13

14

15

16

17

18

19

20
21

22

Q10 is orthogonal becaus@; 02)"' 010> = 07010102 = 070> = 1.

When Gram-Schmidt give® with orthonormal columnsQ™Qx = Q"h becomes
Xx=0Th.

If ¢, andg, areorthonormalvectors inR> then(g1b)q, + (g1b)q, is closest tah.

8 —.6 1 0 0

(@) 0 = [-6 -8} hasP = Q0T = [0 1 0} (b) (QOT(QQT) =
0 0 0 0 O

0(0T0)0T = 00"

(@) Ifq,,q,,q5areorthonormatthen the dot product gf, with c1q, +c2g,+c395 =

0 givesc; = 0. Similarly ¢c; = ¢3 = 0. Independeny’s (b) Ox =0 =

0"0x =0=x=0.

(a) Twoorthonormalvectors arg, = 15(1.3.4,5,7) andg, = 5(-7.3,4,-5.1)

(b) Closest in the plangaroject 0 Q7(1,0,0,0,0) = (0.5, —0.18,—0.24,0.4,0).

(@) Orthonormak's: alb = al(xia; + x2a> + x3a3) = x1(ala)) = x;

(b) Orthogonak’s: alb = a](x1a; + x2a> + x3a3) = x1(ala;). Thereforex; =

alb/ala,
(c) x; is the first component o ! timesb.
The multiple to subtract ig— ThenB = b — Wa =(4,00-2-(1,1) = (2,-2).

1 4 1 ] lall q7p7] _[1/v2  1/vV2][V2 2V2 _ OR

ol Tt 200 BT [1v2 —yv2]L 0 2v2 '
@ ¢, = 3(1.2.-2), g, = 3(2.1.2), q5 = 3(2.-2,-1) (b) The nullspace
of AT containsg, () x=(ATA)1AT(1,2,7) = (1,2).
The projectionp = (a'b/a"a)a = 14a/49 = 2a/7 is closest toh; ¢, = a/|a||
a/7is(4,5,2,2)/7.B =b—p = (—1,4,—4,—-4)/7 has||B| = 1 sog, = B.
p = (@'b/a"a)a = (3,3,3) ande = (-2,0.2). ¢, = (1.1,1)/+/3 andg,
(_1707 1)/\/7
A=a=(1,-1,00:;B=b-p=(3.2.-1.0:C=c—py—pp=(3.1.1.-1.
Notice the pattern in those orthogon#l B, C. InR®, D would be(§. 3. %, 3. —1).
If A= QRthenA™A = RTQTOR = R"R = lowertriangular timesippertriangular
(this Cholesky factorization od " A uses the sam® as Gram-Schmidt!). The example

-1 1 —1 2 3 3
hasAd = |: 2 1] = §|: 2 —1} [0 3] = QR and the sameR appears in
2 4 2 2

o9 91 13 ol[3 3] .o
AA—[9 181=13 3||lo 3|=KR

(@) True (b) True Qx = x1q4, +x2q,. | Ox||*> = x? + x2 becausg, -¢, = 0.
The orthonormal vectors agg = (1,1,1,1)/2 andg, = (-=5,—1,1,5)/+/52. Then
b =(—4,-3,3,0) projectstop = (—7,-3,—1,3)/2. Andb—p = (—1,-3,7,-3)/2
is orthogonal to botly, andg,.

A=(1,1,2), B=(1,-1,0), C = (—1,—1,1). These are not yet unit vectors.
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1 0 0 1 0 0 1 2 4

23 Youcanseewhy, =|0|,g,=[0],g5=|1].4=|0 0 1||0 3 6]|=

0 1 0 01 0fLO O 5
OR.

24 (a) One basis for the subspaSeof solutions tox; + x, + x3 — x4 = 0isv; =
(1,-1,0,0),v, = (1,0,—1,0),v3 = (1,0,0,1) (b) SinceS contains solutions to
(1,1,1,-1)Tx = 0, abasis foS t is (1,1, 1, —1) (c) Split(1,1,1,1) = by + b,
by projection onS+ andS: b, = (3,1, 1, ~1yands, = (1,1.1.3).

25 This question show2 by 2 formulas for QR; breakdownR,, = 0 when 4 is sin-
ar 12 2 L2 -1 L[5 3] gipgquiar ! 1] 2 [T -1
w1 | T A 2] mlo YRy ] T A
122
V210 O

;
26 (q3C*)q, = II;T—;;B becausg, = ﬁ and the extrg, in C* is orthogonal tag,.

] The Gram-Schmidt process breaks down whén- bc = 0.

27 Whena andb are not orthogonal, the projections onto these laesaot addo the pro-
jection onto the plane af andb. We must use the orthogonaland B (or orthonormal
¢, andg,) to be allowed to addD projections.

28 There arenn multiplications in (11) anc%mzn multiplications in each part of (12).
29 ¢; = +(2,2,~1), 4, = 1(2,-1,2), 5 = 1(1,-2,-2).

30 The columns of the wavelet matri¥’ are orthonormal ThenW~! = WT. See
Section 7.2 for more about wavelets : a useful orthonormsikhaith many zeros.

31 () ¢ = % normalizes all the orthogonal columns to have unit length ) The pro-
jection(a"b/a"a)a of b = (1,1,1,1) onto the first column i, = 1(-1,1,1,1).
(Checke = 0.) To project onto the plane, agd, = %(1, —1,1,1) to get(0,0, 1, 1).

1 0 0
32 01 = [(1) _(1)] reflects across axis, 0, = [O 0 —1} across plang +z = 0.
0 -1 0

33 Orthogonal and lower triangula® 41 on the main diagonal and zeros elsewhere.

34 (@) Qu = (I —2uu")u = u — 2uu"u. This is —u, provided thatu"u equalsl
(b) Qv =( —2uu")v = u —2uu"v = u, provided that:"v = 0.

35 Starting from4 = (1,—1,0,0), the orthogonal (not orthonormal) vectoBs =
(1,1,-2,0)andC =(1,1,1,-3)andD =(1, 1, 1, 1) are in the directions af,, ¢ 5, ¢ 4.
The4 by 4 and5 by 5 matrices withinteger orthogonal column@ot orthogonal rows,

1 1 1 1

—1 1 1
0 -2
0 O

since not orthonormap!) are |A B C D | = and

1
1 1
=3 1

SO O ==

SO = =
[

[ JE USRS .

B = =

etk ke
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36

37

[0, R] = qr(A) produces fromd (m by n of rankn) a “full-size€’ squareQ =[ Q1 0> ]
g . The columns ofQ; are the orthonormal basis from Gram-Schmidt of the
column spacef A. Them — n columns ofQ, are an orthonormal basis for theft
nullspaceof A. Together the columns a@ = [Q; Q] are an orthonormal basis
for R™.

This question describes the next, ; in Gram-Schmidt using the matri@ with the
columnsg,,...,q, (instead of using thosg’s separately). Start from, subtract its
projectionp = Q?a onto the earlieg’s, divide by the lengtlof e = a — QTa to get
An+1 =e/lel.

and

Problem Set 5.1, page 251

det24) = 8; def(—4) = (—1)*detd = 1: det(4?) = 1; det(4™!) =2 = def(4") 1.
det(34) = (3)°detd = —% and det—4) = (—1)>detd = 1; det(4?) = I;
det(A™!) = —1.

(a) False det( + I)isnotl +1 (b) True The product rule extends tdBC (use
it twice) (c) False dei(4A) is 4 detd  (d) False A = [0 0} B — [0 1}

0 1 1 0
0o —1]._. .
AB — BA = [1 O] is invertible.
Exchange rows 1 and 3 to shdus| = —1. Exchange rows 1 and 4, then 2 and 3 to

show|Jy| = 1.

5 |J5]=1, |J¢|=—1, |J7]=—1. Determinantd, 1, —1, —1 repeat sdJy:| = 1.

To prove Rule 6, multiply the zero row by= 2. The determinant is multiplied by
(Rule 3) but the matrix is the same. 3det(4) = det(4) and detA) = 0.

det(Q) = 1 for rotation and de&iQ) = —1 for reflection(1 —2 sir*  —2cos § = —1).
Q70 =1=|0>=1=|0| = %1, Q" stays orthogonal so det can't blow up.

9 detd4 = 1 from two row exchanges. dét = 2 (subtract rows 1 and 2 from row 3, then

10

11

12

13
14
15

columns 1 and 2 from column 3). dét= 0 (equal rows) even thoughi = 4 + B!

If the entries in every row add to zero, théh 1,...,1) is in the nullspace: singular
A has det= 0. (The columns add to the zero column so they are linearly rodga.)
If every row adds to one, then rows df— / add to zero (not necessarily dét= 1).

CD =—-DC = detCD = (—1)"detDC andnot—detDC. If n is even we can have
an invertibleCD.
det(4~") divides twice byad — bc (once for each row). This givef(saaﬁg“'__ibbcc)2 =
1
ad—bc’
Pivotsl, 1, 1 give determinan& 1; pivots1, —2,—3/2 give determinan& 3.
det(A) = 36 and the4 by 4 second difference matrix has det5.

The first determinant ig, the second i$ — 22 + 14 = (1 —t2)2.
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17

18

19

20

21
22

23

24

25
26
27
28

29

30

31

Solutions to Exercises

A singular rank one matrix has determinan®). The skew-symmetri& also detk =
0 (see #7).

Any 3 by 3 skew-symmetri& has detK') = det(—K) = (—1)3det(K). This is
—det(K). But always detk") = det(K). So we must have dgk') = 0 for 3 by 3.

1 a a? 1 a a? b—a b?—a?
1 b b2 | =0 b—a b*>—a®| = —a P—a? (to reach2 by 2,
1 ¢ ¢c? 0 c—a c*>—a?
eliminatea anda? in row 1 by column operations). Factor obit— @ andc — a from
the2 by 2: (b —a)(c —a) i ?IZ = (b —a)(c—a)(c—Db).

For triangular matrices, just multiply the diagonal erdridetU) = 6,det(U~!) = é,
and detU?) = 36. 2 by 2 matrix: detU) = ad,det(U?) = a*d?. If ad # 0 then
detU~!) = 1/ad.

det i B Ig; Z__IEZ} reduces tdad —bc)(1— LL). The determinant changes if you

do two row operations at once.

Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they alsdRylle 2.)

det(4) = 3,de(4™") = J.defA — AI) = A> — 41 + 3. The numbers. = 1 and

A = 3 give detd — A1) = 0. Note to instructor If you discuss this exercise, you can

explain that this is the reason determinants come befoenedues. IdentifA = 1
and)A = 3 as the eigenvalues of.

18 7 - 1 3 -1 1
det(4) = 10, A% = [14 11} dei(4?) =100, A™' = {5 [_2 4] has det;j.

det(A — Al) = A2 — 71 + 10 = 0 when) = 2 or A = 5; those are eigenvalues.

HereA = LU with det(L) = 1 and detU) = —6 product of pivots, so also det) =

—6.de(U'L7!) = -1 =1/ det(4) and detU "' L' 4) is det/ = 1.

When thel, j entry isij, row2 = 2 times row 1 so dett = 0.

When theij entryisi 4+ j, row3 —row 2 = row2 —row 1 soA is singular: defd = 0.

detA = abc, detB = —abcd, detC = a(b — a)(c — b) by doing elimination.

(@) True det(AB) = det(4)det(B) = 0 (b) False A row exchange gives det=

product of pivots. (c)False A = 27 andB = [ haved — B = [ but the determi-

nants have” —1 # 1 (d) True det(AB) = det(A) det(B) = det(BA).

Ais rectangular so det™ A) # (detAT)(detA): these determinants are not defined.
—b

Derivatives of f = In(ad — bc): [af/aa af/ac] = ad_—cbc ad ;bc =

af/ob df/od
ad —bc ad —be
1 d —b|_
ad—bc |:—c ai|_A :

The Hilbert determinants ale8x 1072, 4.6x1074,1.6x1077,3.7x10712,5.4x 10718,
4.8 x 1072°, 2.7 x 10733, 9.7 x 10743, 2.2 x 10723, Pivots are ratios of determi-
nants so the Oth pivot is nearl0~!°. The Hilbert matrix is numerically difficulti(-
conditioned.
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32 Typical determinants afand(n) are 106, 102>, 1072, 1028 for n = 50, 100, 200, 400.
randn(n) with normal distribution giveg03!, 1078 1086 Inf which means> 21024,
MATLAB allows 1.999999999999999 x 21023 ~, 1.8 x 103°® but one more 9 gives Inf!

33 I now know that maximizing the determinant for—1 matrices isHadamard’s prob-
lem (1893): see Brenner in American Math. Monthly volume 79 @)9626-630. Neil
Sloane’s wonderful On-Line Encyclopedia of Integer Segesrtesearch.att.coma
njas) includes the solution for small (and more references) when the problem is
changed td), 1 matrices. That sequence A003432 starts from O with 1, 1, 1, 2, 3,
5,9. Then thel, —1 maximum for size: is 2"~! times thed, 1 maximum for size: — 1
(s0(32)(5) = 160 for n = 6 in sequenc&A003433.

To reduce thd, —1 problem fromé6 by 6 to the0, 1 problem for5 by 5, multiply the
six rows by=+1 to put+1 in columnl. Then subtract row from rows2 to 6 to get a5

by 5 submatrixS of —2, 0 and divideS by —2.

Here is an advanced MATLAB code andla—1 matrix with largest ded = 48 for

n=>5:

n=>5p=(n-—1)"2; A0 =ones(n); maxdet= 0;

fork=0:2"p—1

Asub = rem(floor(k. * 2.M—p +1:0)),2); A = A0; A2 :n,2:n) =1—2x%

reshape(Asub,n — 1,n — 1);

if abs(det(4)) > maxdet, maxdet = abs(det(A4)); max4 = A;

end
end

Output:maxA = 1 1 1 1
1 1 1 -1
1 1 -1 1
1 -1 1 1
1 -1

-1 -1

34 ReduceB by row operations tgrow 3;
mutation).

Problem Set 5.2, page 263

1
—1
—1
—1

1

maxdet = 48.

row 2 row 1]. Then detB = —6 (odd per-

1 detd = 14+184+12—9—4—6 = 12, rows are independent; dBt= 0, row 1 +row 2 =
row 3; detC = —1, independent rows (dét has one term, odd permutation)

2 detd = -2, independent; d&® = 0, dependent; def = —1, independent.
3 All cofactors of row1 are zero.A has rank< 2. Each of the 6 terms in déeft is zero.

Column 2 has no pivot.

4 aj1a33032044 gives—l, becaus@ < 3, 14023032041 giVGS—i—l, detA=1-1=0;
detB=2-4.4.2—1-4-4.1=64—16 =48.

5 Four zeros in the same row guarantee €¢e0. A = [ hasl12 zeros (maximum with

det=# 0).

6 (a) Ifa;; = azy = asz = 0then 4 terms are sure zeros

(b) 15 terms must be zero.
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5!/2 = 60 permutation matrices have det+1. Move row5 of / to the top; starting
from (5, 1, 2, 3, 4) elimination will do four row exchanges.

Some termuqasg - - - ane in the big formula is not zero! Move rows 2, . . ., n into
rowsa, B, . . .,o. Then these nonzerds will be on the main diagonal.

To get+1 for the even permutations, the matrix needea@nnumber of—1's. To get
+1 for the oddP'’s, the matrix needs anddnumber of—1's. So all six terms= +1 in
the big formula and det 6 are impossible: maxlet) = 4.

The 4!/2 = 12 even permutations ard, 2,3,4),(2,1,4,3),(3,1,4,2),(4,3,2,1),
and8 P’s with one number in place and even permutation of the dtiree numbers.
det(I + Peven = 16 or 4 or 0 (16 comes frond + 7).

0 4 -35
o [ d —b] b { } detB = 1(0) + 2(42) + 3(—35) = —21.

—c a g —2é _1;1 " Puzzle: deD = 441 = (-21)2. Why?

3 2 1 4 0 0

C=|2 4 2|andACT=|0 4 0] ThereforedA™! = 1CT = CT/detA.
1 2 3 0 0 4

@ C =0, Co=—-1,C3=0, Cy =1 (b) C, = —C,—; by cofactors of row

1 then cofactors of column 1. Therefatgg = —Cs = C¢ = —C4 = C5 = —1.

We must choose 1's from column 2 then column 1, column 4 théammo 3,and so on.

Thereforen must be even to have dej, # 0. The number of row exchangesig2 so

C, = (_1)n/2_

The 1, 1 cofactor of then by n matrix is E,—;. The 1,2 cofactor has a single 1 in its

first column, with cofactof,_,: sign gives—E,_». SOE, = E,—1 — E,—,. ThenE;

to Egis1,0,—1,—1,0, 1 and this cycle of six will repeatE oo = E4 = —1.

The 1, 1 cofactor of then by n matrix is F,—;. Thel,2 cofactor has a 1 in column

1, with cofactorF,_,. Multiply by (—1)'*2 and also(—1) from the1, 2 entry to find

F, = F,—1 + F,—> (so these determinants are Fibonacci numbers).

1 -1 1 -1 | —1
|Bs| = 2det| =1 2 —1|+det|] -1 2 = 2|B;| — det =
-1 2 -1 -1 -2

2| B3| — | B2|. | B3| and—| B, | are cofactors of rowt of By.

Rule 3 (linearity in row 1) give$B,| = |An| — |Au—1| =+ 1) —n = 1.

Sincex, x2, x3 are all in the same row, they are never multiplied inldetThe deter-
minant is zero at = a or b or ¢, so detV’ has factorgx —a)(x — b)(x —c). Multiply
by the cofacto’;. The Vandermonde matri¥;; = (x;)/~! is for fitting a polynomial
p(x) = b at the pointsy;. It has det/ = product of allx; — x,, for k > m.

Gy, = —1,G3 = 2,G4 = —3,andG,, = (-1)""!(n — 1) = (product of thel's ).

S1 = 3,8, = 8,83 = 21. The rule looks like every second number in Fibonacci's
sequence..3,5,8,13,21,34,55,... so the guess i§; = 55. Following the solution
to Problem 30 with 3's instead of 2’s confirl§$ = 81+1—-9—-9—9 = 55. Problem 33
directly provesS, = Fan42.

Changing 3 to 2 in the corner reduces the determiffapi, by 1 times the cofactor
of that corner entry. This cofactor is the determinanfpf; (one size smaller) which
is F»>,. Therefore changing 3 to 2 changes the determinaibjq, — F», which is
Font1.
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23 (a) If we choose an entry fro® we must choose an entry from the zero block; re-
sult zero. This leaves entries fromtimes entries fromD leading to(detA)(detD)

(b) and () Take4:[(l) 8},3:[? 8] C = [8 (1)} D= [8 O} See #5.

24 (a) All L's have det= 1; detU; =detd; =2,6,—6fork=1,2,3 (b) Pivots2, 3 27?'

1 0 A B

cA-l ] = |A|times|D—CA~!B|
whichis|AD — ACA™'B|. If AC = CAthisis|AD — CAA 'B| = det(AD — CB).

26 If A is arow andB is a column then de¥ = detAB = dot product of4 and B. If
A is a column andB is a row thend B has rank 1 and déf = detAB = 0 (unless
m = n = 1). This block matrix is invertible whenl B is invertible which certainly
requiresn < n.

27 (a) detd = a11Cy1 + -+ + a1, Cy1,. Derivative with respect ta;; = cofactorCy;.

28 Row 1 —2row 2 + row 3 = 0 so this matrix is singular.

29 There are five nonzero products, all 1's with a plus or minga.sHere are the (row,
column) numbers and the signs:(1, 1)(2,2)(3,3)(4,4) + (1.2)(2,1)(3,4)(4,3) —
(1,2)(2,1)(3.3)(4,4) — (1,1)(2,2)(3,4)(4,3) — (1,1)(2,3)(3,2)(4,4). Total —

30 The 5 products in solution 29 changel®+ 1 — 4 — 4 — 4 sinceA has 2’s and -1's:

2222 + (=D(EDHEDED = (=D(=D2)(2) = ) (=D(=1) -
@(=D (D).

25 Problem 23 gives de{t ] = land de\{

31 detP = —1 because the cofactor df4 = 1 in row one has sigi—1)'**. The big
formula for detP has only one termil-1-1-1) with minus sign because three exchanges

take4, 1,2, 3into 1,2, 3, 4: de(P2) = (detP)(detP) = +1 so det[(; (’)} -
0 1]. .
det[1 O} is not right

32 The problem is to show thdt,, +» = 3F>, — F>,—>. Keep using Fibonacci’s rule:
Fonpo=Fonsi1+Fon=F+Fon 1+ Fon=2F,+ (Fopn—Fon—2)=3F,— 2, 5.

33 The difference fron20 to 19 multiplies its3 by 3 cofactor= 1: then det drops by.

34 (a) The last three rows must be dependent (b) In each of theet23: Choices
from the last 3 rows must use 3 columns; at least one of thasieehwill be zero.

35 Subtracting 1 from the, n entry subtracts its cofactar,, from the determinant. That
cofactor isC,, = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves O.

Problem Set 5.3, page 279

5 1 5 2
1("")‘ 4|=3 24‘ 6. 11

3/3 =1 (b) |[A] = 4.|B:1| = 3,|B;]
xz_—l/Zandx3 1/4

% =3s0x; = —6/3 = —2andx, =

2,|Bs| = 1. Thereforex; = 3/4 and

I o=
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2 (@) y= ‘gg(/‘gg —c/(ad —be)  (b) y = detB,/detd = (fg —id)/D.

3 (a) x; =3/0andx, = —2/0: no solution (b) x; = x, = 0/0: undetermined

4 (a) x; = det{[b a> a3])/detd, if detA # 0 (b) The determinant is linear in
its first column soc a1 a; as|+x2|as az as|+x3las as as|. The last two determinants
are zero because of repeated columns, leavitg; a, as| which isx; detA.

5 If the first columninA is also the right sidé then det4 = detB;. Both B, andB; are
singular since a column is repeated. Therefore= |B1|/|A| = 1 andx, = x3 = 0.

1 -2 0 3 2
3 . . . '
1 An invertible symmetric matrix
1
6@ |0 3 0 ®) ;]2 4 2 has a symmetric inverse.
0 -1 1 1 2 3

7 If all cofactors= 0 thenA4~! would be the zero matrix if it existed; cannot exist. (And
1

the cofactor formula gives det=0.) 4 = [1

1] has no zero cofactors but it is not
invertible.
6 -3 0 3 0 07 Thisis(detd)l and ded = 3.
8 C = [ 301 —1} andACT = [0 3 0]. Thel, 3 cofactor of4 is 0.
-6 2 1 0 0 3 Multiplying by 4 or 100: no change.

9 If we know the cofactors and ddt = 1, thenCT = A~! and also ded™! = 1.
Now A4 is the inverse o T, so A4 can be found from the cofactor matrix f6r.

10 Take the determinantofCT = (detA)/. The left side gives detCT = (detA)(detC)
while the right side givegdetA)”. Divide by det4 to reach de€ = (det4)"!.

11 The cofactors off are integers. Division by det = +1 gives integer entries id~!.

12 Bothdet4 and det4~! are integers since the matrices contain only integers. &utd' =
1/ detA so detd must be 1 or1.

01 3 —1 2 1 1
13 A=|1 0 1 |hascofactormatri€ =| 3 —6 2|andd™'=-CT.
21 0 1 3 -1 S
14 (a) Lower triangularl. has cofactor€,; = C3; = C3, = 0 (b) C12 = Cyy,
C31 = C13,C3, = Cp3 makeS~! symmetric. (c) Orthogonad) has cofactor

matrix C = (detQ)(Q~1)"T = £+ 0 also orthogonal Note detQ = 1 or —1.

15 Forn = 5, C contains25 cofactors and each 4 by 4 cofactor l2akterms. Each term
needs3 multiplications: totall 800 multiplications vsl1 25 for Gauss-Jordan.

16 (a) Area|? 2| = 10 (b) and (c) Areal0/2 = 5, these triangles are half of the
parallelogram in (a).

17 Volume= |3 31=20 Area of faces= |ij k| —2i—-2j+8k
“|113] 7 lengthof cross producf™ |3 1 1|7 length=6+/2
18 (a) Areal 541 =5 (b) 5 + new triangle arezal 581l =5+7=12.
2los1 3131

19 |3 §| =4 = |2 2| because the transpose has the same determinant2See #
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20 The edges of the hypercube have lengflh + 1+ 1+ 1 = 2. The volume det
is 2% = 16. (H/2 has orthonormal columns. Then ¢&t/2) = 1 leads again to
detH = 16.)

21 The maximum volume.; L, L3L4 is reached when the edges are orthogon&4n
With entriesl and—1 all lengths are/4 = 2. The maximum determinant & = 16,
achieved in Problem 20. Foraby 3 matrix, detd = (+/3)? can't be achieved by:-1.

22 This question is still waiting for a solution! At8.06 student showed me how to trans-

form the parallelogram for to the parallelogram for T, without changing its area.
(Edges slide along themselves, so no change in baselené#ight or area.)

a' a'a 0 0 T 5
23 ATA=|b"|[a b c]=| 0 bHh 0 |has gg:ﬁ % = (7_L”|‘|16|l||||||]|9£||||ﬁ6|!|)|
e’ 0 0 c'c -
1 00
24 The box has height 4 and volumedet{o 1 0} =4.ixj=kand(k- -w) =4
2 3 4

25 Then-dimensional cube ha¥ cornersp2™~! edges andn (n—1)-dimensional faces.
Coefficients from(2 + x)" in Worked Exampl&.4A. Cube from2/ has volume”.

26 The pyramid has volumg. The 4-dimensional pyramid has volurgg (and-Y; in R")
27 x =rcosh, y = rsind giveJ = r. The columns are orthogonal and their lengths are
1 andr.

sing cosf  pcospsing —psing sind

singsind pcospsingd  psing cosd
COSyp —pSing

for triple integrals inside spheres.

ar/dx dr/dy

00/0x 060/dy

28 J = = p? sing. This Jacobian is needed

cosf sing
29 Fromx,ytor,0: = (—sinB)/r (cosh)/r
1 1
~ r  Jacobian 27’
30 The triangle with corner0, 0), (6, 0), (1, 4) has are24. Rotated byy = 60° the area

sir )
—y/r x/r?

. . . . cosf —sinf
is unchanged The determinant of the rotation matrix Js = sinf  cosd | =
1/2 —3/2 | _ |
V3/2 12|

31 Base area 10, height 2, volume 20.

2 4 0
32 The volume of the box is d{t—l 3 0} = 20.
1 2 2

Uy Uz us
U1 1% U3
w; Wy W3

Uy U3
Wz W3

Vp U3
w; W3

vr Uz

33 =u Wy X . Thisisu- (v x w).

34 (wxu)-v=(vxw)-u=(uxv) w:Even permutationf («, v, w) keeps the same
determinant. Odd permutations reverse the sign.
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35

36

37

38
39

40

41

Solutions to Exercises
S =(2,1,—-1), area||PQ x PS|| = ||(-2,—2,—1)| = 3. The other four corners
can be0,0,0), (0,0,2), (1,2,2), (1,1,0). The volume of the tilted box isdet| = 1.
Xyz
If (1,1,0), (1,2, 1), (x, y,z) are in a plane the volumeisdetl 1 0 | =x—y+z=0.

The “box” with those edges is flattened to zero height. 121

X y z

det[z 3 1} = 7x —5y +z will be zerowhen(x, y, z) is a combination of2, 3, 1)
1 2 3

and(1, 2, 3). The plane containing those two vectors has equatior 5y + z = 0.

Doubling each row multiplies the volume Bf. Then2 detA =det24) onlyif n=1.

ACT = (detd)I gives(detd)(detC) = (detd)”. Then ded = (detC)'/? with
n = 4. With detA~! = 1/ detA4, construct4=! using the cofactordnvert to find A.

The cofactor formula addsby 1 determinants (which are just entrigshestheir co-
factors of size: — 1. Jacobi discovered that this formula can be generalized: Fo 5,
Jacobi multiplied each by 2 determinant from rows-2 (with columnsa < b) times
a3 by 3 determinant from row8s-5 (using the remaining columns< d < e).

The key question ist or — sign (as for cofactors). The product is giventa
signh whera, b, ¢, d, e is an even permutation df, 2, 3, 4, 5. This gives the correct
determinantt+1 for that permutation matrix. More than that, all otlethat permuter,

b and separately, d, e will come out with the correct sign when tAdoy 2 determinant
for columns a, b multiplies the3 by 3 determinant for columns, d, e.

The Cauchy-Binet formula gives the determinant of a squakixi4B (andAAT in
particular) when the factord, B are rectangular. FoR(by 3) times @ by 2) there are
3 products of2 by 2 determinants fromd and B (printed in boldface):

AR [ R

1 1
cresk a=[1 23] s [2 4} an=[i 2]
3 7

S

Q

1 4 7

Cauchy-Binet (4 —2)(4—2)+ (7—3)(7—3) + (14— 12)(14— 12) = 24
(14)(66) — (30)(30) = 24

Problem Set 6.1, page 293

1

2

3

The eigenvalues areand0.5 for 4, 1 and0.25 for A2, 1 and0 for A%°. Exchanging
the rows of4 changes the eigenvalues tcand —0.5 (the trace is now).2 + 0.3).
Singular matrices stay singular during eliminationAse: 0 does not change.

A hasA; = —1 andA, = 5 with eigenvectorsc; = (—2,1) andx, = (1,1). The
matrix A + I has the same eigenvectors, with eigenvalues increasédd and6.
That zero eigenvalue correctly indicates tHat 7 is singular.

A hasA; = 2 andA, = —1 (check trace and determinant) with = (1,1) and
x> = (2,—1). A~! has the same eigenvectors, with eigenvaliyés= % and—1.
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4 A hasA; = =3 andA, = 2 (check trace= —1 and determinant —6) with x; =

(3,—2) andx, = (1,1). A% has thesame eigenvectoes A, with eigenvalued? = 9
andA3 = 4.

A and B have eigenvaluesand3. A + B hasA; = 3, A, = 5. Eigenvalues o + B
are not equato eigenvalues ofl plus eigenvalues aB.

AandB havel; = 1andi, = 1. AB andBA have)l = 2 + /3. Eigenvalues oA B
are not equato eigenvalues ofl times eigenvalues ab. Eigenvalues o4 B and BA
are equal (this is proved in section 6.6, Problems 18-19).

The eigenvalues df/ (on its diagonal) are thpivotsof A. The eigenvalues of (on
its diagonal) are all’'s. The eigenvalues of are notthe same as the pivots.

8 (a) Multiply Ax to seedx which reveals (b) Solve(A —Al)x = 0tofindx.

10

11

12

13

14

15
16

17

18

19

20

(@) Multiply by A: A(Ax) = A(Ax) = AAx givesA%x = A%x (b) Multiply by

A7l x = A7'Ax = A7 "Ax = A4 1x givesA™lx = %x (c) Add Ix = x:

A+ Dx =A+Dx.

AhasA; = 1 andA, = .4 withx; = (1,2) andx, = (1,—1). A* hasA; = 1 and

A, = 0 (same eigenvectorsy!%? hasi; = 1 and\, = (.4)'°° which is near zero.
S0A1% is very near4*: same eigenvectors and close eigenvalues.

Columns ofA—A; I are in the nullspace of —A, 1 becausé! = (A—A1)(A—A11)
= zero matrix[this is theCayley-Hamilton Theorenm Problem 6.2.3R Notice that
M haszero eigenvaluegl; — A;)(A; — A1) = 0and(A, — A3)(A, — A1) = 0.

The projection matrix? hasA = 1, 0, 1 with eigenvectorsl, 2, 0), (2,—1,0), (0,0, 1).
Add the first and last vector$1,2, 1) also hast = 1. Note P2 = P leads toA? = A
soA =0orl.

(@ Pu= (uuu = u(u'u) = usol =1 (b) Pv = (uu")v = u(u"v) =0
(€) x1 = (—=1,1,0,0), x, = (=3,0,1,0), x3 = (—=5,0,0, 1) allhavePx = 0x = 0.
Two eigenvectors of this rotation matrix axg = (1,i) andx, = (1,—i) (more
generallycx 1, andd x, with ¢d # 0).

The other two eigenvalues ake= %(—1 + i /3); the three eigenvalues arel, —1.
SetA =0indet(d —AI) = (A1 — 1) ... (4, —A) tofind detd = (A1)(X2) -+ (A).

M=23(a+d+@a—d)?+4bc)andr, = La+d -V ) add toa + d.
If AhasA; =3 andA, = 4thendetd — A1) = (A —3)(A —4) = A2 — 74 + 12.

, |4 0 3 2 2 2
These3 matrices have. = 4 and5, trace9, det20: [O 5] . [_1 6] . [_3 7].

(@) rank=2  (b) de{B"B) =0  (d) eigenvalues ofB> + I)" ! arel, 1,1

1
2° 5"

A= [_23 1” has tracd 1 and determinart8, soA = 4 and7. Moving to a3 by 3
0 1 0

companion matrixC = [0 0 1} has detC —AI) = —A3 + 612 — 111+ 6 =
6 —11 6

(I1—4)(2—21)(3—1). Notice the trac& = 1 + 2 + 3, determinant = (1)(2)(3), and

alsoll = (1)(2) + (1)(3) + (2)(3).
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21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

Solutions to Exercises

(A — AI) has the same determinant@s— A/)" [1 0 and 1 1| havedifferent
because every square matrix has Met= detM ™. |1 0 0 0 | eigenvectors

A = 1 (for Markov), 0 (for singular)-1 (so sum of eigenvalues trace= 1).

0 0 0 1 —1 1| Always A? is the zero matrix it = 0 ando,
I 0110 O -1 1 by the Cayley-Hamilton Theorem in Problem 6.2.32.

A =0,0,6 (notice rankl and trace6) with x; = (0,—-2,1), x, = (1,-2,0), x3 =
(1,2, 1).

With the same: A's andx’s, Ax = ciA1x1 + -+ + cpAnx, €qualsBx = ciA1xq +
<o« + cpAnx, for all vectorsx. SoA4 = B.

The block matrix hag = 1, 2 from B and5, 7 from D. All entries ofC are multiplied
by zeros in ddt4 — A1), soC has no effect on the eigenvalues.

A has rank 1 with eigenvaluésO0, 0, 4 (the 4 comes from the trace df). C has rank
2 (ensuring two zero eigenvalues) afid1, 1, 1) is an eigenvector witih = 2. With
trace 4, the other eigenvalue is alse= 2, and its eigenvector igl, —1, 1, —1).

B hasA = —1, -1, —1,3andC hasA =1, 1, 1, —3. Both have det= —3.

Triangular matrix:A(4) = 1,4,6; A(B) = 2, v/3, —/3; Rank-1 matrix:A(C) =
0,0,6.

[Z 2] [}] = [?IS} = (a+b)[i];/\2 = d — b to produce the correct trace

@+by+@d—b)=a+d.

Eigenvector(1, 3, 4) for A with A = 11 and eigenvecto3, 1,4) for PAPT. Eigenvec-
tors withA # 0 must be in the column space sinde is always in the column space,
andx = Ax/A.

(a) u is a basis for the nullspace,andw give a basis for the column space
(b) x = (0. 1. 1) is a particular solution. Add any« from the nullspace
(c) If Ax = u had a solutiong would be in the column space: wrong dimension 3.

If v'Tu = 0thenA4d? = u(v'u)v' is the zero matrix and? = 0,0 andA = 0,0
and trace(4) = 0. This zero trace also comes from adding the diagonal emfies

A=uv":

Ui Uvy Uvz T
= v v = = =
A |:M2] [ 1 2] |:u2v1 szz] has traceu vy + usv, = v u =0

det(P — AI) = 0 gives the equatiod* = 1. This reflects the fact thaP* = 1.
The solutions of\* = 1 areA = 1,i,—1,—i. The real eigenvectat; = (1,1,1,1)
is not changed by the permutatidgh Three more eigenvectors afii?,i3,i%) and
(1,—1,1,=1) and(—i, (—i)?, (—i)3, (—=i)*).

3 by 3 permutation matrices: Sinéd P = I gives(detP)? = 1, the determinant is 1
or —1. The pivots are always 1 (but there may be row exchanges)trabe of P can
be 3 (forP = I) or 1 (for row exchange) or O (for double exchange). The [mbssi
eigenvalues are 1 andl ande2”'/3 ande271/3,
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36 A; = e2™/3 and A, = ¢ 27/3 give detl;A, = 1 and traced; + A, = —1.

| cos® —sing | . 27 . .
A= [sin@ cos@] with 6 = Y has this trace and det. So does evify' AM!

37 (a) Since the columns of add to 1, one eigenvalue is= 1 and the other ig — .6
(to give the correct trace + .4).

(b) If ¢ = 1.6 then both eigenvalues are 1, and all solutiong4o- /) x = 0 are
multiples ofx = (1, —1).

(c) If ¢ = .8, the eigenvectors fak = 1 are multiples of (1, 3). Since all powers'

. 1 . .
also have column sums 1, A" will approachZ ; ; = rank-1 matrix A% with

eigenvalued, 0 and correct eigenvectorél, 3) and(1, —1).

Problem Set 6.2, page 307

112_11101—1‘11_1100
0 3(— 10 1{[0 3|0 1] (3 3| [-1 3]|0 4 )
Put the eigenvectors ifi 4= SAS-! — I 12 of|1 -1 _[2 3
and eigenvalues in. - —10 11|10 51|10 1|0 5}

3 If A = SAS™! then the eigenvalue matrix fot + 27 is A + 2/ and the eigenvector
matrix is stillS. A + 27 = S(A +21)S™' = SAS™' + SQI)S™' = A +21.

4 (a) False: don'tknow's (b) True (c) True (d) False: need eigenvectors of

5 WithS = 1,4 = SAS™! = A is a diagonal matrix. IfS is triangular, therS ! is
triangular, saSA S~! is also triangular.

6 The columns of5 are nonzero multiples @2,1) and(0,1): either order. Same fot~!.

B o 1711 1 1 A+ A -2y _
7 A = SAS —|:1 _1”: L1 =1 /2 = A=Az AL+ A /2=
a b
[b a] for anya andb.

FNTSENTH
FNTSEN.

1 1 1 |:/11 /12 /11 0 1 _12 SAkS_l —

— -1 _ —
BA=SAST =11 o=, =511 1[0 amll-1 A

1 A A [AR o 1 —A,|[1] _ [2nd componenis Fy
M= L1 L]0 ABf[-1 Af[0] T [ =25/ -2 ]

9 () A= [f g] hasi; = 1, A, = —Lwithx; = (1.1), x5 = (1.-2)

o=} 3]0 e%4[3—]%Aw:[ }

10 TheruleFy4, = Fr11 + Fj produces the pattern: even, odd, odd, even, odd,.odd,

11 (a) True(no zero eigenvalues) (bjalse(repeatedt = 2 may have only one line of
eigenvectors) (c)ralse(repeated may have a full set of eigenvectors)

= W[
W= W=
WIN WIN
W= W=
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Solutions to Exercises

(a) False: don’'t know (b) True: an eigenvector is missing (c) True.

| 8 3 | 9 4 |10 5. onlyeigenvectors
A= [—3 2} (or other), 4 = [—4 1]’ A= [—5 0]’ arex = (¢, —c).

The rank ofA — 37 is r = 1. Changing any entry except;, = 1 makesA
diagonalizable 4 will have two different eigenvalues)

Ak = SAkS—1 approaches zeiiband only if every |A| < 1; A¥ — A%, 4k — 0.

A= [(1) g} ands = [} _” AR — [(1) 8} andSAkS—! — [% %] steady
state 2 2
w=[5 5po=[i 3 el =i} )= om )

AL0 [8} = (.9)1° [ﬂ + (.3)1° [_ﬂ becaus{g] is the sum oi[ﬂ + [_?-.
2 -1 171 =171 o 11 171 =171 0
[—1 2} = 5[1 1] [o 3} [—1 1} and 4¢ = 5 [1 1] [o 3"}

11 , : I +3F 13K
1 1] Multiply those last three matrices to gé¢f = Sl1—3* 1435

ge_[1 1[5 0] [1 1]_[5" sk—4
=lo —1{|o 4| |0 —1|T|o 4 |

detA = (detS)(detA)(detS™!) = detA = A;---A,. This proof works whem is
diagonalizable

traceST = (aq + bs) + (cr + dt) is equal to(ga + rc) + (sb + td) = traceT'S.
Diagonalizable case: the trace A S~! = trace of(AS~!)S = A: sum of thel’s.

AB—BA = I isimpossible since tracéB — traceBA = zero #tracel. AB—BA =

C is possible when tracg”) = 0, andE = [} (1)] hasEET — ETE = [—(1) (1)]

an ol 4 o1 _[s oA o][St o0
If A =SAS thenB_[O Al=10 sllo 2a 0 S_l.SoBhas

the additional eigenvalues., ..., 24,.

The A’s form a subspace sineed and A; + A, all have the samé&. WhenS = [
the A’s with those eigenvectors give the subspace of diagonaiceat Dimension 4.

If A hascolumng,...,x, thencolumn by column4? = 4 means everylx; = x;.

All vectors in the column space (combinations of those colsiry) are eigenvectors
with A = 1. Always the nullspace has = 0 (4 might have dependent columns, so
there could be less thaneigenvectors withh = 1). Dimensions of those spaces add
to n by the Fundamental Theorem, das diagonalizabl€n independent eigenvectors
altogether).

Two problems: The nullspace and column space can overlap,cld be in both.
There may not be independent eigenvectors in the column space.
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27

28

29

30

31

32

33

R=SVAS = [% ;} hasR?= A. +/B needs\ = +/9 and+/—1, trace is not real.

Note that[_(l) _(1)} can havev—1 =i and—i, trace0, real square rooE_(l) (1)]

AT = A givesxTABx = (Ax)"(Bx) < ||Ax||Bx]| by the Schwarz inequality.
BT = —B gives—x"BAx = (Bx)"(Ax) < ||Ax|||Bx|. Add to get Heisenberg’s
Uncertainty Principle whed B — BA = I. Position-momentum, also time-energy.
The factorizations ofA and B into SAS~! are the same. Sd = B. (This is
the same as Problem 6.1.25, expressed in matrix form.)

A = SA S andB = SA,S™!. Diagonal matrices always give; A, = AsA;.
ThenAB = BA from SA1S7'SALS™! = SA{A3S™! = SAA1S™H = SA,S™!
SAS™! = BA.
a b
0 d

o o R ,» 2 1 ) e
= [0 0]. (b) A= [1 0] hasA* = [1 1] andA4“—A—1 = 0Ois true, match-
ing A2 — A — 1 = 0 as the Cayley-Hamilton Theorem predicts.

When4 = SAS~!is diagonalizable, the matrig— A ;1 = S(A—A;1)S~! will have
Ointhej, j diagonal entry oA —A ;. Inthe producip(4) = (A—A11)--- (A—An1),
each insides~! cancelsS. This leavesS times product of diagonal matrices — ;1)
timesS~!. That product is the zero matrix because the factors produezo in each
diagonal position. Thep(A) = zero matrix, which is the Cayley-Hamilton Theorem.
(If A is not diagonalizable, one proof is to take a sequence obdalizable matrices
approachingd.)

Comment | have also seen this reasoning but | am not convinced:

Apply the formuladC™ = (detA)! from Section 5.3 tod — A/ with variableX. Its
cofactor matrixC will be a polynomial inA, since cofactors are determinants:

(@) 4 = hask = ¢ andA = d: (A—al)(A—dI) = [0 b ][“‘d b]

0 d—a 0 0

(A=Al cof (A—AI)T = det(A — A1) = p(A)].

“For fixed A, this is an identity between two matrix polynomials.” Set A to find
the zero matrix on the left, sp(4) = zero matrix on the right—which is the Cayley-
Hamilton Theorem.

| am not certain about the key step of substituting a matrixifo If other matrices
B are substituted, does the identity remain true?AB # BA, even the order of
multiplication seems unclear.

A =2,—1,0areinA and the eigenvectors are $h(below). 4¥ = SA¥S—'is

2 1 0 (2 11 k4 2 27 (e[ 1 -1 -l
{1 -1 1i|Ak—|:2 -2 —2}:_[2 1 1]+ {—1 1 1}

1 -1 —1 6lo 3 —3 612 1 1 311 011
Checkk = 4. The(2,2) entry of A% is2%/6 + (—1)*/3 = 18/6 = 3. The4-step paths

that begin and end at no@eare 2to 1to1to1to2,2to1to2to1to2,and2to 1to
3to 1to 2. Much harder to find the elevésstep paths that start and end at node 1.
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34 If AB = BA, thenB has the same eigenvectdis0) and(0,1) asA. So B is also
diagonalb = ¢ = 0. The nullspace for the following equation is 2-dimensional

1 Ol||la b a b 1 0 0 —-b 0 0
AB—BA:[O 2:||:c d}_[c d”o 2j|=|:c o}z[o 0]' The
coefficient matrix has rank — 2 = 2.

35 B has) =i and—i, soB* hasA* = 1 and 1 andB* = I. C hasA = (1 + +/3i)/2.
This is exg£mi/3) soA*> = —1 and—1. ThenC?3 = —I andC!9%% = —C.

cosf —sind
sing cosf

det= 1). Their eigenvectors ard, —i) and(1,7):

_ 1 1] [e"? i =1 .
nzSAnSl:[—i z][ e—in0:||:i 1}/2’

_ [ (e"? 4 e~in0) /2 ] _ |:COSn9 —sinn@].

(einﬁ _e—ine)/zl' sinné cosnb

36 The eigenvalues ofl = ared = ¢'? ande~? (trace2cosh and

Geometricallyy rotations by give one rotation by:6.
37 Columns ofS times rows ofA S ~! will give r rank-1 matrices(r = rank of A).
38 Note thatones(n) * ones(n) = n * ones(n). Thisleads taC = 1/(n + 1).

AA™! = (eye(n) + ones(n)) * (eye(n) + C * ones(n))
=eye(n) + (1 + C 4+ Cn) * ones(n) = eye(n).

Problem Set 6.3, page 325

1u =e* |:(1)], u, =e' |:_” If u(0) = (5,—-2), thenu(t) = 3e* |:(l)i| + 2e! |:_”

2 z(t) = 2¢'; thendy/dt = 4y — 6¢' with y(0) = 5 givesy(t) = 3e*’ + 2¢' asin
Problem 1.

3 (a) If every column of4 adds to zero, this means that the rows add to the zero row. So
the rows are dependent, adds singular, and. = 0 is an eigenvalue.

(b) The eigenvalues od = areA; = 0 with eigenvectox; = (3,2) and

-2 3
2 -3
Ao = =5 (to give trace= —5) with x, = (1, —1). Then the usual 3 steps:

1. Writeu(0) = [ﬂ as[;] + [_i] =Xx1+ x5

2. Follow those eigenvectors by’ x; ande™>"x,
3. The solutionu(t) = x| + e >'x, has steady state; = (3,2).

4 dv+w)/dt = (w—v)+ (v—w) = 0, so the totab + w is constant4 = - 1}

1 -1
A= . |1 [ 1], v(1)=20+10e72  v(c0) =20
has 5, _ 0, withx; = [1]”‘2 = [—1}’ w(l) =20 — 10e™>  w(o0) = 20
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dr | w -1

d _
5 [v]:[ ! i]hask=0and+2:v(t):20+1062t—ooast—>oo.

A= [‘11 ;} has real eigenvalues+ 1 anda — 1. These are both negativedf< —1,
and the solutions of’ = Au approach zeroB = l{ _11 has complex eigenvalues

b + i andb — i. These have negative real part$ ik 0, and all solutions ob’ = Bw
approach zero.

A projection matrix has eigenvaluégs= 1 andA = 0. EigenvectorsPx = x fill
the subspace tha® projects onto: hera& = (1,1). EigenvectorsPx = O fill the
perpendicular subspace: hare= (1, —1). For the solution tae’ = —Pu,

u(0) = [?] _ B] n [_}] u(t) = e B} 4 o0 |:_i] approaches{_i].

[g _ﬂ hasi, =5, x; = [%] Ay =2, xo = [;] rabbitsr (1) = 20e>" + 10e?,

w(t) = 10e>" 4+20e2'. The ratio of rabbits to wolves approact€g10; e>* dominates.

@i -2[Jn[ 1] e[ ] (5]

diy]_[»]_[0o 1][» _[o 1 _ 2 _
Z[y/] = |:y//] = |:4 5] |:y/ A= 4 5 hasdetA—Al) = A=—51—4 = 0.
Directly substitutingy = ¢! into y” = 5y’ + 4y also gives\? = 51 + 4 and the same

two values ofA. Those values aré(s + /41) by the quadratic formula.

PTN | +t[8 (1)} + zeros = [(1) ;} Then [yy/((tt))} - [(1) ﬂ[;}/(((())))}

/!
[y(O)y—i—(g) (O)t] Thisy(z) = y(0) + y’(0)¢ solves the equation.
A= [_(9) é] has trace 6, det 9, = 3 and 3 withoneindependent eigenvector, 3).
(@) y(¢r) = cos3t and sim¢ solvey” = —9y. Itis 3cos3¢ that starts withy (0) = 3
andy'(0)=0.  (b) A=|_J o |hasdet=9: 1 = 3i and—3i with x = (1.37)
. 3| U] 3 [ 1] [ 3cos3t]
and(l, —3i). Thenu(t) = e |:3i] + 57 |:_3l.j| = |:—9Sin3t_'
When4 is skew-symmetric]u(t)| = |eAu(0)]| is |u(0)|. Soe“! is orthogonal

4 1 [0 4
u, =4andu(t) =ce' +4; u,= [2} andu(t) = cre’ |:t:| + e’ 1] + |:2]
Substitutingu = e“’v givescev = Ae’v —e’b or (A —cl)v = borv =
(A —cI)~'b = particular solution. It is an eigenvalue thed — ¢ is not invertible.
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17 (a) [(1) _(1)} (b) [(1) (1)} (c) [_1 %] These show the unstable cases

(@ Ay <0andi,; >0 (b) Ay >0andAi, >0 (c) A =axibwitha >0
18 d/di(e4) = A+ A% + A3 + £ A% o = AU+ At + 3202 + £ A3 40,
This is exactlyde4?, the derivative we expect.

19 eB" = I + Bt (short series wittB? = 0) = [é _4;}. Derivative= [8 _g} = B.
20 The solution at time + 7 is alsoe4“+Tu(0). Thuse4 timese4” equalse4¢+1),

[ -2 00 20 8 A S - )

t t_
22 A% = Agivesed =1+ At + A2+ LA+ =1+ (' —1)A = [eo ¢ ) 1].

0 1 0
eeB £ eBeA £ oATE = [8 O].

23 ¢4 = [e 4e— 1)] from 21 ande? = [1 _?] from 19. By direct multiplication

1
o[t oot -2 4 [et L —eh)
24A_[0 3]_[0 2][0 3][0 %] Then ¢ _[O el

2
25 The matrix hasd? = [(1) (3)] = [(1) (3)} = A. Then allA” = A. Soe4 =
el 3 —1)
0 0

26 (a) The inverse 04 is ¢4t (b) If Ax = Ax thene4’x = ¢*x ande* # 0.
To seeedx, write (1 + At + 3422 + - )x = (1 + At + 22212 4+ .- )x = M.

I+t +t2/2' 4+ )A=1+ (" - 1A= [ ] as in Problem 22.

27 (x,y) = (e*",e~*") is a growing solution. The correct matrix for the exchangesd

(y,x)is [_i _ﬂ It doeshave the same eigenvalues as the original matrix.

1 At I 1
_Af l_(At)z}U,,.AtAtzl,[_l O}hask:

¢'™/3 ande~'"/3. Both eigenvalues have® = 1 so A® = I. ThereforeU s = A°U,
comes exactly back tt' .

First A hasA = +i andA* = 1. A7 = (—1)" 1-2n —2n
Second4 hasA = —1,—1 and B 2n 2n + 1

28 Centering producel ,,+1 = [

29 ] Linear growth.

) ) 1 1—q? 2a
30 Witha = At/2the trapezoidal step 8,41 = 52 [ a1 —a2:| U,.

That matrix has orthonormal columes orthogonal matrix= |U 41| = || U4 ||

31 (a) (cosd)x = (cosA)x (b) A(4) = 2w and0 socosh = 1,1 and cosA = [
(c) u(t) = 3(cos2mt)(1,1)+1(cos0t)(1,—1) [u’ = Au hasexp, u”’ = Au hascos]
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Problem Set 6.4, page 337

Note A way to complete the proof at the end of paipa, (perturbing the matrix to pro-
duce distinct eigenvalues) is now on the course websRedfs of the Spectral Theorém
math.mit.edu/linearalgebra.

=

N

10

11

12

13

1 3 6 0o -1 -2 1 T 1 T
=-(A4+ 4 ~(A-A
A=13 3 3|+|1 0 -3 2( + _) + 2( ) )
6 3 5 2 3 0| = symmetric 4+ skew-symmetric

(ATCA)T = ATCT(AT)T = ATCA. WhenA is 6 by 3, C will be 6 by 6 and the triple
productA™CA is 3 by 3.

A = 0,4,—2; unitvectors£(0, 1, —1)/+/2 and+(2, 1,1)/+/6 and+(1, -1, —1)/+/3.

A=10and-5in A = [18 _2} x = [H and[_ﬂ have to be normalized to unit
. I |1 2

vectors inQ = % 1

1 % _; _% The columns ofQ are unit eigenvectors of

Q= 3.1 .5 o Each unit eigenvector could be multiplied byt
9 12 . _

A= 1 16 hasA = 0 and25 so the columns oD are the two eigenvectors:
8 . .

0=|_ 6 8] or we can exchange columns or reverse the signs of any column.

@ [; % haslh = —1and3 (b) The pivots have the same signs asilse (c) trace

= A1 + A2, = 2, so A can't have two negative eigenvalues.

0 1
0 0

A3 = QA3QT = 0requiresA = 0. The only symmetrict is Q 0 QT = zero matrix.

If A is complex therl is also an eigenvalued¥ = Ax). AlwaysA + A is real. The
trace is real so the third eigenvalue af Ay 3 real matrix must be real.

If x isnotrealthed = xTAx /x"x isnotalways real. Can't assume real eigenvectors!
1 1

317 -3 1.9 127 _ [ .64 —48 36 .48

[1 3]—2[_ %]H[ %}’[12 16:|_0[—.48 .36]+25|:.48 .64]

.
X

[x1 x»]isan orthogonal matrix sB; + P> = x1x] +x2x) = [x1 x2] |: {| =1;
X5

If A3 =0thenallA*> =0soalll =0asind = [ } If A is symmetrichen

W= M=
D= M=

PP, = xl(x-er2)X; = (. Second proofPle = Pl(l — Pl) =P — P = 0 since
P2 =P,

—b 0 0 4 A 0
also skew-symmetric with = i b (twice) andA = —ib (twice).

A= [ 0 b hasA = ib and—ib. The block matrice A O} and[ 0 A] are
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Solutions to Exercises
M is skew-symmetric and orthogonals must bei, i, —i, —i to have trace zero.

1

good property for complex matrices is not = A (symmetric) butl' = 4 (Hermitian
with real eigenvalues and orthogonal eigenvectors: seleléthn20 and Sectiori0.2).

(@) If Az=2Ay andATy = AzthenB|y; —z]=[-Az; ATy]=—-Aly; —z]. So
—Xis also an eigenvalue &. (b) ATAz = AT(Ay) = A?z. (©) A = —1,—1,1, 1;
x1=(1,0,—1,0), x2 = (0,1,0,—1), x3 = (1,0,1,0), x4 = (0,1,0, 1).

A= [Z _1} hasA = 0,0 and only one independent eigenvectoe (i, 1). The

0 0 1 1
The eigenvalues & = [0 0 1} are0, /2, —+/2 by Probleml 6 with x| = [—1]
1 1 0 0
1 1
Xy = 1 , X3 = 1
V2 —V2

1. y isin the nullspace off andx is in the column space: row space becaus¢ =
AT. Those spaces are perpendiculaysa = 0.

2. If Ax = Ax anddy = By thenshiftbys: (A—pI)x = (A—p)x and(A—BI)y =
Oand agairnc Ly.

1 1 0 1 0 1 Perpendicular fod
AhasS:[l —1 0};BhasS=[0 1 0]. Not perpendicular foB

0 0 1 0 0 2d sinceB" # B

A= [3 _1 4 3 _‘141} is aHermitian matrix(ZT = A). Its eigenvaluesé and—4 are

real. Adjust equationgl)—(2) in the text to prove that is always real whedl = A:

Ax = Ax leads toA¥ = A¥. Transpose t&' 4 = ¥'A using4d' = A.
Thenx'Ax = x"Ax and alsar" Ax = X' Ax. SoA = A is real

~[1 2] (b) True fromA™ = QAQT |
(a) Falsed = [0 1} (c) True fromA—1 = QA—1QT (d) False!
A and A" have the samg’s but theorder of the x’s can changeA = _(1) (1) has

A1 =i and, = —i with x; = (1,i) first for A butx, = (1, —i) first for AT.

A is invertible, orthogonal, permutation, diagonalizaarkov; B is projection, di-
agonalizable, Markov4 allows QR, SAS™!, QAQT; B allowsSAS~! andQAQT.

Symmetry giveQAQ T if b = 1; repeatedk and noS if » = —1; singular if> = 0.
Orthogonal and symmetric requirgd = 1 andA real, soA = +1. Then4 = +1 or
A= OAOT = cosf —sinf |1 0 cosf sinf | | cos260  sin26

= QA0 = sinf cosf||0 —1]||—sinf cosd |~ | sin20 —cos26 |’

Eigenvectorg1,0) and(1, 1) give a45° angle even witd" very close tod.
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27

28

29

30
31

32

The roots ofA2 + bA + ¢ =0 are%(—b + Vb2 —4ac). Thend; — A, is Vb2 —4c.
FordetA + tB — AI) we haveh = —3 — 8¢ andc = 2 + 16t — t2. The minimum of
b? —4cis1/17 att =2/17. Thend, — A, = 1//17.

2—1i 0
det = —5. The solution ta20 proves thati is real whend' = A is Hermitian; | did
not intend to repeat this part.
(@) A = QAQ "timesAT = QATQ T equalsA " times 4 becauseAA T = ATA
(diagonal!) (b) ste@: Thel, 1 entries of7 T T andTT T are|a|?> and|a|?> + |b|?.
This make® = 0 andT = A.
arris[qur - qun ] [M1G1y - lnﬁln]T < Amax(lg11*> + -+ + 191a[*) = Amax.
(@) xT(Ax) = (Ax)Tx = xTATx = —xTAx. (b) z' Az is pure imaginary, its real
partisx"Ax + yTAy =0+0 (c) detd = A;...1, > 0:pairsofd’s = ib, —ib.

SinceA is diagonalizable with eigenvalue mateix = 27, the matrix4 itself has to be
SAS™! = §21)S™! = 2I. (The unsymmetric matrifz 1 ; 02] also has\ = 2,2.)

A= [ 4 2% l] — 4" has real eigenvalues = 5 and—1 with trace= 4 and

Problem Set 6.5, page 350

1

[e¢]

Supposer > 0 andac > b? so that alsa > h%/a > 0. (i) The eigenvalues have
thesame sigrbecausé.; A, = det=ac —bh? > 0. (ii) That sign ispositivebecause
A1+ Ay > 0 (it equals the trace + ¢ > 0).

1 10

Only A4 = [ 10 101 } has two positive eigenvalues! A;x = 5x? + 12x1x2 + 7x2

is negative for example wheny = 4 andx, = —3: A, is not positive definite as its
determinant confirms.

Positive definite |1 0|1 b |1 01 0 1 b| _ LDLT
for—-3<b <3 b 1[0 9=p%2|"|b 1]||0 9=0b%2||0 1|~
Positive definite |1 0|2 4 | _|1 0|2 © L 20 pgT
forc > 8 2 1[0 ¢c—=8| |2 1[|0 ¢c—=8[|0 1| ’

f(x,y) =x2+4xy +9y% = (x + 2y)% + 5y%; x2 +6xy +9y% = (x + 3y)>.

x2 4+ 4xy + 3y? = (x + 2y)? — y? = difference of squareis negative atx = 2,

y = —1, where the first square is zero.

A= [(1) (l)] producesf (x,y) = [x y][

—1. ThenA is anindefinite matrixand f(x, y) = 2xy has asaddle point
2 3 3

R'R = [; lﬂ andR™R = [g g} are positive definiteRTR = [3 5 4i| is
3 4 5

singular (and positive semidefinite). The first tR& have independent columns. The
2 by 3 R cannot have full column rank, with only 2 rows.

q=|3 6| |1 O[3 0|1 2| Pivots3,4 outside squareg;; inside.
16 16| 1[[O0 4]0 1| xTAx =3(x +2y)>+4y?

(1) (1) x = 2xy. A hasA = 1 and
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Solutions to Exercises

4 4 8| B
g _3 16| eigenvaluesarg4,0,0,detd = 0.

2 -1 07 phas pivots 2 -1 -1 o 1 0
A=|-1 2 11 ;34 B=|-1 2 -1l issingular;B | 1| =0].
0 -1 2] “r2°3 -1 -1 2 1 0

Corner determinanist;| = 2, |4,| = 6, |A3| = 30. The pivots are/1,6/2,30/6.

A is positive definite forr > 1; determinants:,c? — 1, and(c — 1)?(c +2) > 0.
B is neverpositive definite (determinanis— 4 and—4d + 12 are never both positive).

|:_4 —4 8} has only one pivot 4, rankA4 = 1,

A= [é 1(5)} is an example witlx + ¢ > 2b butac < b?, so not positive definite.

The eigenvalues ofi—! are positive because they argl(A4). And the entries ofd !
pass the determinant tests. AnlA=1x = (A7'x)T4(A7'x) > Oforall x # 0.

Sincex"Ax > 0 andx"Bx > 0 we havex"(4 + B)x = x"Ax + x"Bx > 0 for
all x # 0. ThenA + B is a positive definite matrix. The second proof uses the test
A = R"R (independent columnsiR): If A = RTRandB = STS pass this test, then

A+B=[R S]T[R

S] also passes, and must be positive definite.

xTAx is zero when(x;, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-
ally xT Ax goesnegativefor x = (1, —10, 0) because the second pivotrisgative

If a;; were smaller than all’s, A — a ;1 would have all eigenvalues 0 (positive
definite). Butd — a ;I has azeroin the(j, j) position; impossible by Problem 16.

If Ax = Ax thenxTAx = Ax"x. If Ais positive definite thisleadsfo= xTAx/x"x >
0 (ratio of positive numbers). So positive energy positive eigenvalues.

All cross terms arer] x ; = 0 because symmetric matrices have orthogonal eigenvec-
tors. So positive eigenvalues positive energy.

(&) The determinant is positive; all > 0 (b) All projection matrices except
are singular (c¢) The diagonal entries Bfare its eigenvalues (dj = —I has
det= +1 whenn is even.

A is positive definite whem > 8; B is positive definite when > 5 by determinants.

RJ};Hﬁ ﬁ”iﬁﬂzﬁ ;}Rzg[g g]QT:ﬁ ;].

x2/a® + y?/b? is xTAx when A = diag(1/a?,1/b?). Theni; = 1/a? andd, =
1/b?> soa = 1/+/A; andb = 1//A,. The ellipse9x? + 16y? = 1 has axes with
half-lengths: = § andb = . The points(,0) and(0, ) are at the ends of the axes.

The ellipsex? + xy + y2 = 1 has axes with half-lengths/' v/A = +/2 and /2/3.

ez i 2]-[2 26 2 Jome [ 4
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300 1 1 1

.

26 The Cholesky factor§ = (Lﬁ) = [O 1 2} andC = |0 1 1
00 2 00 5

square rootof the pivots fromD. Note againC'C = LDLT = A.

have

27 Writing outx T Ax = xTLDL x givesax? +2bxy +cy? = a(x + 2y)2 + “Ca;bzyz.
So theLDLT from elimination is exactly the same asmpleting the square The
example2x? + 8xy + 10y? = 2(x + 2y)? + 2y? with pivots2, 2 outside the squares

and multiplier2 inside.

28 detd = (1)(10)(1) = 10; A = 2 and5; x; = (cosh, sinh), x, = (—sind, cosh); the
A’s are positive. SA! is positive definite.

2
29 H| = 62); ZZX} is semidefinite;f; = (%x2 + y)? = 0onthe curve%x2 +y=0;
6x 1 0O 171._. - L L.
H, = 1 ol=11 ol's indefinite at(0, 1) wherelst derivatives= 0. This is a

saddle point of the functiorf, (x, y).

30 ax? + 2bxy + cy? has a saddle pointifc < b%. The matrix isindefinite(A < 0 and
A > 0) because the determinant — b2 is negative

31 If ¢ > 9the graph ot is a bowl, if¢c < 9 the graph has a saddle point. Wheg= 9
the graph ot = (2x + 3y)? is a “trough” staying at zero along the ling + 3y = 0.

32 Orthogonal matrices, exponentiaié’, matrices with det= 1 are groups. Examples
of subgroups are orthogonal matrices with detl, exponentialg4” for integern.
Another subgroup: lower triangular elimination matrigesvith diagonall’s.

33 A product A B of symmetric positive definite matrices comes into many igpfibns.
The “generalized eigenvalue problenkx = AM x hasAB = M~ K. (often we use
eig(K, M) without actually invertingV/.) All eigenvaluest are positive:

ABx = Ax gives(Bx)"ABx = (Bx)"Ax. ThenA = x"BTABx/x"Bx > 0.

34 The five eigenvalues of are2 — 2 cos’% =2-4/3,2-1,2,24+1,2+ +/3. The
product of those eigenvaluesfs= detK.

35 Put parentheses in' ATCAx = (Ax)"C(Ax). SinceC is assumed positive definite,
this energy can drop to zero only whdw = 0. SineA is assumed to have independent
columns,Ax = 0 only happens whesr = 0. ThusA"CA has positive energy and is
positive definite.

My textbooksComputational Science and Engineeriagd Introduction to Ap-
plied Mathematicstart with many examples of'CA4 in a wide range of applications.
| believe this is a unifying concept from linear algebra.

Problem Set 6.6, page 360

1 B=GCG '=GF'AFG 'soM =FG~!. C similarto4 andB = A similartoB.

3 0] — M~VAM with M = [0 1]

1 0f. . .
ZA_[O 3i|ISSImI|aI’toB—|:O 1 1 0
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-1
1 0 1 0
3200]2[1 1]
1 —1 1
B=1_ 1]:[0
(4 3 0 1
B=1, 1]—[1 0

B
1

B
3

)

0
0

1
1

2
4

I

1
1

I

1
1

Jls ¢

0
1

0
1

o)

0

J

] =M"1'AM,

Solutions to Exercises

A has no repeatet so it can be diagonalized ' AS = A makesA4 similartoA.

Il

o)

O} is by itself and aIs:{O

1

0
0

0

1} is by itself with eigenvalues and—1.

i] are similar (they all have eigenvaluésaand o).

Eight familiesof similar matrices: six matrices have = 0, 1 (one family); three
matrices havé. = 1, 1 and three haveé = 0, 0 (two families each!); one hak =
1, —1; one hasl = 2, 0; two matrices have = %(1 + +/5) (they are in one family).
@ (M '"AM)(M'x) = MY (Ax) =M~'0=0
of M~ AM have the samdimension Different vectors and different bases.

|-

}; JO=TandJ!

1

A
0 2

]

(b) The nullspaces of and

1
0

1

0

-2
0 c_1:|'

have the same line of eigenvectors
and the same eigenvalugs= 0, 0.

0} andA—! = [1

[c

1

uhasd—lt) = Av + w and

SameA 0 1 0 2
sames ~ BUt4 = [o 0] ands = [o o}
» |1 2 3 |13 v |1 k
A_[OI,A_Ol,everyA_01
2 ko k-1
2 c® 2 k| c* ke
J_[O cz]andj_[o ok
d

u(0) = [g} = [;((%))} The equation% =
d

d—lf = Jw. Thenw(t) = 2¢* andw(r) must include2re* (this comes from the

repeated). To matchv(0) = 5, the solution isv(¢) = 2re* + 5e*.

If M~1JM =K thenJM =

may
0

nmy1
0

maa
0

nyz

0

ma3

0

43

0

may4

0

mgy4

0

= MK=

0
0
0
0

miz
maa
msz
1y}

my3

S O O O

That mean®iy; = may = maz = mas = 0. M is not invertible,J not similar toK.
The five4 by 4 Jordan forms witih = 0,0, 0,0 areJ; = zero matrix and

Jr =

Jy =

I
S OO Oo oo OoO

SO O~

SO o~

SO OO O

O~ OO OO0 O

J3

Js

0

1
SO OO0

SO o

SO o=

SO~ O OO —O

07

SR OO OO O
|
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Problem12 showed that/; and J4 arenot similar, even with the same rank. Every
matrix with all A = 0 is “nilpotent’ (its nth power isA” = zero matrix). You see
J#4 = 0 for these matrices. How many possible Jordan formsfer 5 and allA = 0?

(1) ChooseM; = reverse diagonal matrix to geét;"'J;M; = M in each block
(2) M, has those diagonal blocRg; togetM; ' JMy =JT. (3) AT=M"HTJTMT
equals(M )T My IMMT = (MMM )Y A(MMoMT), andAT is similar to 4.

det(M ~"AM — AI) = de{M~'AM — M~'AIM). This is detM ' (A — AI)M).
By the product rule, the determinants Mf and M ~! cancel to leave dét — A7).

ab"'ltdc‘ba"'lthSt irs of simil
c d ISSImIaI'Ob al'lad ¢ ISSImIaI'Oa bl 0 tWO palrs ot simiar

matrices bu 10 is notsimilarto[0 1

o . |
0 1 1 O]dmerentelgenvalues.

(a) False Diagonalize a nonsymmetrit = SAS~!. ThenA is symmetric and similar
(b) True Asingularmatrixhad = 0. (c) False [_(1) (1) and[(l) _(1)] are similar

(they havel = +1) (d) True Adding ! increases all eigenvalues by 1

AB = B"Y(BA)B soAB is similartoBA. If ABx = Ax thenBA(Bx) = A(Bx).
Diagonal blocks 6 by 6, 4 by 44 B has the same eigenvaluesis plus6 — 4 zeros.
@ A=M"1'BM = A2 = (M"'BM)(M~'BM) = M~'B2?M. SoA? is similar
to B2. (b) A? equals(—A)? but A may not be similar taB = —A (it could be!).

(c) [(3) 3‘] is diagonalizablet{g 2} because; # A,, sothesematrices are similar.

(d) [8 ;}has only one eigenvector, sonot diagonalizable Re)P Tis similar toA.

J? has thred’s down thesecondsuperdiagonal, anivo independent eigenvectors for

J 0 1 0 0 1
A = 0. Its5 by 5 Jordan form is{ 3 J }with Jz = [0 0 1i| andJ, = [O O}'
2 0 0 0
Note to professors An interesting questioniVhich matricesd have (complex) square
roots R? = A? If A is invertible, no problem. But any Jordan blocks for= 0 must
have sizesi; > n, > ... > ngx > ng4; = 0 that come in pairs like 3 and 2 in this
examplen; = (ny ornp+1) andns; = (n4 0rnga+1) and so on.

a 0 0 a 1 07
A list of all 3 by 3 and4 by 4 Jordan forms could b{o b 0}, [0 a 0],
0 0 ¢ 0 0 b
@ 10 a 1 |
0 a 1 (for any numbersa, b, ¢) a
0 0 with 3,2,1 eigenvectors; diag,b,c,d) and b '
L ¢
fa 1 a 1 a 1
a 1 a 1 . .
b 1l a , a 1 with 4, 3,2, 1 eigenvectors.

b a
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If all roots areA = 0, this means that det — A7) must be jusiA”. The Cayley-
Hamilton Theorem in Problem 6.2.32 immediately says #at= zero matrix. The
key example is a single by n Jordan block (withh — 1 ones above the diagonal):
Check directly that/” = zero matrix.

Certainly QR is similar toR; 01 = Q7'(Q1R1) Q1. ThenAd; = Q Ry —cs?1 is
similarto 4, = R, 0 — cs?1.

A could have eigenvalugis= 2 andA = % (A could be diagonal). TheA™! has the
same two eigenvalues (and is similar4Ah

Problem Set 6.7, page 371

wevsvr=f ][ [ .,Z]LE 0% el

V1o NG

This4 = ; é is a2 by 2 matrix of rankl. Its row space has basis, its nullspace

has basiw,, its column space has bagis, its left nullspace has basis:

Row space L[l} Nullspace L[ 2}

1 1 1 3
Column space —— , N(AT —[ }
Pace o [3] 4% Jio -1

If A has rankl then so doest™ 4. The only nonzero eigenvalue df' 4 is its trace,
which is the sum of alk?,. (Each diagonal entry ofi" 4 is the sum ofz?; down one
column, so the trace is the sum down all columns.) Téee= square root of this sum,
ando} = this sum of alla;.

2 17 e eierval , 345 , 3-45 Butdis
| | has eigenvalues; = 10y =~ 2 indefinite

ATA = AAT = 1
2

o1 = (1++5)/2=11(A). 0o = (V5—1)/2 = =22(A); uy = vy but uy = —v,.
A proof thateigshow finds the SVD. WherV; = (1,0), V, = (0, 1) the demo finds
AV 1 andAV, at some anglé. A 90° turn by the mouse t& ,, —V; finds AV, and
—AV at the angler — 6. Somewhere between, the constantly orthogenandv,
must producedv, andAwv, at anglerr/2. Those orthogonal directions giwg andu,.

AAT = |:% ;:I ha5012 = 3 with u, = [i;g} and022 = 1 with u; = [_i;g]

110 1/v/6 1/v2
ATA:|:1 2 1:|hasof:3withv1= 2/v6 |, 02 = lwithvy = 0 :
0 1 1 1/v6 —1/4/2

1/4/3
andv; = |:—1/\/§}.Then[(l) i (1)} = [u; uz][‘{)§ (1) 8}[1)1 vy v3]T.
1/3/3
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The matrixA in Problem6 hado; = +/3 ando, = 1 in . The smallest change to
rank1 isto makeo, = 0. In the factorization

T T T
A=UZV' =u01v, + uz0,v,

this changer, — 0 will leave the closest rank—matrix asu;0, vI. See Probleni4
for the general case of this problem.

The numbepmad( A~ )omax(A) is the same asmax(A4)/omin(A). This is certainly> 1.

It equalsl if all o’s are equal, andl = UX VT is a multiple of an orthogonal matrix.
The ratioomax/omin IS the importantondition number of A4 studied in Section.2.

A =UVTsince allo; = 1, which means thak = /.

A rank—1 matrix with Av = 12u would havex in its column space, sd = uw'
for some vectow. | intended (but didn't say) thab is a multiple of the unit vector
v = 1(1,1,1,1) in the problem. Thent = 12uv" to getAv = 12u whenv™v = 1.

If A has orthogonal columns,, ..., w, of lengthsoy,...,0,, thenA™ A will be di-
agonal with entries 7, ...,072. So thes’s are definitely the singular values df (as

Yt
expected). The eigenvalues of that diagonal matil4 are the columns of , so
V = I inthe SVD. Then the; are Av; /o; which is the unit vectow; /o;.

The SVD of this4 with orthogonal columnsig = USVT = (A~ 1)(Z)().

SinceA"™ = A we haves? = A2 andoj = A3. But 1, is negative, s&; = 3 and
0, = 2. The unit eigenvectors o are the sama; = v, as forATA = AA" and
u, = —v, (notice the sign change because= —A1,, as in Problend).

Suppose the SVD aR is R = UXVT. Then multiply byQ to get4A = QR. So the
SVD of this4 is (QU)X V. (OrthogonalQ times orthogonal/ = orthogonalQU .)
The smallest change i is to set its smallest singular valag to zero. See #.

The singular values o + I are noto; + 1. They come from eigenvalues of
A+ DA+ 1).

This simulates the random walk used ®pogleon billions of sites to solvel p = p.

It is like the power method of Sectich3 except that it follows the links in one “walk”
where the vectop, = A p, averages over all walks.

A = UXVT = [cosines includings] diag(sqrt(2 — +/2,2,2 + +/2)) [sine matrif’.
AV = U X says that differences of sineslhare cosines i/ timeso’s.

The SVD of thederivativeon [0, 7] with f(0) = 0 hasu = sinnx,o = n, v = cosnx!

Problem Set 7.1, page 380

1

2

3

With w = 0 linearity givesT (v + 0) = T'(v) + T(0). Thus7T(0) = 0. With¢ = —1
linearity givesT'(—0) = —T'(0). This is a second proof th&(0) = 0.

CombiningT (cv) = ¢T(v) andT (dw) = d T (w) with addition givesl'(cv + dw) =
¢T(v) + dT(w). Then one more addition gived'(v) + dT(w) + eT (u).

(d) is not linear.
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4 (@) STw)=v (b) S(T(1)+T2) =S(T(v1)) + S(T(v2)).

5 Choosev = (1,1) andw = (—1,0). ThenT(v) + T(w) = (v + w) butT(v + w) =
(0,0).

6 (@) T(v) = v/|v|| does not satisif"(v + w) = T(v) + T(w) or T(cv) = cT(v)
(b) and (c) are linear (d) satisfi@gcv) = c¢T(v).

7 @T(Tw)=v (b) T(T(v))=v+(2.2) (c) T(T(v))=—v (d) T(T(v))=T(v).
8 (a) The range of (vy,v2) = (v — v3,0) is the line of vectorgc, 0). The nullspace
is the line of vectorgc, ¢). (b) T(vy,v2,v3) = (v1,v2) has RangdR?, kernel
{(0,0,v3)}  (c) T(v) = 0has Rangg0}, kernelR? (d) T(vi,v2) = (v1,v1)

has Range = multiples @, 1), kernel = multiples of1, —1).

9 If T(vi,v2,v3) = (v2,v3,v1) thenT(T(v)) = (v3,v1,v2); T3(v) = v, T'0) =
T (v).
10 (a) 7(1,0)=0 (b) (0,0, 1) is notinthe range (c)r(o,1)=0.

11 For multiplicationT (v) = Av: V = R", W = R™; the outputs fill the column space;
v is in the kernel ifAv = 0.

12 T(v) = (4.4):(2,2);(2.2);if v = (a,b) = b(1, 1)—}—%(2,0) thenT (v) = b(2,2)+
(0,0).

13 Thedistributive law(page 69) givest(M; + M,) = AM, + AM,. Thedistributive
law overc’s givesA(c M) = c(AM).

14 This A is invertible. Multiply AM = 0 andAM = B by A~! to getM = 0 and
M = A~'B. The kernel contains only the zero matfik = 0.

15 This A is notinvertible. AM = I is impossible.A _% _% = 8 8} The range
contains only matriced M whose columns are multiples ©f, 3).

: ; 00 0 1
16 No matrix A gives 4 1 ol=1o o

matrix space come fromh by 4 matrices. Those in Problems 13-15 were special.
17 ForT(M) = MT (a) T? = I is True (b) True (c) True (d) False.

18 T(I) =0butM = 8 g = T(M); theseM s fill the range. EveryM = ccl 2

is in the kernel. Notice that dim (range)dim (kernel)= 3 4+ 1 = dim (input space of
2by2 M’s).

19 T(T~Y(M)) = M soT~'(M) = A~'MB~".

20 (a) Horizontal lines stay horizontal, vertical lines staytical (b) House squashes
onto a line (c) Vertical lines stay vertical becaldd, 0) = (a1, 0).

. To professors: Linear transformations on

21 D = [g (1)] doubles the width of the housd. = [;

A% = A from trace= 1 andA = 0,1). The projection is onto the column space of

A = line through(.7,.3). U = (1) i

at(x, y) moves over tdqx + y, y).

;} projectsthe house (since

] will shearthe house horizontally: The point
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22 (a) A= [g 2] with d > 0 leaves the hous# H sitting straight up (b)A = 31

cosf —sind

expands the house By (c) A= [sine cosH

] rotates the house.

23 T(v)
T'(v)

24 A code to add a chimney will be gratefully received!

—v rotates the house BB0° around the origin. Then the affine transformation
—v + (1, 0) shifts the rotated house one unit to the right.

25 This code needs a correction: add spaces betw@ér 0 —10 10

I 0 5

26 19 5

} compresses vertical distanceslyto 1. [ g] projects onto thd5° line.

[_'g g rotates by45° clockwise and contracts by a factor ¢ (the columns have
length1/+/2). [i (1)} has determinant1 so the house is “flipped and sheared.” One

way to see this is to factor the matrix ADLT:

[} (1)} = [i (1)} [1 _1} [(1) ” = (shear) (flip left-right) (shear)

27 Also 30 emphasizes that circles are transformed to ellipses (saefig Section 6.7).
28 A code that adds two eyes and a smile will be included here puitiiic credit given!

29 (@) ad —bc =0 (b) ad —bc >0 (€) lad — bc| = 1. If vectors to two
corners transform to themselves then by linedfity= 7. (Fails if one corner i%0, 0).)

30 The circle - transforms to the ellipse by rotatid§° and stretching the first

axis by2.

31 Linear transformations keep straight lines straight! And parallel edges of a square
(edges differing by a fixed) go to two parallel edges (edges differing Byv)). So the
output is a parallelogram.

Problem Set 7.2, page 395

ForSv = d?v/dx? 8 8 g (6)

1 vy, vp, 03,04 =1, x,x% x3 The matrix forS is B = 00 0 0
Sv1 = Sv2 =0, Sv3 = 291, Svs = 6p2; 000 0

2 Sv = d?v/dx? = 0 for linear functionsv(x) = a + bx. All (a,b,0,0) are in the

nullspace of the second derivative matfx
3 (Matrix 4)?> = B when (transformatiof)> = S and output basis = input basis.
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The third derivative matrix hagin the (1, 4) position; since the third derivative af
is 6. This matrix also comes from B. The fourth derivative of a cubic is zero, aBd
is the zero matrix.

T(vy + vy 4+ v3) = 2w, + wy + 2w3; A times(1, 1, 1) gives(2, 1,2).
v = c(vy—v3) givesT (v) = 0; nullspace i€0, ¢, —c); solutions(1, 0, 0) + (0, ¢, —c).

(1,0,0) is not in the column space of the matrik andw; is not in the range of
the linear transformatiof’. Key point: Column spacef matrix matchesange of
transformation.

We don’t knowT (w) unless thew’s are the same as thes. In that case the matrix is
A2
Rank of A = 2 = dimension of theangeof 7. The outputsdv (column space) match

the outputsT'(v) (the range off"). The “output spaceW is like R™: it contains all
outputs but may not be filled up.

1 0 0 1 1
The matrix forT is A = [1 1 O]. For the outpu{0i| choose inpup = |:—1}
1 1 1 0 0

1
A7l [0} This means: For the output; choose the input; — v5.
0
1 0 0
A7l = -1 1 0 SOT_l(wl) =1V — Vs, T_l(wz) = v — V3, T_l(U)3) = V3.
0 —1 1
The columns of4~! describel’ ~! from W back toV. The only solution td"(v) = 0
isv=0.
() T™Y(T(wy)) = w; is wrong because is not generally in the input space.

(@) T(vy) = vy, T(vy) = vy isits own inverse (b)I'(v;) = vy,T(v2) = 0 has
T? =T (c) If T?> = I for part (@) andl'> = T for part (b), therl” must be/ .

@[5 3] @[5 ] -meseare  @affmsved]
r s

] 1 0 r
@ M = [t | transforms[o] and[l} to [t

a b

] and [; } ; this is the “easy” direc-

tion.

basis vectors.
impossible.

1 0

16 1 2

|

17

(b) N =

]

d transforms in the inverse direction, back to the standard

(cdd = bc will make the forward matrix singular and the inverse
2 1] 3 -1
|5 3 -7 3|

Recording basis vectors is done bifermutation matrix Changing lengths is done by

apositive diagonal matrix

18 (a,b) = (cosf, —sind). Minus sign fromQ !

or.
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45 4

HE

20 wa(x) =1—x% w3(x) = 1(x® —x); y = 4wy + Sw, + 6ws.

19 M = [1 1} [Z} = [_5] = first column of M ~! = coordinates o{(l)] in basis

0 1 0 1 1 17
21 w’'s to v’s:{S 0 —.5] . v's to w’'s: inverse matrix= [1 0 O0]|. The key
S5o—1 5 1 -1 1]

idea The matrix multiplies the coordinates in théasis to give the coordinates in the
w basis.

1 a a* A [ 4
22 The3 equations to match,5,6 atx = a,b,care|{ 1 b b? B | =1]5].This
1 ¢ 2||cC 6

Vandermonde determinant equéls— a)(c — a)(c — b). Soa. b, ¢ must be distinct to
have det# 0 and one solutioi, B, C.

23 The matrixM with these nine entries must be invertible.

24 StartfromA = QR. Column2isa, = r12q, +r22q,. This givesa, as a combination
of theg’s. So the change of basis matrixis

25 StartfromA = LU. Row 2 of A is £, (row 1 of U) + €5, (row 2 of U). The change
of basis matrix is alwaymvertible, because basis goes to basis.

26 The matrix forT'(v;) = A;v; is A = diag(Aq, A2, A3).
27 If T is notinvertible,T'(vq), ..., T(v,) is nota basis. We couldn't choosg = T'(v;).

28 (a) [8 8 givesT(v1) = 0andT(v,) = 3v;. (b) (1) 8 givesT(v{) = vy and

T (v, + v2) = vy (Which combine intdl’(v,) = 0 by linearity).
29 T(x,y) = (x,—y) is reflection across the-axis. Then reflect across theaxis to get
S(x,—y) = (=x,—y). ThusST = —1I.
30 S takes(x,y)to(—x,y). S(T(v))=(-1,2). S(v)=(-2,1) andT(S(v)) =(1, —2).
cos2(0 —a) —sin2(6 —a)
sin2(6 — «) cos2(0 — @)
by2(6 —«). In words: (1, 0) is reflected to have angke, and that is reflected again to
angle26 — 2a.

32 False: We will not knowr"(v) for energyv unless the: v’s are linearly independent.

31 Multiply the two reflections to ge which is rotation

11 1 1

2 2 2 2

11 1 _1

33 Tofind coordinates in the wavelet basis, multiplyly ! = | ¢ % ‘(‘) ;
2 2

1 1

00 3 —3

Thene = fw; + fws + 1wz andv = w3 + w4. Notice again tells us how the
bases changeV ~! tells us how the coordinates change

34 The last step writes, 6, 2, 2 as the overall averagk 4, 4, 4 plus the difference, 2,
—2,—2. Thereforec; = 4 andc, = 2 andcsz = 1 andey = 1.
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35 The waveletbasisid, 1,1,1,1, 1, 1, 1) and the long wavelet and two medium wavelets
(1,1,-1,-1,0,0,0,0),(0,0,0,0,1,1,—1,—1) and 4 wavelets with a single pdir—1.
36 If Vb = Wethenb = V! We. The change of basis matrix 571 W.

37 Multiplying by [? 2} givesT(vy) = A [1 O} = [a O] = av;+cvz. Similarly

0 0 c O
T(vy) = avy + cvyq andT (v3) = bvy + dvs andT (v4) = bvy + dvy. The matrix
a 0 b O
. . ..10 a 0 b
for T in this basis i c 0 d 0
0 ¢ 0 d

1 0 0 O
38 The matrix for7T inthisbasisisda =0 1 0 0.
0

Problem Set 7.3, page 406

10 20 I |1 1 2
Ty — — _ _ . —

1 A4 = [20 40] hasA = 50 and0, v; = 7 [2} vy = 7 [_1], o1 = +/50.

2 Orthonormal basesv; for row spacey, for nullspaceu; for column spacex, for
N(AT). All matrices with those four subspaces are multiplds since the subspaces
are just lines. Normally many more matrices share the sksndspaces. (For example,
all n by n invertible matrices share”.)

1 — 1 . o .
3A=0H=— [7 1} — [10 20] H is semidefinite becauséis singular.

Jo Ll 7] /020 40
w TV 0,1 a1 3] ey, [2 4 L 13
44 _V[ 0 O]U —50[2 o A= 14 s M]3 o)
o T s B ]ty
5AA—|:8 10 hask—18and2,v1—ﬁ 1 ,‘02—% - ,01 = /18
ando, = V2.

6 AAT = [lg (2)} hasu; = [(1)}"2 = [?} The same/18 and+/2 go into =.

v L
7 [(Ilul 02u2] |:v{| = olule + (Izuzv;. In general this I&lule 44 (IrurvI.
2

1

8 A=UXVT splitsintoQK (polar): 0 = UVT = G [
VI8 0
0 V2]

9 A" is A~! becauset is invertible. Pseudoinverse equals inverse wheh exists!

9 12 0 6 8 0
10 ATA = [12 16 o} hasA = 25,0,0 andv; = [8] vy = |:—.6i|, vy = [o]
0 0 0 0 0 1

HereA = [3 4 0] has rankl andAAT = [25] ando; = 5 is the only singular value
N =[500].

1 1

. _1] andk = VEVT =
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0 0 0 0 0

12 The zero matrix has no pivots or singular values. Thes- same2 by 3 zero matrix
and the pseudoinverse is thidy 2 zero matrix.

13 Ifdet4 = 0 thenrank4) < n; thus rankA*) < n and detd™ = 0.

14 A must besymmetric and positive definji€ X = A andU = V' = eigenvector matrix
Q is orthogonal.

15 (a) AT Aissingular (b) Thisc™ inthe row space does give' Ax+ = ATh  (c) If
(1,—1) in the nullspace oft is added toc ™, we get another solution td" Ax = A'b.

But thisx is longer thant ™ because the added part is orthogonaktoin the row
space.

16 x7 in the row space o is perpendicular t&& — x* in the nullspace of4™4 =
nullspace of4. The right triangle hag? = a? + b2.

17 AATp =p, AATe =0, AT Ax, = x,, AT Ax, = 0.

2 12 36 .48 0
11 A=[1][5 0 O]VTandA+:V[0}:[.16};/1%4:[.48 .64 0:|;AA+=[1]

18 AT =VStUTis1[.6 8] =[.12 .16]andAt4 =[1]andAAT = [

projection.

19 L is determined by,;. Each eigenvector it is determined by one number. The
countsard +3for LU, 1+2+ 1for LDU, 1 +3for QR, 1 +2+ 1forUZVT,
242+ 0for SAS™L.

20 LDLT andQAQT are determined by + 2 + 0 numbers becaus¢ is symmetric

21 Column times row multiplication gived = USVT = Y o;u;v] and alsoA* =
VETUT = Y o7 v;u]. Multiplying A" 4 and using orthogonality of eaah to all
otheru; leaves the projection matrix™4: ATA = Y lv;v]. Similarly 441 =
> luju! fromVVT = 1.

22 Keep only ther by r cornerZ, of X (the rest is all zero). Thed = UXVT has the
required formd = U M, EerTI7T with an invertibleM = M; X, M, in the middle.

23 0 A||lu| | Av | | u| Thesingularvalues of are
AT o||lv| T |ATu |~ %|v| eigenvaluesf this block matrix.

36 .48
48 .64

Problem Set 8.1, page 418

_Cl + —C2 0
1 DetAgCOAO = —C3 2+ c3 —C3 is by direct calculation. Set, = 0 to
L O —C3 C3 + Cq4
find detAIClAl = C1C2C3.
(10 07 (¢! 111
2 (A]C1A)~ =1 1 0 ;! 01 1]|=
1 1 1 03—1 0 0 1
cl_1 cl_1 cl_1
R L o

-1 -1 -1 -1 -1
¢y ¢ty e ey toy
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3 The rows of the free-free matrix in equation (9) add® 0 0] so the right side needs
f] +f2+f3 = 0. f = (—1,0, 1) giveSC‘zul—Czuz = —1,c3up—c3uz = —1,0=0.

1
4/ d (c(x)j—:l) dx:—[c(x)j—z] =0 (bdry cond) so we neeq f(x) dx =0.

- i

X 1
5 —d—y = f(x) givesy(x) = C —/ f()dt. Theny(l) = 0 givesC = / f(t)de
dx ) 0 0
andy(x) = f f(t)dt. Ifthe load isf(x) = 1 then the displacementigx) = 1 —x.

6 Multiply A]C;A4; as columns of4] timesc’s times rows of4;. The first3 by 3
“element matriXc; E; =[1 0 O]Tc1[1 0 0] hasc; in the top left corner.

7 For 5 springs andt masses, thé by 4 A has two nonzero diagonals: all;, = 1
anda;1+1,; = —1. With C = diag(c;, 2, 3, ca, c5) We getK = ATCA, symmetric
tridiagonal with diagonal entrie&;; = ¢; + ¢;4+; and off-diagonals; +1; = —c¢j+1.

With C = I thisK isthe—1,2, —1 matrixandK (2, 3,3,2) = (1,1, 1, 1) solvesKu =
ones(4, 1). (K~! will solve Ku = ones(4).)

8 The solution to—u” =1 with u(0) =u(1) =0isu(x) = 3(x —x?). Atx=1,2, 2,

this givesu =2, 3, 3, 2 (discrete solution in Problem 7) tim¢Ax)? =1/25.

9 —u" = mg has complete solution(x) = A + Bx — 1mgx?. Fromu(0) = 0 we
get4 = 0. Fromu’(l) = 0 we getB = mg. Thenu(x) = Img(2x — x?) at
X = 3.3, 3 equalsng/6, 4mg/9,mg/2. Thisu(x) is not proportional to the discrete

u = (3mg,5mg,6mg) at the meshpoints. This imperfection is because the descret

problem uses d-sided difference, less accurate at the free end. Perfecracy is

recovered by a centered difference (discussed on pagémy CSE textbook).

10 (added in later printing, changirig-11 below into11-12). The solution in this fixed-
fixed case ig2.25,2.50, 1.75) so the second mass moves furthest.

s

11 The two graphs ofl00 points are “discrete parabolas” starting(8t0): symmetric
around50 in the fixed-fixed case, ending with slope zero in the fixe@-frase.

12 Forward/backward/centered fdr/dx has a big effect because that term has the large
coefficient. MATLAB: E = diag(ones(6,1),1); K = 64 x 2% eye(7) — E — E’);
D = 80 x (E— eye(7)); (K + D)\ones(7,1); % forward; (K — D")\ones(7, 1);
% backward;(K + D/2 — D’/2)\ones(7, 1); % centered is usually the best: more
accurate

Problem Set 8.2, page 428

—1 1 0 c 1
1 A= [—1 0 1}; nullspace contain%c}; [0} is not orthogonal to that nullspace.
0 —1 1 c 0

2 ATy =0for y = (1,—1,1); current along edge 1, edge 3, back on edge 2 (full loop).
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3

10

11

12

[y

0
1
1

—1 1
Elimination on b[A b] = [—1 0
0 -1

b
bz} leads to [U ¢] =
b3

—1 1 0 b

[ 0 -1 1 by—5h } The nonzero rows ot/ come from edges 1 and 3
0 0 0 b3—0by+ by

in a tree. The zero row comes from the loop (all 3 edges).

For the matrix in Problem 34x = b is solvable forb = (1, 1,0) and not solvable
for b = (1,0,0). For solvableb (in the column space)y must be orthogonal to
y = (1,—1, 1); that combination of rows is the zero row, abd— b, + b3 = 0 is the
third equation after elimination.

Kirchhoff’s Current LawATy = f is solvable forf = (1,—1,0) and not solvable
for f = (1,0,0); f mustbe orthogonalt@, 1, 1) in the nullspacey; + >+ f3 = 0.

2 -1 —1 3 1 c
ATAx = {—1 2 —l]x = [—3} = f producesx = [—1} + |:c:|; potentials
-1 -1 2 0 0 c

x = 1,—1,0and currents-Ax = 2,1, —1; f sends 3 units from node 2 into node 1.

1 3 -1 =2 1 r5/47 c
AT[ 2 }A = [—1 3 —2}; f= [ O} yieldsx = | 1 |+ any |:c:|;
2 -2 -2 4 -1 1 7/8 c
i _ 5 7 1 31
potentialsx = 7,1, g and currents-CAx = g, 7, 7.
—1 1 0 0 1 —17] 0
—1 0 1 0 1 1 0
A= 0 -1 1 0] leadstox = 1 andy = | —1 | and| 1 | solving
0 -1 0 1 1 0 —1
0 0 -1 1 0 ] |1
ATy =0.
Elimination onAx = b always leads toy"d = 0 in the zero rows ofU and R:

—by 4+ by — b3 = 0 andbs — by + bs = 0 (thosey’s are from Problem 8 in the left
nullspace). This is Kirchhoff'§/oltageLaw around the twdoops

1100 ha honzero rows o keep
The echelon form oft is U — 8 _(1) _% 0 edges 1, 2, 4. Other spanning trees
- 00 0 0 from edges, 1, 2,5;1, 3,4; 1, 3, 5;
00 0 0 1,4,5;2,3,4,2,3,5;2,4,5.
2 —1 —1 07 diagonal entry= number of edges into the node
ATA = -1 3 —1 —1| thetrace i times the number of nodes
~|-1 -1 3 —1| off-diagonal entry= —1 if nodes are connected
0 —1 —1 2| ATAisthegraph Laplacian, ATCA is weightedby C
(@) The nullspace and rank of’ 4 and 4 are always the same ("4 is always

positive semidefinite becaus€ AT Ax = || Ax||> > 0. Not positive definite because
rank is only3 and(1, 1, 1, 1) is in the nullspace (c) Real eigenvalues=all because
positive semidefinite.
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3 _§ _g (3) (1) gives four potentials = (53, ¢, .0)
13 ATCAx = :2 _3 _8 :3 x=| .| !groundedr; = 0 and solved for
0 -3 -3 6 —1 | currentsy = —CAx = (% %,0, % %)

14 ATCAx =0forx =c(1,1,1,1) = (c,c,c,c). If ATCAx = f is solvable, therf in
the column space= row space by symmetry) must be orthogonat o the nullspace:
fi+ ot 3+ fa=0.

15 The number of loops in this connected graptmis-m +1 = 7—-7+1 = 1.
What answer if the graph has two separate components (NG edgeeen)?

16 Start from (4 nodes} (6 edgesH (3 loops)= 1. If a new node connects tbold
node,5 — 7 + 3 = 1. If the new node connects ®old nodes, a new loop is formed:
5-8+4=1.

17 (a) 8 independent columns (b must be orthogonal to the nullspace g& add
tozero (c) Each edge goes into 2 nodes, 12 edges make diagdrias sum to 24.

18 A complete grapthas5 + 4 + 3 + 2 + 1 = 15 edges. Withn nodes that count is
14+---4+nm—1)=n({m—1)/2. Tree has edges.

Problem Set 8.3, page 437

1 Eigenvaluest = 1 and .75; @ — I)x = 0 gives the steady state = (.6, .4) with
Ax = x.

6 —1 (|1 1 1], |6 =11 O 1 1| _[.6.6

2 4= [.4 1][ .75} [—.4 .6]"400 = [.4 —1} [0 o} [—.4 .6]—[.4 .4]

3 A=1ands8, x =(1,0);land—.8, x = (3.3); 1.3, andy, x = (3.3.3).

4 AT always has the eigenvector, 1,...,1) for A = 1, because each row of " adds
to 1. (Note again that many authors use row vectors multigljMarkov matrices.
So they transpose our form df)

5 The steady state eigenvector foe= 1is (0,0, 1) = everyone is dead.

6 Add the components ofx = Ax to find sums = As. If A £ 1 the sum must be = 0.

6+ .4a .6— .6a ith a<l1

4—.4a 4+ .6a 44+ .6a>0

8 If P = cyclic permutationand, = (1,0,0,0) thenu; = (0,0,1,0); u, = (0,1,0,0);
us; = (1,0,0,0); uqy = uy. The eigenvalues, i, —1, —i are allon the unit circle This
Markov matrix contains zeros;@ositivematrix hasonelargest eigenvalug = 1.

7 (5% — 0 givesAk — A%®; anyA = [

9 M?is stillnonnegative;[1 --- 1]M =[1 --- 1]so multiply on the right by to
find[1 --- 1]M?>=[1 --- 1] = columns ofM? add to 1.
10 A = 1 anda + d — 1 from the trace; steady state is a multiplexgf= (b, 1 — a).
11 Lastrow.2,.3,.5makesd = AT;rowsalsoaddto1sd,..., 1) is also an eigenvector
of A.

12 B hasA = 0and—.5withx; = (.3, .2) andx, = (—1,1); AhasA = 1s04 — I has
A = 0. e~ approaches zero and the solution approache¥x; = c;x;.

13 x = (1,1, 1) is an eigenvector when the row sums are egdal;= (.9, .9,.9)
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14 (I-A)I+A+A%+--) = (I+A+A%+---)—(A+A%+A3+---) = I. Thissaysthat

I+ A+ A%+ is(I —A)~'. Whend = (1) 'g L A3=14,44=1]

Ly ... 1.1 .

andtheseriesadds<31+%+ 2+14+ =
1+5+"' 1-}-5“1‘"'

1

2

2 1 _
5 0| = (I —A)"L.
. , . 8 130 |. 501 .

15 The first twoA’s haveAnax < 1; p = 6 and 3 | I — 5 0 has no inverse.

16 A = 1 (Markov), O (singular),.2 (from trace). Steady state3, .3, .4) and(30, 30, 40).
17 No, A4 has an eigenvalue = 1 and(/ — A)~! does not exist.

Fi—A F, F;s
18 The Leslie matrix on page 435 has@ét-A7) = det[ Py A 0 } =13+
0 P, —A
Fi1A? + F,PiA + F3P1P,. This is negative for large. It is positive atA = 1
provided thatF; + F, P; + F3 Py P, > 1. Under this key condition, dett — A7) must
be zero at somé between 1 ando. That eigenvalue means that the population grows
(under this condition connecting’s and P’s reproduction and survival rates).

19 A timesS~!AS has the same diagonal 85'AS timesA because\ is diagonal.
20 If B>A>0andAx =Amax(A)x >0thenBx > Anax(A)x andAmax(B) > Amax(A4).

Problem Set 8.4, page 446

Feasible set line segmen(o, 0) to (0, 3); minimum cost at6, 0), maximum at0, 3).
Feasible set has corndik 0), (6, 0), (2,2), (0, 6). Minimum cost2x — y at (6, 0).
Only two cornerg4,0,0) and(0, 2,0); letx; - —o0, x, = 0, andx; = x; — 4.

From(0, 0,2) move tox = (0, 1, 1.5) with the constraink; 4+ x, +2x3 = 4. The new
costis3(1) + 8(1.5) = $15 sor = —1 is the reduced cost. The simplex method also
checksry = (1,0, 1.5) with cost5(1) + 8(1.5) = $17; r = 1 means more expensive.

5 Cost= 20 at start(4, 0, 0); keepingx; +x,+2x3 = 4 move to(3, 1, 0) with cost 18 and
r = —2; or move to(2, 0, 1) with cost 17 and- = —3. Choosexz as entering variable
and move td0, 0, 2) with cost 14. Another step will readd, 4, 0) with minimum cost
12.

6 If we reduce the Ph.D. cost to $1 or $2 (below the student cb$8) the job will
go to the Ph.D. with cost vector= (2, 3, 8) the Ph.D. takes 4 hou(s + x, +2x3 =
4) and charges $8.

The teacher in the dual problem now has< 2,y < 3,2y < 8 as constraints
ATy < ¢ on the charge of per problem. So the dual has maximumyat= 2. The
dual cost is also $8 for 4 problems and maximsnminimum.

7 x = (2,2,0) is a corner of the feasible set with + x, + 2x3 = 4 and the new
constrain®x; + x, +x3 = 6. The cost of this cornerisc™x = (5,3,8)-(2,2,0) =
16. Is this the minimum cost?

Compute the reduced cosif x3 = 1 enters(x; was previously zero). The two
constraint equations now requitg = 3 andx, = —1. Withx = (3,—1, 1) the new

A W N P
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costis3.5 — 1.3 + 1.8 = 20. This is higher than 16, so the original= (2,2, 0) was
optimal.

Note thatx; = 1 led tox, = —1 and a negative, is not allowed. Ifx; reduced
the cost (it didn’t) we would not have used as muchas= 1.

y'h < yTAx = (ATy)"x < ¢"x. The first inequality needeg > 0 andAx —b > 0.

Problem Set 8.5, page 451

1

it
Notice j — k # 0in the denominator. If =k thenfoz” co? jxdx = m.

. . 2
27 Cos((j +k)x) dx = [Mﬁfm]oﬂ — 0.and similarly (> cos((j —k)x) dx = 0

Three integral tests show thatx, x? — % are orthogonal on the intervak1, 1]:
L) dx =0, /()2 -1 dx = 0, ,(x)(x> = ) dx = 0. Then
2x? =2(x? = ) + 0(x) + %(1). Those coefficient3, 0, 2 can come from integrating
f(x) = 2x2 times the 3 basis functions and dividing by their lengthsssgd—in other

words usingz"b/a"a for functions (wheré is f(x) anda is 1 orx or x? — %) exactly
as for vectors.

One example orthogonal o= (1,
L3 —ex)dx = 0and /!, (x2 — 1)(x* — cx) dx = 0 for all ¢ (odd functions).

Chooser so that/”, x(x® — cx)dx = [1x5 = €x3]L, = 2 —¢2 = 0. Thenc = 2.

L.)isw=(2.-1,0,0,...) with |w]| = V5.
2 _

5 The integrals lead to the Fourier coefficients= 0, by = 4/m, b, = 0.
6 From eqn. 3y = 0 andb; = 4/mk (odd k). The square wave hdsf ||> = 2x.

10

11

Then eqn. (6) i®7 =7 (16/7%)(55 + 3 + 35 ++--). Thatinfinite series equals®/8.

The —1, 1 odd square wave ig(x) = x/|x| for 0 < |x| < m. Its Fourier series in
equation (8) igt/x times[sinx + (sin3x)/3+ (sin5x/5) +---]. The sum of the firsv
terms has an interesting shape, close to the square wavget extere the wave jumps
between—1 and1. At those jumps, the Fourier sum spikes the wrong way-1009
(the Gibbs phenomengiefore it takes the jump with the trug(x).

This happens for the Fourier sums of all functions with jumfismakes shock
waves hard to compute. You can see it clearly in a graph ofuthred 10 terms.
v]? = 1+%+%+%+--- =2s0|v]| = v2; |[v]|?> = 1+a®+a*+--- = 1/(1—a?)
so|v|| = 1/~/1 —a?; foz”(l + 2sinx + sif x) dx = 27 + 0 + 7 so|| f|| = /3.

(@) f(x) = (1 + squarewavg'2 so thea’s are%, 0, 0,... and theb's are2/x, 0,

-2/3m,0,2/5m, ... (b) ag = fozn xdx /2w = m, allotheray = 0,b, = —2/k.

The integral from—n to = or from 0 to2x (or from anya to a + 2x) is over one
complete period of the function. If (x) is periodic this changefoz” f(x)dx to

Jo f(x) dx+ffﬂ Sf(x)dx. If f(x)isodd, those integrals cancel to giyg (x) dx = 0

over one period.

_ 1 1 . Ty b3 i inT 1 V3 i
cos x = 3 + 5 cos2x; cogx + %) = cosx cos% —sinxsinZ = 7 cosx — % sinx.
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1 0 o0 0 0 O 1
COoSx —sinx 0 0-1 0 O COoSx This sh h
) . is shows the
12 dx sinx = CO.SX =0 1 000 SINX - Gifferentiation matrix.
COS2x —2sin2x 0O 0 0 0 —2]|cos2x
sin2x 2C0S2x 0 0 0 2 O0/J[Lsin2x

13 The square pulse with'(x) = 1/h for —x < h/2 < x is an even function, so all sine
coefficientsh, are zero. The averagg and the cosine coefficientg are

: " h)d !
= — 1 - —
ap o —h/2( /h)dx .
1 [h2 2 kh 1 kh
ay = _/ (1/h)coskxdx = — (sin—) which is—sinc(—)
T —h/2 wkh 2 T 2

(introducing the sinc functiofsinx)/x). As h approaches zero, the numbe& kh/2
approaches zero, artdinx)/x approaches 1. So all thosg approachl /7.

The limiting “delta function” contains an equal amount df@sines: a very ir-
regular function.

Problem Set 8.6, page 458

1
1 The diagonal matrixC = WTW is 27! = [ 1 } with no covariances (inde-
1/2

pendent trials). Then solvé"CAx = ATCb for this weighted least squares problem
(noticeCt + D instead ofC + Dt):

R 0C+ D=1 0 1re 1
Ax =b is 1C+D =2 or[l 1}[D]:[2]
2C+D =4 2 1 4

S ) 1 (61 ~ [C] _[10/7
ACA_[2 55 ATCh = || T=|p|= 6/7 |
2 If the measurement; is totally unreliable and? = oo, thenthe best line will not

usebs. In this example, the systedx = b becomes square (first two equations from
Probleml):

[(1) 1] [g} = [;} gives[g] = [i].The lineb = ¢ + 1 fits exactly

3 If o3 = 0 the third equation is exact. Then the best line 6as+ D = b3 which is
2C + D = 4. The errorCt + D — b in the measurements at= 0 and1 areD — 1
andC + D — 2. SinceD = 4 —2C from the exacth; = 4, those two errors are
D—1=3-2C andC + D —2 =2—C. The sum of square$ — 2C)? + (2—C)?
is @ minimum at8 = 5C (calculus or linear algebra ihD). ThenC = 8/5 and
D =4-2C =4/5.
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0.1,2 have probabilitieg;, 1. 3 ande? = (0— 1)2 + (1 - )23 + 2 —1)?} = 3.
11 11 1

272 43 2"

Meanm = po and variance? = (1 — po)*po + (0 — po)*(1 — po) = po(1 — po).
Minimize P = a?0} +(1—a)?03 at P’ = 2ao{—2(1—a)o} = 0;a = 0} /(0% +03)
recovers equation (2) for the statistically correct cheitth minimum variance.

Mean(3, 1). Independent flips lead tB = diag(}, 1). Trace= o2, =

8 Multiply LYLT = (AT 1A ATE 122 44T 1) =P = (ATZ 14~ L.

The new grade matrid has row3 = — row 1 and row4 = — row 2, so the rank ig.
The nullspace o now includes(1,—1,—1, 1) as well ag1, 1, 1, 1). Compare to the
grade matrix in Example 6 (not Example 5). The other two disguectorsv; andv,
for Example 6 are still correct for this ne( Av, is still orthogonal todv,):

3 -1 1 =377 1 —1 8 —4
-1 3 =3 1|[-1 -1 -8 —4

Alzor wo]= |20 7 0 AT T =
1 -3 3 —1][-1 -1 8 4

Those last orthogonal columns are multiples of the orthoabi; andu,. This matrix
A haso; = 8 ando, = 4 (only two singular values since the rank2s If you
computeAT A4 to find those singular vectots andv, from scratch, notice that its trace
isoZ + 02 =64+ 16 = 80:

20 —12 =20 12
—12 20 12 =20
—20 12 20 —12

12 =20 —-12 20

ATA =

Problem Set 8.7, page 463

1
2

3

4

5

6

(x, y, z) has homogeneous coordinates, cy,cz, c¢) forc = 1 and allc # 0.
For an affine transformation we also neEdorigin), becausd™(0) need not bé for
affine T'. Including this translation by’ (0), (x, y, z, 1) is transformed tox7T'(i) +
yT(j)+ zT (k) + T(0).
1 1 1

1 1 _ 1

1 1 - 1

1 4 3 1 0 2 5 1 1 6 8 1
S =diag(c,c,c,1);rowd of ST andTS is 1,4,3,1 andc, 4c, 3c, 1; usevTS!

1/8.5
S:[ 1/11
1

1 2 2
1 2 2
[xyz1] | ) | =yl >
-1 -1 =2 1 1 -2 =2 —4 1
The first matrix translates bi-1, —1, —2). The second matrix rescales by 2.

TT, = is translation alongl, 6, 8).

} for a 1 by 1 square, starting from &rb by 11 page.
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7 The three parts of) in equation (1) ar¢cosd)/ and(1 — cosf)aa’ and—sinf(ax).
ThenQa = a becausaa'a = a(unit vector) andix a = 0.

8 If a'b = 0 and those three parts ¢f (Problem 7) multiplyb, the results inQb are
(cosf)b andaa™h = 0 and(—sinf)ax b. The component alonyis (cos)b.

5 —4 -2
221 1 .
9n=(=,=,-|hasP =1 —nn"=-|—4 5 —2|. Notice|n| = 1.
333 9 8

-2 =2
5 4 -2 0
. 14 5 =2 0
10 We can choos€, 0, 3) on the plane and multiply_ P 7y = 3 9 5 8 0
6 6 3 9

11 (3.3,3) projects to3(—1,—1,4) and(3, 3,3, 1) projects to(3. 3. 3. 1). Row vectors!

12 The projection of a square onto a plane is a parallelograna (ore segment). The
sides of the square are perpendicular, but their projestioay not beX"y = 0 but
(Px)"(Py)=x"PTPy = x" Py may be nonzero).

13 That projection of a cube onto a plane produces a hexagon.
1 -8 —4
111 11 11 1
14 (3,3,3)(I —2nn") = (—, -, —) |:—8 1 —4:| = (__’__’__)_
333)(_4 —_4 7 3 373
15 (3,3.3,1) > (3.3,0.0) > (-1,-1.-3,1) > (-3,-2.4.1).

1
3
16 Just subtracting vectors would give= (x, y, z,0) ending in0 (not 1). In homoge-
neous coordinates, addractor to a point.

17 Space is rescaled ly'c becausé€x, y, z, ¢) is the same point as:/c, y/c,z/c, 1).

Problem Set 9.1, page 472

1 Without exchange, pivot$01 and 1000; with exchange, 1 ard. When the pivot is

I 1 1
larger than the entries below it, &fl;;| = [entry/pivot < 1. 4 = |: 0 1 —1].
—1 1 1

9 -36 30
2 The exactinverse dfilb(3)is A™! = [—36 192 —180}.
30 —180 180
1 11/6 1.833 0 1.80
34 [1}: [ 13/12} = [1.083} compares withd [ 6 ]: [1.10}.||Ab|| < .04 but
1 47/60 0.783 —3.6 0.78 | ||Ax]| > 6.

The differencg, 1, 1) — (0, 6, —3.6) is in a directionAx that hasd Ax near zero.
4 Thelargestix|| = |A7'b| is||A7!| = 1/AminSinced™ = A; largest errod 016/ A in.

5 Each row ofU has at mosi entries. Thenv multiplications to substitute components
of x (already known from below) and divide by the pivot. Total fiorows < wn.

6 The triangular. ™!, U~!, R~! needin? multiplications. O needs:? to multiply the
right side byQ~! = Q7. SOQRx = b takes 1.5 times longer thanUx = b.
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7 UU~! = I: Back substitution need§j2 multiplications on columry, using thej
by j upper left block. Thed (12 + 22 + -+ + n?) &~ 1(in®) = total to findU !

1 0 2 2 2 2 . 0 1 1 0],
8[2 2:|—>[1 O]_)[O _1]:UW|thP:[1 O:|andL:[.5 1],

2 20 2 20 2 20 2 20
A—- |1 0 1|—- |0 -1 1| >0 2 00— 10 2 0| = U with
0 2 0 0 2 0 0 -1 1 0 0 1

o 1 0 1 0 0
P=]0 0 l]ansz[O 1 0:|.
1 0 0 5 -5 1
1 1 0 O
1 1 1 0
9 A= 01 1 1 has COfaCt0r§13 =C31 =Cpy =Cyp =1 andC14 =Cy1 =
0O 0 1 1

—1. AV is a full matrix!

10 With 16-digit floating point arithmetic the errofis — x computed for e = 1073, 1076,
1072, 10712, 10~!> are of ordert0—1¢, 10~11, 10=7, 1074, 1073.

B . [ 3 - 1o 14
11 (a) cosd = 1/4/10, S|n9_—3/m,R_m[_3 1][3 5}_m[0 8]'

(b) A has eigenvaluesand?2. Put one of the unit eigenvectors in ravof Q: either

0= [} _” andQAQ~! = [g _ﬂ or Q=L B _f] andQAQ~! =

i

12 When 4 is multiplied by a plane rotatio®;;, this changes then (not»2) entries in
rowsi andj. Then multiplying on the right byQ;;)~! = (Q;;)" changes thén
entries in columng and;j .

13 Q;; A usestn multiplications (2 for each entry in rowsand ). By factoring out co#,
the entries 1 and: tanf need only2rn multiplications, which leads t§n3 for OR.
14 The (2, 1) entry of 0514 is 3(—sinf + 2cosf). This is zero if sirg = 2cosh or
tand = 2. Then the2, 1, /5 right triangle has sil = 2/+/5 and co® = 1/+/5.
Every3 by 3 rotation with detD = +1 is the product o8 plane rotations.

15 This problem shows how elimination is more expensive (thezeoco multipliers are
counted bynnz(L) andnnz(L L)) when we spoil the tridiagonal by a random per-
mutation.

If on the other hand we start with a poorly ordered makfixan improved ordering
is found by the codeymamddiscussed in this section.

16 The “red-black ordering” puts rows and columin® 10 in the odd-even order, 3, 5, 7,
9,2,4,6,8,10. WhenK is the—1, 2, —1 tridiagonal matrix, odd points are connected
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only to even points (an@ stays on the diagonal, connecting every point to itself):

r 2 -1
k=|"" 2 _1. ] andPKPT:[lz)IT ZDI}With
~-1 2
-1 1to2
-1 -1 3t02.4
D=| 0 -1 -1 5t04,6
-1 -1 7t06,8
i —1 —1] 9t08,10

17 Jeff Stuart'sShake a Stickactivity has long sticks representing the graphs of twadine
equations in the-y plane. The matrix is nearly singular and Sectfahshows how to
compute its condition number= ||A||||A™!|| = omax/Omin =~ 80, 000:

-1 1.0001] A=Y & 20000

1 1.0001
1 -1 ¢ = 40000.

JA ~2 A~! = 10000
1 1.0000

Problem Set 9.2, page 478

LAl =2, A7 =2c=4 A =3, A7 =1,c=3; Al =2+ V2=
Amax for positive definited, A=Y = 1/Amin, ¢ = 2+ v/2)/(2 — V/2) = 5.83.

2 |A| =2, ¢ = 1;||A| = V2. ¢ = infinite (singular matrix)ATA = 21, ||A| = /2,
c=1.

3 For the first inequality replace by Bx in ||[Ax]|| < || 4] ||x]|; the second inequality is
just||Bx| < [|B|llx|l. Then||AB| = max(|[ABx|/|lx|) < [[AllllB]-

4 1= 1] =AM < [AIIATY] = c(A).

5 If Amax = Amin = 1 thenallA; = 1 and4 = SIS~! = I. The only matrices with
| Al = ||[A~!|| = 1 areorthogonal matrices

6 All orthogonal matrices have norm, so ||A]| < ||Q]llIR] = |IR] and in reverse
IRl < IO IIIA]l = [A]l, then[|A]| = [|R]. Inequality is usual ifA[| < [|L]| U]
whenATA4 # AAT. Usenorm on a randomi.

7 The triangle inequality givepAx + Bx| < ||Ax| + ||Bx|. Divide by | x| and take
the maximum over all nonzero vectors to fild + B| < || 4] + || B].

8 If Ax = Ax then| Ax|/|x| = |A| for that particular vectox. When we maximize
the ratio over all vectors we gét|| > |A|.

01 00 01
9 A+ B = [0 0:|+|:1 0} = [1 0] hasp(A) = 0 andp(B) = 0 butp(A + B) = 1.

1 0
0 0] also has

p(AB) = 1;thusp(A) = max|A(A)| = spectral radius is not a norm.

The triangle inequality 4 + B|| < || A|| + || B|| fails for p(A). AB = [
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10 (a) The condition number of~!is A=Y [[(A™Y) 71| which is [|[A7Y|||| 4] = c(A).
(b) SinceA™4 andAAT have the same nonzero eigenvaluésnd A" have the same
norm.

11 Use the quadratic formula ffayx/ Amin, Which iS¢ = omax/0omin Since thisd = AT is
positive definite:

e(A) = (1.00005 + /(1.00005)2 — .0001) / (1.00005 _J ) ~ 40, 000.

12 det(2A) is not2 detA; det(A + B) is not always less than ddt+ detB; taking| detA|
does not help. The only reasonable property isA¥et= (detA)(detB). The condition
number should not change whdris multiplied by 10.

13 The residuab — Ay = (107, 0) is much smaller thah — Az = (.0013,.0016). But
z is much closer to the solution than

659 —563

— —6 -1 _ 3
14 det4 =107°s04™" =10 [_913 730

}: IA] > 1, [|[A~1] > 105, thenc > 10°.

15 x = (1,1,1,1, 1) has|x| = V5, |x]l; = 5.[x]leo = 1. x = (.1,.7..3,.4,.5) has
lxll =1, [[lx[ly =2 (sum)|x |l = .7 (largest).

16 x?+---+x2 is not smaller than max?) and not larger thafix; |+ - -+|x, )% = ||x||3.
x7+ -+ x2 <nmaxx?) so|x| < /nllx|c. Choosey; = signx; = +1 to get
lxlv=x-y <llx[lyll = Valx].x = (1.....1) has|lx |1 = /n [x].

17 For thef* norm, the largest component ofplus the largest component gfis not
less thar|x + y |l = largest component of + y.

For the¢! norm, each componenthas + y;| < |x;| + |y;|. Sumon = 1ton:
e+ ylv < llxlly + 1yl

18 |xq| + 2|x2| is @ norm but mifx ], |x2|) is not a norm. ||x|| + ||x]le iS @ Nnorm;
|Ax] is a norm provided is invertible (otherwise a nonzero vector has norm zero;
for rectangulard we require independent columns to avidlx | = 0).

19 xTy = x1y1 + x2y2 4 -+ < (Max|y; N(|xi] + [x2] + ) =[x |1 [|[¥]loo-

20 With A; = 2—2coqjn/n+1), the largest eigenvalueis, ~ 2+2 = 4. The smallest
iSA; =2—-2coqn/n+1) ~ (n”?)2 using2 cosf ~ 2—62. So the condition number
iS¢ = Amax/Amin &~ (4/7%) n?, growing withn.

2

=y

— 1 1 n __ 1 q i _ n—1 __
A = [0 1.1] has A" = [0 (1.1)”] withg = 1 + 1.1 +--- 4+ (1.1) =
0 10

(1.1" = 1)/(1.1 = 1) ~ 1.1"/.1. So the growing part ofd” is 1.1" [O 1 } with

[|[A"|| ~ +/101 times1.1” for larger n.

Problem Set 9.3, page 489

1 Theiterationc;, = (I —A)xx +bhasS =7 andT =1 —AandS™!'T = — A.
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2 If Ax = Ax then(/—A)x = (1—1)x. Real eigenvalues # = I — A have|l—-A| < 1
providedA is between 0 and 2.

—1 1
1 -1

4 Always |AB]|| < ||A||||B|l. Choosed = B to find | B?|| < ||B||?>. Then choosel =
B2 to find | B3| < ||B?||||B]| < ||B|®. Continue (or use induction) to fintB*| <
| B||*. Since||B|| > max|A(B)| itis no surprise that B|| < 1 gives convergence.

5 Ax = 0gives(S — T)x = 0. ThenSx = Tx andS~!Tx = x. ThenA = 1 means

that the errors do not approach zero. We can't expect coaesesgwher is singular
andAx = b is unsolvable!

6 Jacobihas~!7 =1 [O !

3 This matrix4A has/ — A = [ } which has|A| = 2. The iteration diverges.

1 O] with |A|max = % Small problem, fast convergence.

0
7 Gauss-Seidel ha$™ 17 = [0 i| With |Amax = & Which is (|A|max for Jacobif.

O = W=

-1
8 Jacobihas—'T = [a d} [_8 _g] = [—c/c(l) _b/ﬂ with [A| = |bc/ad |2

-1
cai i _[a 0 0 —b] [0  —b/a]. . _
Gauss-Seidel has T_[C d] [0 0}_ 0 —bejad with |A| = |bc/ad .

So Gauss-Seidel is twice as fast to conveimeo explode ifibc| > |ad|).
9 Setthetrace—2w+ 1w? equal to(w —1) + (@ —1) to find wep; = 4(2—+/3) ~ 1.07.
The eigenvalues — 1 are about .07, a big improvement.

10 Gauss-Seidel will converge for thel, 2, —1 matrix. |A|max = O (7r/n + 1) is given
on page 485, with the improvement from successive over alax

11 If the iteration gives alk!®" = x? then the quantity in parentheses is zero, which
meansdx = b. For Jacobi change™" on the right side ta:°'“.

12 A lot of energy went into SOR in the 1950's! Now incompldt& is simpler and
preferred.

13 up /A% = cixy +eaxa(Aa/AD)* 4+ enxn(An/A1)F — c1xy ifall ratios [A; /4] <

1. The largest ratio controls the rate of convergence (Whénlarge). A = [(1) (1)}

has|A,| = |A1| and no convergence.

14 The eigenvectors of and alsa4d~! arex; = (.75,.25) andx, = (1, —1). The inverse
power method converges to a multiplexof, since|l1/A,| > [1/A4].

15 In the jth component ofdx;, Alsin,?-’% = 25inn/% - sin% - sin%.
o

L o B
The last two terms combine inte2 sin 25 cos#. Theni; =2 — 2cosn’fH .

2 -1 1 2 5 14 :
16 A = [_1 2] produces, = [O}’”l = [_1],u2 = [_4],1:3 = [_13]. This

is converging to the eigenvector directi%g1

1 with largest eigenvalug = 3. Divide

ui by flul].
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17

18

19

20

21

22

23

24

25

26

27

28

Solutions to Exercises

o 22 T e = 12T 0 15T e L[4 12
=31 2|VES =S 2= 4T g 13 T e = 12|
1 coshsinf cosf(1 +si?f)  —sin*f
_ Tyg — — —
R=0 A_[O —sin* 9 }andAl_RQ—[ —sin® 6 —cosf s 6 |

If Ais orthogonalthe) = 4 andR = I. ThereforeA; = RQ = A again, and the
“QR method” doesn’t move froml. But shift 4 slightly and the method goes quickly
to A.

If A—cl = QRthend; = RQ +cI = Q"1 (QR+cI)Q = Q~1AQ. No change
in eigenvalues becaust is similar to A.

Multiply Ag; =b;_1q,_, +a;q;+biq;41 pyq} to findq}qu = a; (because the
q’s are orthonormal). The matrix form (multiplying by colus)yrisAQ = QT where
T istridiagonal The entries down the diagonalsBfare thex’s andb’s.

Theoretically theg's are orthonormal. In reality this important algorithm istivery
stable. We must stop every few steps to reorthogonalize-rdradhother more stable
way to orthogonalizg, Aq, A%q, ...

If A is symmetricthemrd; = Q07140 = QTAQ is also symmetric.A; = RQ =
R(OR)R™! = RAR™! hasR and R~! upper triangular, sol; cannot have nonzeros
on a lower diagonal thad. If A is tridiagonal and symmetric then (by using symmetry
for the upper part oft ;) the matrix4; = RAR™! is also tridiagonal.

The proofofiA| < 1 when every absolute row sumluses > a;;x;| < > |a;j||xi| <
|x;|. (Herex; is the largest component.) The application to the Gershgurtle theo-
rem (very useful) is printed after its statement in this peah

For A and K, the maximum row sums give gll| < 1 and all|A| < 4. The circles
A —.5] <.5and|A — .4] < .6 around diagonal entries of give tighter bounds. The
circle | — 2] < 2 for K contains the circleA — 2| < 1 and all three eigenvalues

2+ /2,2, and2 — /2.

With diagonal dominance;; > r;, the circles|A — a;;| < r; don’t includeA = 0
(so Ais invertibl®). Notice that the-1,2, —1 matrix is also invertible even though its
diagonals are only weakly dominant. Thegualthe off-diagonal row sumg, = 2
except in the first and last rows, and more care is needed te preertibility.

From the last line of codey, is in the direction ofv = Aq; — h119; = Aq; —
(q1Aq,)q,. The dot product withy, is zero. This is Gram-Schmidt withg, as the
second input vector.

Note The five lines in Solutions to Selected Exercises prove twokeperties of
conjugate gradients—the residuajs= b — Ax; are orthogonal and the search direc-
tions are4-orthogonalp] Ap; = 0). Then each new guess; is theclosest vector

to x among all combinations df, Ab, Ab. Ordinary iterationSx;,, = Tx; + b
does not find this best possible combinatign, ;.

The solution to Problem 28 in this Fourth Edition is strafghward and important.
SinceH = Q7140 = QTAQ is symmetric ifA = AT, and sinceH has only one
lower diagonal by construction, thei has only one upper diagonall is tridiagonal
and all the recursions in Arnoldi's method have only 3 terfi®blem 29).
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29 H = Q7 'AQ is similar to 4, so H has the same eigenvalues 4gat the end of
Arnoldi). When Arnoldi stops sooner because the matrix s4arge, the eigenvalues
of H; (calledRitz value} are close to eigenvalues df This is an important way to
compute approximations tofor large matrices.

30 In principle the conjugate gradient method converges in(D0®9) steps to the exact
solutionx. But it is slower than elimination and its all-important pesty is to give
good approximations t@ much sooner. (Stopping elimination part way leaves you
nothing.) The problem asks how closgy andx ,q are tox 199, Which equals except
for roundoff errors.

Problem Set 10.1, page 498

(a)(b)(c) have sumé, —2 + 2i, 2 cosh and products, —2i, 1. Note(e'?)(e77%) = 1.

In polar form these are/5¢'?, 5¢2?, %e"’e, V5.
The absolute values are= 10, 100, 1‘—0 and100. The angles aré, 26, —0 and—26.
3 lz—wl <5

a+ib="2 4L Ly By Ly B2

1/z has absolute valuk/r and angle-0; (1/r)e~"? timesre'? equalsl.

K —b || c||ac—bd | realpart 1 -3 1| |10 is the matrix
b al|l|d||bc+ad| imaginarypart |3 1||-3]" |0

form of (1 4+ 3i)(1 —3i) = 10.

1
2
3
4 zxw|=6, z4+w| <5, |z/w| =
5
6

Ay —Ax || x| _ | bt .
8 |:A2 Al x| = [bz gives complex matrix= vector multiplication(4; +
iAy)(x1 +ixp) =by +1ib,.
9 2+i; Q4D(I4i)=1+43i; e =—i; 7™ = —1; 12 = —i; (<)% =1,
10 z + zisreal;z — zZ is pure imaginaryz;z is positive;z /z has absolute value 1.
11 [_Z 2} includesal (which just adds: to the eigenvalues arid[_(l) (1)] So the

eigenvectors are; = (1,i) andx, = (1,—i). The eigenvalues are, = a + bi and
Ay = a—bi. We seex; = x, andA; = A, as expected for real matrices with complex
eigenvalues.

12 (a) Whena = b = d = 1 the square root becomegdc; A is complex ifc < 0
(b) A =0andA = a + d whenad = bc (c) theA’s can be real and different.

13 ComplexA’'s when(a+d)? < 4(ad —bc); write (a+d)*>—4(ad —bc) as(a—d)*+4bc
which is positive wherbc > 0.

14 det(P — AI) = A* —1 = 0 hasA = 1, —1, i, —i with eigenvectorg1,1,1,1) and
(1,—-1,1,—1)and(1,i,—1,—i) and(1, —i, —1, i) = columns of Fourier matrix.

15 The6 by 6 cyclic shift P has detPs —AI) = A> —1 = 0. ThenA = 1, w, w?, w3,
w*, w? with w = ¢27//¢, These are the six solutions 18 = 1 as in Figure 10.3 (The
sixth roots ofl).
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18
19
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22
23
24
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The symmetric block matrix has real eigenvalues;s@s real and\ is pure imaginary.
(a) 261’71/3,4621'71/3 (b) 62i0,64i0 (C) 763711'/214963711' (: _49) (d) @e—ni/41
50e7i/2,

r = 1, angleZ — ¢; multiply by ¢’? to gete’™/2 = i.

% + ﬁ The rootw = w™! = e 27 /8is1//2—i//2.

1, e27i/3  ¢*7i/3 gre cube roots of. The cube roots of-1 are —1, e®i/3, ¢=7i/3,
Altogether six roots of® = 1.

cos30 =Reg(cosf+i sinf)3] =cos’ -3 cosh sir? §; sin36 =3 cos 6 sinf—sir’ .

If the conjugat& = 1/z then|z|?> = 1 andz is any pointe!? on the unit circle.

a+ib=1,i,—-1,—i,

¢’ is at angled = 1 on the unit circleji®| = 1¢; Infinitely manyi¢ = e/ (#/2+27n)e
(@) Unitcircle (b) Spiralint@=2* (c) Circle continuing around to angfe=272.

Problem Set 10.2, page 506

1

lu] = V9 =3, ||v]| = /3, u"v = 3i + 2, vHu = —3i + 2 (this is the conjugate of
utv).

2 0 1+ 31

AfA =] o0 2 1+4i|and44” = [1 3] are Hermitian matrices. They
1—7 1-—1i 2

share the eigenvaludsand?.

z = multiple of (144,144, —2); Az = 0givesz" A" = 0" soz (notz!) is orthogonal

to all columns of4" (using complex inner produet’ times columns of4™).

4 The four fundamental subspaces are @), N(A4), C(4™), N(4"). AH andnot AT,

10

@ (A"AH = AHAMH = A"A4 again  (b) IfAHAz = Othen(zHAM)(4z) = 0.
Thisis||Az||?> = 0 so Az = 0. The nullspaces oft and4" 4 are always theame.

(a) False , . [ 0 1 L . _H
(c) False A=U = 1 0 (b) True:—i isnotan eigenvalue wheti= A".
cA is still Hermitianfor real ¢; (i4)" = —iA" = —i A is skew-Hermitian.

0 0 -1 —i
This P is invertible and unitaryP? = [—1 0 0] P3 = [ —i } =
0 -1 0 —i
—il. ThenP1%0 = (—j)33P = —iP. The eigenvalues oP are the roots o> = —i,
which arei andie2™/3 andie*™/3,

One unit eigenvector is certainky, = (1,1, 1) with A; = i. The other eigenvectors
arex, = (1, w,w?) andxz = (1, w?, w*) with w = ¢27/3, The eigenvector matrix
is the Fourier matrixFs. The eigenvectors of any unitary matrix lieare orthogonal

(using the correct complex form™y of the inner product).

(1,1, 1), (1, e271/3 e47i/3) (1, e471/3 ¢27i/3) gre orthogonal (complex inner product!)
becauseP is an orthogonal matrix—and therefore its eigenvector ix&runitary.
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11

11

12
13

14

15

254 l:2+_5+4:11_,

Notincluded imt editionC =| 4 2 5 | =2+4+5P +4P2 has 2 + 5¢27/3 4 4¢47il3,
542 2+Se4ﬂi/3 +468ﬂi/3‘

If UNU = I thenU~ Y (U)™! = U1 (U~HH = I soU™! is also unitary. Also

UWMHWV)=vHuiuv = vHV = I soUV is unitary.

Determinant= product of the eigenvalugall real). And A = A" gives detd = detA.

(zHAM)(Az) = || Az|? is positive unlessiz = 0. When 4 has independent columns
this meang = 0; so A" 4 is positive definite.

I

T 1 1 —1—il]|2i of 1 1 141
— T .
K =(iA" in Problem 14)= 7 [1 ; 1 }[ 0 i} _ﬁ[ 1+ 1 }

A’s are imaginary.

1 1 —i||cosh +isinf 0 L1 .
16 —ﬁ[—i 1][ 0 cos@—isin@]ﬁ[i 1]“6‘5'“—1'
1T1+V3 —1+i|[t 0]1[1+43 1-i ,
17V == — hL? = 64+24/3.
v L[ 14 1430 1]z i 1 v3™ 6+23

18

19

20
21
22

23

24

25

26

27

28

29

Unitary meansiA| = 1. V = V" gives reald. Then trace zero gives = 1 and—1.
The v’s are columns of a unitary matri&/, soU" is U~!. Thenz = UUMz =
(multiply by columns)= vy (v}'z) + - -+ + v, (v}z): a typical orthonormal expansion.
Don’t multiply (e *)(e’*). Conjugate the first, thef’™ e2* dx = [¢2* /2i 2" = 0.
z = (1,i,—2) completes an orthogonal basis f0f. So does any?z.
R+iS=(R+iS)" = RT—iST; Rissymmetric butS is skew-symmetric.
C" has dimensiom; the columns of any unitary matrix are a basis. For exampte us
the columns of/: (i,0,...,0),...,(0,...,0,1)

o . a b+icl. [w €%z with|w]?+|z]> =1
and-tgsanye?s [, 4 P Y G| el
The eigenvalues of" arecomplex conjugatesf the eigenvalues of: detA—A7) = 0
gives detA™ — A1) = 0.
(I —2uu™H = 1 —2uut and alsaI — 2uu")? = I — 4uut + 4u(uu)u" = 1. The
rank-1 matrix uu" projects onto the line through
UnitaryUHU = I meangA"—iB")(A+iB) = (ATA+B"B)+i(ATB—BTA) = I.
ATA+ BB =1 andA"B — BT A = 0 which makes the block matrix orthogonal.
We are givend + iB = (A +iB)" = AT —iBT. Thend = AT andB = —B'. So
that| 4 ~8 | is symmetri

at| p 4 | is symmetric.

AA™Y = I gives(A~HH A" = . Therefore(A=")" is (A")™! = A=l andA~!is
Hermitian.

1= 1-i 1 o|l[24+2i 2| _ 1 N
A_[—l ) }[0 4]8[14-1' 2}—SAS . Note reall = 1 and4.
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30 If U has (complex) orthonormal columns, theW U = I andU is unitary. If those
columns are eigenvectors df thend = UAU ! = UAU" isnormal The direct test
for a normal matrix (which istA" = AH 4 because diagonals could be real!) axd
surely commute:

AAR=uAUYUATUNHY=U0AAHUN=UA" AU = UAHUYY(UAUM =44
An easy way to construct a normal matrixlist- i times a symmetric matrix. Or take

A = S + iT where the real symmetri§ and7 commute (Them" = § —iT and
AAH = AR A).

Problem Set 10.3, page 514

1 Equation (3) (the FFT) is correct using = —1 in the last two rows and three columns.
1 I 1 1 1

1 L1 2 1 1 1 1
-1 _ - - _ _H
2 F = 1 2 1131 1 =1
1 1 i? —i i
1 1 1 1 1
1 1 i? 1 1 .
3 F= 1 11 1 1 permutation last.
i 1 i? —i i
1 1 1 1
4 D= e2mi/o (note6 not3) andFs | 1 271/3  47i/3
i 647-”'/6 1 e4ni/3 eZni/S
5 F~'w = v and F~'v = w/4. Delta vector all-ones vector.
4 0 0 O
, |0 0 0 4 .
6 (Fy)° = 00 4 0 and(F,)* = 161. Four transforms recover the signal!
0 4 00
1 1 2 2 0 0 0 2
0 1 0 0 1 0 0 0
7 ¢ 1 ol=lol™ 2 =Fec¢. AlsoC= ol 1171217 22 =FC.
0 0 0 1 1 0 0
Addingc + C gives(1, 1,1, 1) to (4,0,0,0) = 4 (delta vector).

8¢ — (1,1,1,1,0,0,0,0) — (4,0,0,0,0,0,0,0) — (4,0,0,0,4,0,0,0) = Fzc.
C — (0,0,0,0,1,1,1,1) — (0,0,0,0,4,0,0,0) — (4,0,0,0,—4,0,0,0) = F5C.
9 If w = 1thenw? is a 32nd root of 1 ang/w is a 128th root of 1: Key to FFT.

10 For every integen, thenth roots of 1 add to zero. For eventhey cancel in pairs. For
anyn, use the geometric series formula-w +--- + w" ! = (w" —1)/(w—1) = 0.
In particular forn = 3,14 (=1 +i+/3)/2 + (=1 —i+/3)/2 = 0.

11 The eigenvalues oP arel,i,i? = —1, andi® = —i. Problem 11 displays the eigen-
vectors. And also deP — A7) = A% — 1.
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01 0
12 A =diag1,i,i2%,i3); P = [0 0 1} andPT lead toA® — 1 = 0.
1 0 0
13 e; =co+c1 +c2+c3andey = co + c1i + c2i% + c3i3; E contains the four
eigenvalues o€ = FEF~! becauseé’ contains the eigenvectors.
14 Eigenvalueg; =2—-1—-1=0, e, =2—i —i3=2, e3=2—(=1)—(=1) = 4,
es =2 —i3—i% = 2. Just transform colum@ of C. Check trac® + 2 + 4 +2 = 8.
15 DiagonalE needs: multiplications, Fourier matri¥™ and F~! need%n log, n multi-
plications each by thEFT. The total is much less than the ordinar/for C timesx.
16 The rowl,w*,w?*,...in F is the same as the roww?™ %, wN=2k __in F because

wN =k = o@ri/N)IN=K) jg o2mi ,=(27i/N)k — | timesw*. SoF andF have thesame
rows in reversed order (except for row0 which is all ones).
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