EE205003 Session 9

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 0 F

 \rightarrow ÷ **D** ∍

 $|\text{Def}|$ A vector space is a collection of vectors which is closed under lin. combinations

(For any $\bf{u} \& \bf{w}$ in the space, cu+dw is also in the space, c & d are any real numbers)

Ex : \mathbb{R}^2 : All 2D real vectors $([3 \ 2], [0 \ 0], [\pi \ e])$

More generally,

Def $|$ The space R^n consists of all col. vectors ${\mathsf v}$ with n real components (for complex components, we have C^n)

ADD $&$ MUL need to follow 8 rules:

(1)
$$
\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}
$$

\n(2) $\mathbf{x}+(\mathbf{y}+\mathbf{z}) = (\mathbf{x}+\mathbf{y})+\mathbf{z}$
\n(3) \exists a unique zero vector **0** s.t. $\mathbf{x}+\mathbf{0} = \mathbf{x}, \forall \mathbf{x}$
\n(4) For each \mathbf{x}, \exists unique $-\mathbf{x}$ s.t. $\mathbf{x}+(-\mathbf{x}) = \mathbf{0}$
\n(5) $1\mathbf{x} = \mathbf{x}$
\n(6) $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$
\n(7) $c(\mathbf{x}+\mathbf{y}) = c\mathbf{x} + c\mathbf{y}$
\n(8) $(c_1+c_2)\mathbf{x} = c_1\mathbf{x} + c_2\mathbf{x}$

Ex: if we define
$$
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_2 \\ x_2 + y_1 \end{bmatrix}
$$

with usual mul. $c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix}$
Do we still satisfy the 8 rules ?
No! $\mathbf{x} + \mathbf{y} \neq \mathbf{y} + \mathbf{x}$
 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) \neq (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
 $(c_1 + c_2)\mathbf{x} \neq c_1\mathbf{x} + c_2\mathbf{x}$

K ロ ▶ K 倒 ▶

化重新润滑剂

重

Other examples of vector spaces:

- M : vector space of all real 2x2 matrices
- F : vector space of all real functions $f(x)$
- Z : vector space that consists only of a zero vector

We can ADD, MUL, still in vector space

Figure 18: "Four-dimensional" matrix space M. The "zero-dimensional" space Z.

4 □

Vector space inside a vector space

- $Ex:$ Subspace of R^3
- A plane through origin

A line through origin

 $|\text{Def}|$ A subspace of a vector space is a set of vectors (including 0) that satisfies: $\exists v$, w in the subspace \forall scalar c

- (i) $v + w$ is in the subspace
- (ii) $c\mathbf{v}$ is in the subspace

(closed under all lin. comb.)

(ADD $\&$ MUL follows from the host space

 \Rightarrow 8 rules are satisfied only need to worry about lin. comb.)

Session 9 Subspace

Fact Every subspace contains $\mathbf 0$ (follows from (ii) with $c = 0$)

Not a subspace

4 0 8

| Fact | A subspace containing **v** w must contains all lim. comb. $c\mathbf{v} + d\mathbf{w}$ (smallest subspace containing **v** $\&$ **w** is the set of all comb.of **vw**) Recall : P (Any plane through 0) L (Any line through θ) are subspace in \mathbb{R}^3

 $\mathsf Q: \mathsf l$ s P $\bigcup \mathsf L$ a subspace?

No ! (i) fails

 $Q :$ Is $P \bigcap L$ a subspace?

Yes!

In general, for any subspacse S $\&$ T, S \bigcap T is also a subspace (If v, w on $S \cap T, v+w$ in S , $v+w$ in T \Rightarrow **v** + **w** in S \bigcap T, similarity for c**v**)

K 御 ▶ K 唐 ▶ K 唐 ▶ …

Column space of A (Important subspace)

Def The col. space of A is the vector space made up of all possible lin. comb. of col.s of A notation : $C(A)$

 $A\mathbf{x} = \mathbf{b}$

Q : Given a matrix A, for what vector **b** does $A\mathbf{x} = \mathbf{b}$ have a sol.? Ex:

$$
A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}
$$

(row picture)

4 eqns. 3 unknowns

 $\Rightarrow A$ **x** = **b** does not have a sol. for every choice of **b** \Rightarrow **b** $\in C(A)$

$Q \cdot$ What are those **h** ?

Another perspective : only 3 col. vectors cannot fill the entire 4D space \rightarrow some **b** cannot be expressed as linear comb. of col.s of A

fact The system $A\mathbf{x} = \mathbf{b}$ is solvable iff **b** is in the col. space of A

When $\mathbf{b} \in C(A)$, **b** is a lin. comb. of col.s of A i.e., $\mathbf{b} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n$ for some $x_1 \cdots x_n$ the comb. give you sol. to $A\mathbf{x} = \mathbf{b}$

Back to Ex :
\n
$$
A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}
$$

Q : What can we say about
$$
C(A)
$$
?
\ncol. vectors lin. dependent or indep.?\nor Does each col. contribute sth. new to the subspace ?\ncol.3 = col.1 + col.2 (lin. dependent)\n $(C(A) \text{ is 2D subspace of } R^4)$

重

メロトメ 倒 トメ ミトメ ミト

In general,

 $A_{m \times n}$: n col.s, each with m dim. $\Rightarrow C(A)$ is a subspace of R^m (not R^n)

 $Q :$ Is $C(A)$ really a subspace ? Yes! if $\mathbf{b}, \mathbf{b}' \in C(A), \mathbf{b}, \mathbf{b}'$ are comb. of col.s of $A \Rightarrow \mathbf{b} + \mathbf{b}'$ still comb. of col.s of $A \Rightarrow c$ **b** still comb. of col.s of A (or $A\mathbf{x} = \mathbf{b}, A\mathbf{x}' = \mathbf{b}' \Rightarrow A(\mathbf{x} + \mathbf{x}') = \mathbf{b} + \mathbf{b}'$ $A(c\mathbf{x}) = c\mathbf{b}$)

Recall : all comb. of v , w is the smallest subspace containing v , w

```
Notation : for a vector space V
S = set of vectors in V
SS = all comb. of vectors in S
 (span of S : smallest subspace containing S)
```
Note:

The smallest possible col. space $A = 0$ (only contain 0) The largest possible col. space R^m $(Ex : C(I)$ or any nonsingular m \times m matrix) (We can use elimination to solve it) (This is more general than Ch.1. Now, we allow singular matrices rectangular matrices of any shape)