EE205003 Session 9

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

▶ ∢ ∃ ▶

Def A vector space is a collection of vectors which is closed under lin. combinations

(For any $u \ \& \ w$ in the space, $cu{+}dw$ is also in the space, $c \ \& \ d$ are any real numbers)

Ex : R^2 : All 2D real vectors $(\begin{bmatrix} 3 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} \pi & e \end{bmatrix})$

More generally,

Def The space R^n consists of all col. vectors **v** with n real components (for complex components, we have C^n)

ADD & MUL need to follow 8 rules:

(1)
$$\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$$

(2) $\mathbf{x}+(\mathbf{y}+\mathbf{z}) = (\mathbf{x}+\mathbf{y})+\mathbf{z}$
(3) \exists a unique zero vector $\mathbf{0}$ s.t. $\mathbf{x}+\mathbf{0} = \mathbf{x}$, $\forall \mathbf{x}$
(4) For each \mathbf{x} , \exists unique $-\mathbf{x}$ s.t. $\mathbf{x}+(-\mathbf{x}) = \mathbf{0}$
(5) $1\mathbf{x} = \mathbf{x}$
(6) $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$
(7) $c(\mathbf{x}+\mathbf{y}) = c\mathbf{x} + c\mathbf{y}$
(8) $(c_1 + c_2)\mathbf{x} = c_1\mathbf{x} + c_2\mathbf{x}$

Ex: if we define
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_2 \\ x_2 + y_1 \end{bmatrix}$$

with usual mul. $c\mathbf{x} = \begin{bmatrix} cx_1 \\ cx_2 \end{bmatrix}$
Do we still satisfy the 8 rules ?
No! $\mathbf{x} + \mathbf{y} \neq \mathbf{y} + \mathbf{x}$
 $\mathbf{x} + (\mathbf{y} + \mathbf{z}) \neq (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
 $(c_1 + c_2)\mathbf{x} \neq c_1\mathbf{x} + c_2\mathbf{x}$

æ

《曰》《卽》《臣》《臣》

Other examples of vector spaces:

- M : vector space of all real 2x2 matrices
- F : vector space of all real functions f(x)
- ${\sf Z}$: vector space that consists only of a zero vector

We can ADD, MUL, still in vector space

Figure 18: "Four-dimensional" matrix space M. The "zero-dimensional" space Z.

Vector space inside a vector space

- Ex: Subspace of R^3
- A plane through origin

A line through origin

Def A subspace of a vector space is a set of vectors (including **0**) that satisfies: $\exists v, w$ in the subspace \forall scalar c

(i) v + w is in the subspace
(ii) cv is in the subspace
(closed under all lin. comb.)
(ADD & MUL follows from the host space
⇒ 8 rules are satisfied only need to worry about lin. comb.)

Session 9 Subspace

Fact Every subspace contains $\mathbf{0}$ (follows from (ii) with c = 0)

Not a subspace

Session 9 Subspace

FactA subspace containing v w must contains all lim. comb. cv + dw
(smallest subspace containing v & w is the set of all comb.of vw)Recall : P (Any plane through 0)
L (Any line through 0) are subspace in R3

Q : Is $P \bigcup L$ a subspace?

No! (i) fails

Q : Is $P \cap L$ a subspace?

Yes!

In general, for any subspaces S & T, S \cap T is also a subspace (If v,w on S \cap T,v+w in S , v+w in T \Rightarrow v+ w in S \cap T, similarity for cv)

Session 9 Subspace

Column space of A (Important subspace)

Def The col. space of A is the vector space made up of all possible lin. comb. of col.s of A notation : C(A)

 $A\mathbf{x} = \mathbf{b}$

Q : Given a matrix A, for what vector **b** does $A\mathbf{x} = \mathbf{b}$ have a sol.? Ex:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$
(row picture)

4 eqns. 3 unknowns

 $\Rightarrow A\mathbf{x} = \mathbf{b}$ does not have a sol. for every choice of $\mathbf{b} \Rightarrow \mathbf{b} \in C(A)$

 $\mathsf{Q}:\mathsf{What}$ are those \boldsymbol{b} ?

Another perspective : only 3 col. vectors cannot fill the entire 4D space \rightarrow some **b** cannot be expressed as linear comb. of col.s of A

fact The system $A\mathbf{x} = \mathbf{b}$ is solvable iff \mathbf{b} is in the col. space of A

When $\mathbf{b} \in C(A)$, \mathbf{b} is a lin. comb. of col.s of Ai.e., $\mathbf{b} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n$ for some $x_1 \cdots x_n$ the comb. give you sol. to $A\mathbf{x} = \mathbf{b}$

Back to Ex :

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$

Q : What can we say about
$$C(A)$$
?
col. vectors lin. dependent or indep.?
or Does each col. contribute sth. new to the subspace ?
col.3 = col.1 + col.2 (lin. dependent)
($C(A)$ is 2D subspace of R^4)

æ

イロト イヨト イヨト イヨト

In general,

 $A_{m \times n}$: n col.s, each with m dim. $\Rightarrow C(A)$ is a subspace of R^m (not R^n)

Q : Is C(A) really a subspace ? Yes! if $\mathbf{b}, \mathbf{b}' \in C(A), \mathbf{b}, \mathbf{b}'$ are comb. of col.s of $A \Rightarrow \mathbf{b} + \mathbf{b}'$ still comb. of col.s of $A \Rightarrow c\mathbf{b}$ still comb. of col.s of A (or $A\mathbf{x} = \mathbf{b}, A\mathbf{x}' = \mathbf{b}' \Rightarrow A(\mathbf{x} + \mathbf{x}') = \mathbf{b} + \mathbf{b}' \quad A(c\mathbf{x}) = c\mathbf{b}$)

Recall : all comb. of $\mathbf{v}, \ \mathbf{w}$ is the smallest subspace containing $\mathbf{v}, \ \mathbf{w}$

```
Notation : for a vector space V

S = set of vectors in V

SS = all comb. of vectors in S

(span of S : smallest subspace containing S)
```

Note: The smallest possible col. space $A = \mathbf{0}$ (only contain $\mathbf{0}$) The largest possible col. space \mathbb{R}^m (Ex : C(I) or any nonsingular m×m matrix) (We can use elimination to solve it) (This is more general than Ch.1. Now, we allow singular matrices rectangular matrices of any shape)