EECS 205003 Session 3

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

э

∍

Overview of key ideas

vectors/matrices/subspaces

Vectors

Linear combination of vectors

$$
x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = \mathbf{b}
$$

Ex

$$
\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

collective of all multiples of u forms a line via origin collective of all linear combination of $u \& v$ forms a plane all linear combination of u, v, w forms a subspace

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Matrices

coeff. matrix
$$
A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}
$$

the product

$$
A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
$$

= $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix}$ (*A* is a difference matrix)

 $(x_1u + x_2v + x_3w$: multiplying numbers by vectors diff. view $\hat{\mathbb{I}}$

 Ax : matrix multiplying numbers x_1, x_2, x_3 or A acts [on](#page-1-0) vector x, the result is b: a combination [of](#page-3-0)[co](#page-2-0)[l](#page-3-0)[um](#page-0-0)[n](#page-11-0)[s o](#page-0-0)[f](#page-11-0) A [\)](#page-11-0) QQQ

For any input x, the output of "multiplication" by A is some vector b

Ex:

$$
A\left[\begin{array}{c}1\\4\\9\end{array}\right]=\left[\begin{array}{c}1\\3\\5\end{array}\right]
$$

A deeper question : For what x, does $Ax = b$?

$$
A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

Equivalently

$$
x_1 = b_1
$$

$$
x_2 - x_1 = b_2 \Rightarrow x_2 = x_1 + b_2 = b_1 + b_2
$$

$$
x_3 - x_2 = b_3 \Rightarrow x_3 = x_2 + b_3 = b_1 + b_2 + b_3
$$

э

 $\left\{ \left. \left(\left. \Box \right. \right| \mathbb{R} \right) \times \left(\left. \mathbb{R} \right. \right| \right\}$, $\left\{ \left. \left. \mathbb{R} \right| \right\}$, $\left\{ \left. \mathbb{R} \right| \right\}$

4 D F

Vector form

 $\sqrt{ }$ $\overline{1}$ \overline{x}_1 $\overline{x_2}$ x_3 1 \vert = $\sqrt{ }$ $\overline{1}$ b_1 $b_1 + b_2$ $b_1 + b_2 + b_3$ 1 $\overline{1}$ linear combination with scalars b_1, b_2, b_3 \Rightarrow x = \lceil $\overline{1}$ 1 0 0 1 1 0 1 1 1 1 $\overline{1}$ $\sqrt{ }$ $\overline{1}$ b_1 b_2 b_3 1 \int or $\mathbf{x} = A^{-1}\mathbf{b}$ \swarrow A^{-1} (inverse) b (S: sum matrix) $(A^{-1}$ exists if A is invertible) $(A^{-1}A = I)$ $(A^{-1}\mathbf{x} = \mathbf{b} \Rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b}$

∢ 御 ▶ 《 君 ▶ 《 君 ▶ 》

(A transform $x \rightarrow b$) $(A^{-1}:$ inverse transform $b \rightarrow x$) (If $\mathbf{b} =$ \lceil \mathbf{I} $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ 1 \Rightarrow x = $\sqrt{ }$ \mathbf{I} $\boldsymbol{0}$ $\boldsymbol{0}$ $\boldsymbol{0}$ 1 \vert)

(Sum matrix is the inverse of diff. matrix) Another example (sameu, v , diff. w)

$$
C = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w}^* \end{bmatrix}
$$

$$
\Rightarrow C\mathbf{x} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix}
$$
(circular or cyclic diff. matrix)

$$
\begin{aligned}\n\textbf{(Recall:} A\mathbf{x} &= 0 \Rightarrow \mathbf{x} = \mathbf{0} \\
\textbf{since } A\mathbf{x} &= \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{x} = \mathbf{0}\n\end{aligned}
$$

But here, $Cx = 0$ has infinitely many sol. for any vector x with $x_1 = x_2 = x_3 \Rightarrow C\mathbf{x} = \mathbf{0}$ x_1 c

$$
\begin{pmatrix} \operatorname{or} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \end{bmatrix} \Rightarrow C\mathbf{x} = \mathbf{0}
$$

(inverse does NOT exist since cannot find C^{-1}

$$
s.t. C^{-1}Cx = C^{-1}(0) = x
$$

目

イロト イ押ト イヨト イヨトー

Note that the system of equations in $Cx = b$ is

$$
x_1 - x_3 = b_1
$$

\n
$$
x_2 - x_1 = b_2
$$

\n
$$
x_3 - x_2 = b_3
$$

Adding 3 equations together, $0 = b_1 + b_2 + b_3$

(sol. only exists when $b_1 + b_2 + b_3 = 0$)

Ex:
$$
\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \longleftrightarrow \text{no sol.}
$$

 \Rightarrow no comb, of u, v, w^{*} produce $\mathbf{b} =$ $\overline{1}$

5 \Rightarrow the comb. don't fill entire 3D space or all linear comb. of ${\bf u}, {\bf v}, {\bf w}^*$ lie on the plane $b_1 + b_2 + b_3 = 0$

 $\sqrt{ }$

1 3 1 \mathbf{I}

Figure 10: Independent vectors u, v, w . Dependent vectors u, v, w^* in a plane.

u & v already forms a plane

- $\sqrt{ }$ linear indep. if w is not in the plane
- linear dep. if w^* is in the plane

(Note that $u + v + w^* = 0$

$$
\Rightarrow \mathbf{w}^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \mathbf{u} - \mathbf{v}
$$
 (**lin. comb.!!**)

4 D F

Fact

- u, v, w are lin. indep. \Leftrightarrow no comb. except
- $0u + 0v + 0w = 0$ gives $b = 0$
- (lin. indep. columns : $Ax = 0$ has only one sol. & A is invertible)
- u, v, w are lin. depend \Leftrightarrow other comb. gives $b = 0$ (lin. dep. col.s : $Ax = 0$ has many sol. & A is singular)

(\exists nonzero x s.t. $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = 0$ \Rightarrow w = $\frac{x_1}{-x_1}$ $\frac{x_1}{-x_3}$ **u** + $\frac{x_2}{-x}$ $\frac{x_2}{-x_3}\mathbf{v} \Rightarrow$ cannot solve $A\mathbf{x} = \mathbf{b}, \forall \mathbf{b} \Rightarrow A$ singular) Subspaces:

Recall: columns of C are depend. (columns of C lie in the same plane) (Many vectors in R^3 do not lie on that plane) For b not in that plane, $Cx = b$ has not sol. Lin. comb.s of columns of C form a subs[pa](#page-8-0)[ce](#page-10-0) [of](#page-9-0) R^3 R^3

Recall: columns of A are indep.

 \Rightarrow All comb.s of col.s of A forms the entire space

 $\Rightarrow Ax = b$ has a sol. for every b

 \Rightarrow columns of $A(\mathbf{u}, \mathbf{v}, \mathbf{w})$ forms a basis for R^3

More generally

A basis for R^n is a collection of n lin. indep. vectors in R^n

or

A comb. of n vectors whose comb. cover the entire R^3

or

A matrix has these n vectors as column vectors is invertible Vector space

A collection of vectors are closed under lin. comb.

subsace

A vector space inside another vector space

Ex:

- the origin
- a line through the origin
- a plane through the origin
- all of R^3

4 D F

∢母→

3 E K 3 E K

目