EECS 205003 Session 3

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

.∋...>

Overview of key ideas

vectors/matrices/subspaces

Vectors

Linear combination of vectors

$$x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = \mathbf{b}$$

<u>Ex</u>

$$\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$$

collective of all multiples of ${\bf u}$ forms a line via origin collective of all linear combination of ${\bf u} \And {\bf v}$ forms a plane all linear combination of ${\bf u}, {\bf v}, {\bf w}$ forms a subspace

э

Matrices

coeff. matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

the product

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$= x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w} = \begin{bmatrix} x_1 \\ -x_1 + x_2 \\ -x_2 + x_3 \end{bmatrix} (A \text{ is a difference matrix})$$

 $(x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w}:$ multiplying numbers by vectors diff. view $\$

 $A\mathbf{x}$: matrix multiplying numbers x_1, x_2, x_3 or A acts on vector \mathbf{x} , the result is b: a combination of columns of A For any input $\mathbf{x},$ the output of "multiplication" by A is some vector \mathbf{b}

Ex:

$$A\begin{bmatrix}1\\4\\9\end{bmatrix} = \begin{bmatrix}1\\3\\5\end{bmatrix}$$

A deeper question : For what x , does Ax = b?

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Equivalently

$$x_1 = b_1$$

$$x_2 - x_1 = b_2 \Rightarrow x_2 = x_1 + b_2 = b_1 + b_2$$

$$x_3 - x_2 = b_3 \Rightarrow x_3 = x_2 + b_3 = b_1 + b_2 + b_3$$

イロト イポト イヨト イヨト

Vector form

 $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} b_1 \\ b_1 + b_2 \\ b_2 + b_3 + b_3 \end{vmatrix}$ linear combination with scalars b_1, b_2, b_3 $\Rightarrow \mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} \text{ or } \mathbf{x} = A^{-1}\mathbf{b}$ $\checkmark A^{-1}$ (inverse) b (S: sum matrix) $(A^{-1}$ exists if A is invertible) $(A^{-1}A = I)$ $(A^{-1}\mathbf{x} = \mathbf{b} \Rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b})$

▲御 と ▲ 臣 と ▲ 臣 とし

(A transform $\mathbf{x} \longrightarrow \mathbf{b}$) (A⁻¹ : inverse transform $\mathbf{b} \rightarrow \mathbf{x}$) (If $\mathbf{b} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \mathbf{x} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$)

(Sum matrix is the inverse of diff. matrix) Another example (sameu, v, diff. w)

$$C = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w}^* \end{bmatrix}$$
$$\Rightarrow C\mathbf{x} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix}$$
(circular or cyclic diff. matrix)

э

(Recall:
$$A\mathbf{x} = 0 \Rightarrow \mathbf{x} = \mathbf{0}$$

since $A\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{x} = \mathbf{0}$)

But here, $C\mathbf{x} = \mathbf{0}$ has infinitely many sol. for any vector \mathbf{x} with $x_1 = x_2 = x_3 \Rightarrow C\mathbf{x} = \mathbf{0}$

$$\left(\mathbf{or} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \end{bmatrix} \Rightarrow C\mathbf{x} = \mathbf{0} \right)$$

(inverse does NOT exist since cannot find C^{-1}

s.t.
$$C^{-1}C\mathbf{x} = C^{-1}(\mathbf{0}) = \mathbf{x}$$
)

э

イロト 不得 トイヨト イヨト

Note that the system of equations in $C\mathbf{x} = \mathbf{b}$ is

$$x_1 - x_3 = b_1$$

 $x_2 - x_1 = b_2$
 $x_3 - x_2 = b_3$

Adding 3 equations together, $0 = b_1 + b_2 + b_3$

(sol. only exists when $b_1 + b_2 + b_3 = 0$)

Ex:
$$\mathbf{b} = \begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix} \longleftrightarrow$$
 no sol.

 \Rightarrow no comb, of $\mathbf{u}, \mathbf{v}, \mathbf{w}^*$ produce $\mathbf{b} = \begin{bmatrix} 1\\ 3\\ 5 \end{bmatrix}$

 \Rightarrow the comb. don't fill entire 3D space or all linear comb. of $\mathbf{u}, \mathbf{v}, \mathbf{w}^*$ lie on the plane $b_1 + b_2 + b_3 = 0$

Figure 10: Independent vectors u, v, w. Dependent vectors u, v, w^* in a plane.

u & v already forms a plane

- \car{linear} linear indep. if w is not in the plane
- linear dep. if \mathbf{w}^* is in the plane

(Note that $\mathbf{u}+\mathbf{v}+\mathbf{w}^*=\mathbf{0}$

$$\Rightarrow \mathbf{w}^* = \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \mathbf{u} - \mathbf{v}) \quad \text{(lin. comb.!!)}$$

Fact

- $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are lin. indep. \Leftrightarrow no comb. except
- $0\mathbf{u} + 0\mathbf{v} + 0\mathbf{w} = \mathbf{0}$ gives $\mathbf{b} = \mathbf{0}$
- (lin. indep. columns : $A\mathbf{x} = \mathbf{0}$ has only one sol. & A is invertible)
- $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are lin. depend \Leftrightarrow other comb. gives $\mathbf{b} = \mathbf{0}$ (lin. dep. col.s : $A\mathbf{x} = \mathbf{0}$ has many sol. & A is singular)

(\exists nonzero x s.t. x_1 u + x_2 v + x_3 w = 0 \Rightarrow w = $\frac{x_1}{-x_3}$ u + $\frac{x_2}{-x_3}$ v \Rightarrow cannot solve Ax = b, \forall b \Rightarrow A singular) Subspaces:

Recall: columns of C are depend. (columns of C lie in the same plane) (Many vectors in R^3 do not lie on that plane) For b not in that plane, $C\mathbf{x} = \mathbf{b}$ has not sol. Lin. comb.s of columns of C form a subspace of R^3

Recall: columns of A are indep.

 \Rightarrow All comb.s of col.s of A forms the entire space

 $\Rightarrow A\mathbf{x} = \mathbf{b}$ has a sol. for every \mathbf{b}

 \Rightarrow columns of $A(\mathbf{u}, \mathbf{v}, \mathbf{w})$ forms a basis for R^3

More generally

A basis for \mathbb{R}^n is a collection of n lin. indep. vectors in \mathbb{R}^n

or

A comb. of n vectors whose comb. cover the entire R^3

or

A matrix has these n vectors as column vectors is invertible Vector space

A collection of vectors are closed under lin. comb.

<u>subsace</u>

A vector space inside another vector space

Ex:

- the origin
- a line through the origin
- a plane through the origin
- all of \mathbb{R}^3

- ∢ /⊐ >

3 1 4 3 1