EECS 205003 Session 1

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 **D F**

э

∍

Vectors & Linear Combination

Q: Why do we need vectors?

- We cannot add apples & oranges

A column vector

$$
\mathbf{v} = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] \begin{array}{c} \leftarrow \textbf{first component} \\ \leftarrow \textbf{second component} \end{array}
$$

Vector addition

$$
\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \Rightarrow \mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}
$$

Note

$$
\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}
$$

Scalar Multiplication Ex:

 $c\mathbf{v} = \begin{bmatrix} cv_1 \end{bmatrix}$

$$
2\mathbf{v} = \left[\begin{array}{c} 2v_1 \\ 2v_2 \end{array}\right] \quad -\mathbf{v} = \left[\begin{array}{c} -v_1 \\ -v_2 \end{array}\right]
$$

 cv_2

1

母 ▶ イヨ ▶ イヨ ▶ ○

Linear Combination

 $c\mathbf{v} + d\mathbf{w}$

Special cases

 $1v + 1w =$ sum of vectors

- $1v 1w =$ difference of vectors
- $0v + 0w =$ zero vector

$$
\left[\mathbf{0}{=}\left[\begin{array}{c}0\\0\end{array}\right]{\neq}0\right]
$$

 $c\mathbf{v} + 0\mathbf{w} = \mathbf{vector} \ c\mathbf{v}$ in the direction of v

メイヨメ

Figure 1: Vector addition $v + w = (3, 4)$ produces the diagonal of a parallelogram. The linear combination on the right is $v - w = (5, 0)$.

4 0 F

Vectors in 3-Dimension

 $\mathbf{v} =$ $\sqrt{ }$ $\overline{1}$ v_1 v_2 v_3 1 $\overline{1}$ \leftarrow 1st component \leftarrow 2nd component \leftarrow 3rd component

Visualization

column vector $v \leftrightarrow$ arrow from origin

 $+$

points where arrow ends

Notation

$$
\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}
$$
 same as $\mathbf{v} = (1,1,-1)$ differ from [1,1,-1]

(column vector)

4 0 F

- ← 冊 →

$$
\left(\begin{bmatrix} 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}^T\right)
$$

Vector Addition

$$
\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{bmatrix}
$$

重

化磨光化磨光

Linear Combination

 $c\mathbf{u} + d\mathbf{v} + e\mathbf{w}$

Ex

$$
\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}
$$

Q: What's the picture of all combinations of $c\mathbf{u}$?

The combination of cu fill a line (exception: if $u = 0$)

Q: What's the picture of all combinations of $c\mathbf{u} + d\mathbf{v}$?

The combination of $c\mathbf{u} + d\mathbf{v}$ fill a plane (exception: if $u = v = 0$

or u and v in the same direction)

イ押 トイヨ トイヨ トー

Q: What's the picture of all combinations of $cu + dv + ew$?

The combination of $cu + dv + ew$ fill 3-D space

Figure 3: (a) Line through u . (b) The plane containing the lines through u and v .

(Always include 0, origin) (exception: if $u = v = w = 0$ or w lies on the plane of $cu + dv$)

4 **D F**

Q: How about n-dim vectors ?

Can be easily generalized from the above concepts!

 $\sqrt{ }$ $\overline{}$ v_1 . . . v_n 1 $\vert \cdot$ \lceil \vert w_1 . . . w_n 1 $\vert \cdot \cdot \cdot$

(For ease of visualization, focus on 2 or 3-D vectors as examples)

그리 그는 어디 그는 어디

Length & Dot Products

 Def The dot product or inner product of $u = (u_1, u_2)$ & ${\bf w} = (w_1, w_2)$ is ${\bf u} \cdot {\bf w} = u_1w_1 + u_2w_2$

Figure 1: Vector addition $v + w = (3, 4)$ produces the diagonal of a parallelogram. The linear combination on the right is $v - w = (5, 0)$.

Q: What is the dot product of u & w in Fig 1?

$$
\mathbf{u} \cdot \mathbf{w} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0
$$

(Two vectors are perpendicular!) (Note: $\mathbf{w} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{w}$)
(Another easy example $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$) ^{Δ} $\mathbf{A} \rightarrow \mathbf{A}$
ex general, n dim vectors

For general n-dim vectors

$$
\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} v_i w_i
$$

目

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

4 0 F

Length & Unit Vector

 Def The length of a vector u is the square root of $\underline{u} \cdot \underline{u}$: $\textsf{length} {=} \lVert \mathbf{u} \rVert = \sqrt{\mathbf{u} \cdot \mathbf{u}}$

Figure 6: The length $\sqrt{v \cdot v}$ of two-dimensional and three-dimensional vectors.

 $Def |$ A unit vector is a vector of length=1, i.e., $u \cdot u = 1$

←ロ ▶ → 伊 ▶ → 君 ▶ → 君 ▶ →

Q: How to get unit vector?

$$
\mathbf{u} = \frac{\mathbf{u}}{\|\mathbf{u}\|} : \frac{(1,1,1,1)}{\sqrt{4}} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})
$$

(unit vector of same direction as u) Standard unit vectors

$$
\mathbf{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}
$$

$$
(\sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{\cos^2 \theta \sin^2 \theta} = 1)
$$

$$
\theta = 0^\circ \Rightarrow \mathbf{u} = \mathbf{i}, \theta = 90^\circ \text{ or } \frac{\pi}{2} \Rightarrow \mathbf{u} = \mathbf{j}
$$

$$
\int_{\mathbf{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = \frac{\mathbf{v}}{|\mathbf{v}|}}
$$

$$
\int_{\mathbf{u} = (0, 0)}^{\mathbf{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = \frac{\mathbf{v}}{|\mathbf{v}|}}
$$

Figure 7: The coordinate vectors i and j . The unit vector u at angle 45° (left) divides $v = (1, 1)$ by its length $||v|| = \sqrt{2}$. The unit vector $u = (\cos \theta, \sin \theta)$ is at angle θ .

∢ □ ▶ ⊣ 倒 ▶

14.1 ミドイミド ∍

The Angle between two vectors

Fact Unit vector $u_1 \& u_2$ with angle θ in between have

 $\mathbf{u}_1 \cdot \mathbf{u}_2 = \cos \theta \Rightarrow |\mathbf{u}_1 \cdot \mathbf{u}_2| \leq 1$

Figure 9: The dot product of unit vectors is the cosine of the angle θ .

4 0 F

 $Fact$ Cosine formula If $\mathbf{u} \& \mathbf{w}$ are nonzero vectors then $\frac{|\mathbf{u} \cdot \mathbf{w}|}{\|\mathbf{u}\| \|\mathbf{w}\|} = \cos \theta$ $\left(\frac{\mathbf{u}}{\ln n}\right)$ $\frac{\mathbf{u}}{\|\mathbf{u}\|}, \frac{\mathbf{w}}{\|\mathbf{w}\|}$ $\frac{\text{w}}{\|\text{w}\|}$ are unit vector) $\left \vert \mathit{Fact} \right \vert$ Schwarz inequality $|\mathbf{u}\cdot\mathbf{w}|\leq \|\mathbf{u}\|\|\mathbf{w}\|$ (comes from $|\cos \theta| \leq 1$) Fact Triangle inequality $Fact$ Triangle inequality $\|\mathbf{u} + \mathbf{w}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\|$ $\begin{picture}(120,110) \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,110){\line(1,0){156}} \put(100,11$