EECS 205003 Session 29

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

∍

Fast Fourier transform

Fast Fourier transform (FFT) revolutionalize signal processing

Basic idea

Speed up multiplication by $F \mathrel{\&} F^{-1}$, where F is the Fourier matrix

Q: How fast ?

For $n \times n$ F , F c uses n^2 multiplications FFT needs only $\frac{1}{2}n \log n$

Discrete Fourier transform (DFT)

A Fourier series is a way of writing a periodic function or signal as a combination of functions of different frequency

$$
f(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots
$$

when working with finite data sets, DFT is key to this decomposition:

$$
y_l = \sum_{k=0}^{n-1} c_k e^{i\frac{2\pi}{n}kl}
$$

イロト イ押 トイヨ トイヨ トー

In matrix form

$$
\mathbf{y} = F_n \mathbf{c}
$$
\nwhere $F_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^2 & \cdots & w^{n-1} \\ 1 & w^2 & w^4 & \cdots & w^{2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^2} \end{bmatrix}$ (Fourier matrix)\n
\n& $w = e^{\frac{i2\pi}{n}}$ or $w^n = 1$

Note 1: In EE & CS, rows & columns of a matrix often starts with 0 (not 1) and ends at $n-1$ (not n), we follow this convention here

Note 2: $F_n = F_n^T$ so F_n is symmetric (Not Hermitian !)

Note 3: $(F_n)_{jk} = w^{jk}$ where $w = e^{\frac{i2\pi}{n}}$ and $w^n = 1$ \Rightarrow All entries of F_n are on the unit circle in the complex plane We can write $w = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$

(But harder to compute)

Note 4: columns of F_n are orthogonal

Fourier matrix: n=4

$$
w^{4} = 1 \Rightarrow w = e^{\frac{i2\pi}{4}} = i
$$

\n
$$
F_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^{2} & i^{3} \\ 1 & i^{2} & i^{4} & i^{6} \\ 1 & i^{3} & i^{6} & i^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}
$$

(easy to check that columns of F_4 are orthogonal) F_4 is not yet unitary : length of column=2 \Rightarrow $(\frac{1}{2})$ $\frac{1}{2}F_4)^H(\frac{1}{2}$ $\frac{1}{2}F_4)=I$ or $F_4^HF_4=4I$ $\Rightarrow F_4^{-1} = \frac{1}{4}$ $\frac{1}{4}F_4^H = \frac{1}{4}$ $\frac{1}{4}\overline{F_4} (F_4^T = F_4)$

AD > (E > (E >)

Once we know F , we get F^{-1} so when FFT gives a quick way to multiply by F , it does the same for F^{-1} $(F^{-1}_n = \frac{1}{n})$ $\frac{1}{n}F_n$ in general) 4-point Fourier series

$$
\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = F_4 \mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}
$$

Input: four complex DFT coefficient c_0 , c_1 , c_2 , c_3 Output: four function values y_0 , y_1 , y_2 , y_3

An example:

with DFT coefficient
$$
(1, 0, 0, 0)
$$

\n
$$
\mathbf{y} = F_4 \mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$
\n
$$
\text{Check Lin (National Tsing Hua University)} \qquad \text{EACS } 205003 \text{ Session 29}
$$
\n6/12

$$
\mathbf{c} = F_4^{-1} \mathbf{y} = \frac{1}{4} \overline{F_4} \mathbf{y} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

Fast Fourier transform (one step)

Motivation: Normally $\mathbf{y}=F_n\mathbf{c}$ takes n^2 separate multiplications

We want to speed up the process

Observation 1:

If a matrix has many zeros, many multiplications can be skipped

But Fourier matrix has NO zeros !

Observation 2:

 F_n has the special pattern of w^{jk} for its entries

Q: Can we use this to speed up computation ?

Yes! F_n can be factored in a way that produces many zeros This is FFT !

Key idea

Connect F_n with $F_{\frac{n}{2}}$

Assume that n is a power of 2

There is a nice relationship between F_n & $F_{\frac{n}{2}}:$ (based on $w_{2n}^2=w_n)$

$$
F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_n & 0 \\ 0 & F_n \\ \end{bmatrix} P
$$

where D is a diagonal matrix with entries $(1,w,\cdots,w^{\frac{n}{2}-1})$

P is a $n \times n$ permutation matrix that puts the even columns ahead of odd columns **≮ロト ⊀母 ト ≮ ヨ ト ⊀ ヨ ト** 200

Che Lin (National Tsing Hua University) **[EECS 205003 Session 29](#page-0-0)** 8 / 12

 Fx $n=4$ $F_4 =$ $\sqrt{ }$ 1 1 1 1 1 $i \t -1 \t -i$ 1 −1 1 −1 $1 -i -1 i$ 1 , $\left[\begin{matrix} F_2 \end{matrix} \right]$ $F₂$ $\Big] =$ $\sqrt{ }$ 1 1 $1 \quad i^2$ 1 1 $1 \quad i^2$ $F_4=$ $\sqrt{ }$ $\Bigg\}$ 1 1 1 i 1 −1 1 $-i$ 1 $\Bigg\}$ $\sqrt{ }$ $\Bigg\}$ 1 1 $1 \quad i^2$ 1 1 $1 \quad i^2$ 1 $\Bigg\}$ $\sqrt{ }$ $\Bigg\}$ 1 1 1 1 1 (sparse) (half zeros) (sparse) Note: $\sqrt{ }$ 1 1 $\sqrt{ }$ c_0 1 $\sqrt{ }$ c_0 1

1

 $\Bigg\}$

 $\Bigg\}$

 c_1 $\overline{c_2}$ \overline{c}_3

 $\Bigg\}$ = $\begin{matrix} \end{matrix}$

 $\overline{c_2}$ $\overline{c_1}$ $\overline{c_3}$

 $\Bigg\}$

1

1

1

then apply F_2 and F_2 on the evens & odds complexity reduction:

multiplied by two size $\frac{n}{2}$ Fourier matrix requires $2(\frac{n}{2})^2=\frac{1}{2}$ $\frac{1}{2}n^2$ 1

multiplications $+$ multiplication of two sparse matrix P & $\begin{bmatrix} I & D \ I & I \end{bmatrix}$ $I - D$

requires order n operations

total complexity $\cong \frac{1}{2}$ $\frac{1}{2}n^2$ operations

The full FFT by recursion

$$
F_n \to F_{\frac{n}{2}} \to F_{\frac{n}{4}} \to F_{\frac{n}{8}} \to \cdots
$$

Ex: n=1024

$$
F_{1024} = \begin{bmatrix} I_{512} & D_{512} \\ I_{512} & -D_{512} \end{bmatrix} \begin{bmatrix} F_{512} \\ F_{512} \end{bmatrix} \begin{bmatrix} even \\ odd \\ perm \end{bmatrix}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 F⁵¹² F512 = I D I −D I D I −D F F F F pick 0, 4, 8, · · · pick 2, 6, 10, · · · pick 1, 5, 9, · · · pick 3, 7, 11, · · · where F = F256, D = D²⁵⁶ Complexity: n ² → ¹ 2 n log n Reason: Let l = log n ⇒ n = 2^l there are a total of l levels (Fn→F ⁿ 2 →F ⁿ 4 →···→F¹ total level=l)

Che Lin (National Tsing Hua University) **[EECS 205003 Session 29](#page-0-0)** 11/12

重

ミメスミメ

◂**◻▸ ◂◚▸**

For each level

$$
F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_{\frac{n}{2}} \\ & F_{\frac{n}{2}} \end{bmatrix} P
$$

 $\frac{n}{2}$ multiplications from the diagonal D 's

so a total of $\frac{n}{2}\log n$ operations

A typical case $n = 1024$, $(1024)^2 \rightarrow \frac{1}{2}(1024)(10)$

This is 200 times faster !

(This is possible because F_n 's are special matrices with orthogonal columns !)