EECS 205003 Session 29

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

.∋...>

Fast Fourier transform

Fast Fourier transform (FFT) revolutionalize signal processing

Basic idea

Speed up multiplication by $F \& F^{-1}$, where F is the Fourier matrix

Q: How fast ?

For $n \times n$ F, Fc uses n^2 multiplications FFT needs only $\frac{1}{2}n\log n$

Discrete Fourier transform (DFT)

A Fourier series is a way of writing a periodic function or signal as a combination of functions of different frequency

$$f(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots$$

when working with finite data sets, DFT is key to this decomposition:

$$y_l = \sum_{k=0}^{n-1} c_k e^{i\frac{2\pi}{n}kl}$$

イロト イヨト イヨト ・

In matrix form

$$\mathbf{y} = F_n \mathbf{c}$$
where $F_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^2 & \cdots & w^{n-1} \\ 1 & w^2 & w^4 & \ddots & w^{2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^2} \end{bmatrix}$ (Fourier matrix)
$$\mathbf{\&} \ w = e^{\frac{i2\pi}{n}} \text{ or } w^n = 1$$

Note 1: In EE & CS, rows & columns of a matrix often starts with 0 (not 1) and ends at n - 1 (not n), we follow this convention here

Note 2: $F_n = F_n^T$ so F_n is symmetric (Not Hermitian !)

Note 3: $(F_n)_{ik} = w^{jk}$ where $w = e^{\frac{i2\pi}{n}}$ and $w^n = 1$ \Rightarrow All entries of F_n are on the unit circle in the complex plane We can write $w = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$

(But harder to compute)

Note 4: columns of F_n are orthogonal

Fourier matrix: n=4

$$w^{4} = 1 \Rightarrow w = e^{\frac{i2\pi}{4}} = i$$

$$F_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & i^{2} & i^{3} \\ 1 & i^{2} & i^{4} & i^{6} \\ 1 & i^{3} & i^{6} & i^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

(easy to check that columns of F_4 are orthogonal)

 F_4 is not yet unitary ∵ length of column=2 $\Rightarrow (\frac{1}{2}F_4)^H (\frac{1}{2}F_4) = I$ or $F_4^H F_4 = 4I$ $\Rightarrow F_4^{-1} = \frac{1}{4}F_4^H = \frac{1}{4}\overline{F_4}$ ($F_4^T = F_4$)

Once we know F, we get F^{-1} so when FFT gives a quick way to multiply by F, it does the same for F^{-1} ($F_n^{-1} = \frac{1}{n}\overline{F_n}$ in general) 4-point Fourier series

$$\begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = F_4 \mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & w & w^2 & w^3 \\ 1 & w^2 & w^4 & w^6 \\ 1 & w^3 & w^6 & w^9 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Input: four complex DFT coefficient c_0 , c_1 , c_2 , c_3

Output: four function values y_0 , y_1 , y_2 , y_3

An example:

with DFT coefficient
$$(1, 0, 0, 0)$$

$$\mathbf{y} = F_4 \mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{c} = F_4^{-1} \mathbf{y} = \frac{1}{4} \overline{F_4} \mathbf{y} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Fast Fourier transform (one step)

Motivation: Normally $\mathbf{y} = F_n \mathbf{c}$ takes n^2 separate multiplications

We want to speed up the process

Observation 1:

If a matrix has many zeros, many multiplications can be skipped

But Fourier matrix has NO zeros !

Observation 2:

 F_n has the special pattern of w^{jk} for its entries

Q: Can we use this to speed up computation ?

Yes! F_n can be factored in a way that produces many zeros This is $\ensuremath{\mathsf{FFT}}$!

Key idea

Connect F_n with $F_{\frac{n}{2}}$

Assume that n is a power of 2

There is a nice relationship between $F_n \& F_{\frac{n}{2}}$: (based on $w_{2n}^2 = w_n$)

$$F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_{\frac{n}{2}} & 0 \\ 0 & F_{\frac{n}{2}} \end{bmatrix} P$$

where D is a diagonal matrix with entries $(1, w, \cdots, w^{rac{n}{2}-1})$

P is a $n \times n$ permutation matrix that puts the even columns ahead of

odd columns

Che Lin (National Tsing Hua University)

イロト 不得 トイヨト イヨト

then apply F_2 and F_2 on the evens & odds complexity reduction:

multiplied by two size $rac{n}{2}$ Fourier matrix requires $2(rac{n}{2})^2=rac{1}{2}n^2$

multiplications+multiplication of two sparse matrix $P \& \begin{vmatrix} I & D \\ I & -D \end{vmatrix}$

requires order n operations

total complexity $\cong \frac{1}{2}n^2$ operations

The full FFT by recursion

$$F_n \to F_{\frac{n}{2}} \to F_{\frac{n}{4}} \to F_{\frac{n}{8}} \to \cdots$$

Ex: n=1024

$$F_{1024} = \begin{bmatrix} I_{512} & D_{512} \\ I_{512} & -D_{512} \end{bmatrix} \begin{bmatrix} F_{512} & \\ & F_{512} \end{bmatrix} \begin{bmatrix} even \\ odd \\ perm \end{bmatrix}$$

$$\begin{bmatrix} F_{512} \\ F_{512} \end{bmatrix} = \begin{bmatrix} I & D \\ I & -D \\ & I & D \\ & I & -D \end{bmatrix} \begin{bmatrix} F \\ & F \\ & F \end{bmatrix}$$

$$\begin{bmatrix} \operatorname{pick} 0, 4, 8, \cdots \\ \operatorname{pick} 2, 6, 10, \cdots \\ \operatorname{pick} 1, 5, 9, \cdots \\ \operatorname{pick} 3, 7, 11, \cdots \end{bmatrix}$$
where $F = F_{256}$, $D = D_{256}$
Complexity:
$$n^2 \to \frac{1}{2}n \log n$$
Reason: Let $l = \log n \Rightarrow n = 2^l$

there are a total of l levels

$$\left(\underbrace{ \overset{F_n \to F_{\frac{n}{2}} \to F_{\frac{n}{4}} \to \cdots \to F_{1}}_{total \ level=l} } \right)$$

Che Lin (National Tsing Hua University)

For each level

$$F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_{\frac{n}{2}} & \\ & F_{\frac{n}{2}} \end{bmatrix} P$$

 $\frac{n}{2}$ multiplications from the diagonal D's

so a total of $\frac{n}{2}\log n$ operations

A typical case n = 1024, $(1024)^2 \rightarrow \frac{1}{2}(1024)(10)$

This is 200 times faster !

(This is possible because F_n 's are special matrices with orthogonal columns !)