EECS 205003 Session 28

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

∍

Complex matrices

Matrices with all real entries can still have complex eigenvalues

 \Rightarrow We cannot avoid dealing with complex numbers !

Complex vectors

Length:

Given a vector
$$
\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \in \mathbb{C}^n
$$

with complex entries

ミメスミメ

Q: How do we find its length?

Our old definition:

$$
\mathbf{z}^T \mathbf{z} = \begin{bmatrix} z_1 & \cdots & z_n \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}
$$
 (No good!) (Not always positive!)

Ex: $\mathbf{z} = \begin{bmatrix} 1 \\ i \end{bmatrix}$
 $\mathbf{z}^H \mathbf{z} = \begin{bmatrix} 1 & i \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = 0$?

Correct definition:

$$
\|\mathbf{z}\|^2 = \mathbf{\bar{z}}^T \mathbf{z} = \begin{bmatrix} \bar{z_1} & \cdots & \bar{z_n} \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}
$$

$$
= |z_1|^2 + \cdots + |z_n|^2 \ge 0
$$

◂**◻▸ ◂◚▸**

ミメスミメ

∍

Ex:

$$
(\text{length}\begin{bmatrix}1\\i\end{bmatrix})^2 = \begin{bmatrix}1 & -i\end{bmatrix}\begin{bmatrix}1\\i\end{bmatrix} = 2 \ (\mathsf{v})
$$

simplify notation:

$$
\|\mathbf{z}\|^2 = \mathbf{z}^H \mathbf{z}
$$
 where
$$
\mathbf{z}^H = \bar{\mathbf{z}}^T
$$

Same for matrices:

$$
\text{If } A = \begin{bmatrix} 1 & i \\ 0 & 1+i \end{bmatrix}, A^H = \begin{bmatrix} 1 & 0 \\ -i & 1-i \end{bmatrix}
$$

Inner product

$$
\mathbf{y}^H \mathbf{x} = \bar{\mathbf{y}}^T \mathbf{x} = \bar{y_1} x_1 + \dots + \bar{y_n} x_n
$$

Note:

$$
\mathbf{y}^H \mathbf{x} \neq \mathbf{x}^H \mathbf{y} = \bar{x_1} y_1 + \dots + \bar{x_n} y_n
$$

= complex conjugate of $\mathbf{y}^H \mathbf{x}$

(order is important !)

э

 $A \equiv A \quad A \equiv A$

◂**◻▸ ◂◚▸**

Ex:
$$
\mathbf{u} = \begin{bmatrix} 1 \\ i \end{bmatrix}
$$
, $\mathbf{v} = \begin{bmatrix} i \\ 1 \end{bmatrix}$
\n $\mathbf{u}^H \mathbf{v} = \begin{bmatrix} 1 & -i \end{bmatrix} \begin{bmatrix} i \\ 1 \end{bmatrix} = 0$ (orthogonal)
\nNote: $(A\mathbf{u})^H \mathbf{v} = \mathbf{u}^H (A^H \mathbf{v})$
\nReason: $(A\mathbf{u})^H = \overline{A\mathbf{u}}^T = \overline{\mathbf{u}}^T \overline{A}^T = \mathbf{u}^H A^H$
\n(Inner product of Au with v equals Inner product of \mathbf{u} with $A^H \mathbf{v}$)

Note: $(AB)^H=B^HA^H$

Hermitian matrices

Recall: For symmetric matrix $A = A^T$

 \Rightarrow real eigenvalues

- \Rightarrow there is a full set of orthogonal eigenvectors
- \Rightarrow Diagonalizing matrix $S = Q$ (orthogonal)

$$
\Rightarrow A = Q\Lambda Q^{-1} \text{ or } A = Q\Lambda Q^T
$$

(All this follows from $a_{ij} = a_{ji}$ when A is real)

Now for complex matrices

We have Hermitian matrix $A = A^H$ where $a_{ij} = \overline{a_{ji}}$

Note: Every symmetric matrix is Hermitian

$$
(a_{ij} = a_{ji} = \overline{a_{ji}}
$$
 for real a_{ji})

Ex: Hermitian matrix

$$
A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix} = A^H
$$

Fact $|$ If $A=A^{H}$ and ${\bf z}$ is any vector then ${\bf z}^{H}A{\bf z}$ is real

proof: $\mathbf{z}^{H} A \mathbf{z}$ is $1 {\times} 1$ number

$$
\Rightarrow (\mathbf{z}^H A \mathbf{z})^H = \mathbf{z}^H A^H (\mathbf{z}^H)^H = \mathbf{z}^H A \mathbf{z}
$$

the number is real since it is equal to its conjugate

Back to example:

$$
\begin{array}{ll}\n\left[\bar{z_1} & \bar{z_2}\right] \begin{bmatrix} 2 & 3-3i \\ 3+3i & 5 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \\
= 2\bar{z_1}z_1 + 5\bar{z_2}z_2 + (3-3i)\bar{z_1}z_2 + (3+3i)z_1\bar{z_2} \\
\hline\n\text{(diagonal)} & \text{(off-diagonal)}\n\end{array}
$$

 $\left(2\left|z_{1}\right|^{2}\text{ \& }5\left|z_{2}\right|^{2}$ are both real and the off-diagonal terms are conjugate of each other \Rightarrow sum is real)

Fact Every eigenvalue of a Hermitian matrix is real proof: Suppose $A\mathbf{z} = \lambda \mathbf{z}$ \Rightarrow $\mathbf{z}^{H}A\mathbf{z} = \lambda \mathbf{z}^{H}\mathbf{z} = \lambda \left\vert z\right\vert ^{2}$ real real so λ must be real!

Back to example:

$$
\begin{vmatrix} 2 - \lambda & 3 - 3i \\ 3 + 3i & 5 - \lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 - |3 + 3i|^2
$$

$$
= \lambda^2 - 7\lambda + 10 - 18
$$

$$
= (\lambda - 8)(\lambda + 1)
$$

$$
\Rightarrow \lambda = 8 \& -1
$$

 $|Fact|$ The eigenvectors of a Hermitian matrix are orthogonal (when they correspond to different eigenvalues) If $A\mathbf{z} = \lambda \mathbf{z}$ & $A\mathbf{y} = \beta \mathbf{y}$ & $\lambda \neq \beta$ then $\mathbf{y}^{\mathbf{H}}\mathbf{z} = 0$ proof:

$$
A\mathbf{z} = \lambda \mathbf{z} \Rightarrow \mathbf{y}^H A\mathbf{z} = \lambda \mathbf{y}^H \mathbf{z}
$$

$$
\mathbf{y}^H A^H = \beta \mathbf{y}^H \Rightarrow \mathbf{y}^H A^H \mathbf{z} = \beta \mathbf{y}^H \mathbf{z}
$$

$$
\Rightarrow (\lambda - \beta) \mathbf{y}^H \mathbf{z} = 0 \Rightarrow \mathbf{y}^H \mathbf{z} = 0 \text{ if } \lambda \neq \beta
$$

イロト イ母 トイヨ トイヨ トー

Back to example:

$$
(A - 8I)\mathbf{z} = \begin{bmatrix} -6 & 3 - 3i \\ 3 + 3i & -3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\Rightarrow \mathbf{z} = \begin{bmatrix} 1 \\ 1 + i \end{bmatrix}
$$

$$
(A + I)\mathbf{y} = \begin{bmatrix} 3 & 3 - 3i \\ 3 + 3i & 6 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\Rightarrow \mathbf{y} = \begin{bmatrix} 1 - i \\ -1 \end{bmatrix}
$$

$$
\Rightarrow \mathbf{y}^H \mathbf{z} = \begin{bmatrix} 1 + i & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 + i \end{bmatrix} = 0
$$

Note: Eigenvectors have length $\sqrt{3}$. After dividing by $\sqrt{3}$, they are orthonormal

 \Rightarrow They go into eigenvector matrix S that diagonalize A (When A is real & symmetric, S is Q-orthogonal. When A is complex & Hermitian eigenvectors are complex & orthonormal \Rightarrow S is like Q but complex) (Complex & orthogonal \Rightarrow unitary)

Unitary matrices

A unitary matrix U is a complex square matrix that has orthonormal columns

(U is a complex equivalent of Q)

Ex: Eigenvector matrix of A

$$
U = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}
$$

Recall: For orthonormal matrix Q (real), $Q^TQ = I$

医单侧 医单侧

 \leftarrow \Box

Q: What does it mean for complex vectors q_1, \dots, q_n to be orthonormal ?

Use new definition of inner product

$$
\Rightarrow \mathbf{q}_{\mathbf{j}}^{\mathbf{H}} \mathbf{q}_{\mathbf{k}} = \begin{cases} 0, & j \neq k \\ 1, & j = k \end{cases}
$$
\n
$$
Q = [\mathbf{q}_{1} \quad \cdots \quad \mathbf{q}_{\mathbf{n}}] \Rightarrow Q^{H} Q = I
$$
\nFact Every matrix U with orthonormal columns has $U^{H} U = I$

\nIf U is square, then $U^{H} = U^{-1}$

\nFact If U is unitary, then $||Uz|| = ||z||$

\n
$$
\Rightarrow U\mathbf{z} = \lambda \mathbf{z} \text{ leads to } |\lambda| = 1
$$
\nproof: $||U\mathbf{z}||^{2} = \mathbf{z}^{H} U^{H} U \mathbf{z} = \mathbf{z}^{H} \mathbf{z} = ||\mathbf{z}||^{2}$

Back to example:

$$
U = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 - i \\ 1 + i & -1 \end{bmatrix}
$$
 both Hermitian & unitary
\n
$$
\Rightarrow
$$
 real eigenvalues & $|\lambda| = 1$
\n
$$
\Rightarrow \lambda = 1 \text{ or } -1
$$

\nsince trace = $0 \Rightarrow \lambda_1 = 1, \lambda_2 = -1$

Ex: 3×3 Fourier matrix

Figure 61: The cube roots of 1 go into the Fourier matrix $F = F_3$.

重

化重新润滑脂

∢ □ ▶ ⊣ *←* □

Q: Is it Hermitian ?

$$
F^{H} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{\frac{-2\pi i}{3}} & e^{\frac{-4\pi i}{3}} \\ 1 & e^{\frac{-4\pi i}{3}} & e^{\frac{-2\pi i}{3}} \end{bmatrix} \neq F
$$

Q: Is it unitary ?

The squared length of each column $=\frac{1}{3}$ $\frac{1}{3}(1 + 1 + 1) = 1$ (unit vectors) $(col.1)^H (col.2) = \frac{1}{3}(1 + e^{\frac{2\pi i}{3}} + e^{\frac{4\pi i}{3}})$ $= 0$ $(col.2)^H (col.3) = \frac{1}{3}(1 \cdot 1 + e^{\frac{-2\pi i}{3}}e^{\frac{4\pi i}{3}} + e^{\frac{-4\pi i}{3}}e^{\frac{2\pi i}{3}})$ $=\frac{1}{3}$ $\frac{1}{3}(1+e^{\frac{2\pi i}{3}}+e^{\frac{-2\pi i}{3}})$ $= 0$

 \Rightarrow F is unitary !

(Read real v.s. complex p.506)