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Chapter 6 Eigenvalues and Eigenvectors

Symmetric matrices

Recall: A is symmetric if AT = A

If a matrix has special properties(e.q., Markov matrices), its

eigenvalues & eigenvectors are likely to have special properties

Q: What is special about Ax = λx if A is symmetric?

Fact For a symmetric matrix with real entries, we have

1. All eigenvalues are real

2. Eigenvectors can be chosen to be orthonormal

Note: Every symmetric matrix can be diagonalized (will prove this

later when repeated eigenvalues)

Note: Its eigenvector matrix S becomes an orthogonal matrix Q

where Q−1 = QT
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Chapter 6 Eigenvalues and Eigenvectors

This leads to the Spectral Theorem

Spectral Theorem Every symmetric matrix has the factorization

A = QΛQT with real eigenvalues in Λ and orthonormal

eigenvectors in S = Q

Note: Easy to see QΛQT is symmetric. Any A = QΛQT is

symmetric

Note: This is ”Spectral Theorem” in math & ”Principal Axis

Theorem” in mechanics and physics

Reason: Approach in 3 steps

Step 1: By an example, showing real λ’s in Λ & orthonormal x in Q

Step 2: By a proof when no repeated eigenvalues

Step 3: By a proof that allows repeated eigenvalues
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Chapter 6 Eigenvalues and Eigenvectors

Ex.1 (p.331) A =

[
1 2
2 4

]
|A− λI| = λ2 − 5λ⇒ λ = 0 or 5

(can see this directly: A is singular

⇒ λ1 = 0 is an eigenvalue. tr(A) = 1 + 4 = 5

⇒ λ1 + λ2 = 5⇒ λ2 = 5)

Eigenvectors:

Ax1 = 0 ⇒ x1 =

[
2
−1

]
(A− 5I)x2 = 0⇒ x2 =

[
1
2

]
Q: Why x1 & x2 are orthogonal?

x1 in N(A), x2 in C(A)

(Ax2 = 5x2 ⇒ x2 is a combination of columns of A⇒ x2 ∈ C(A))
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Q: N(A) ⊥ C(AT ) not C(A)?

But A is symmetric ⇒ AT = A

⇒ C(AT ) = C(A) (row space = column space)

Normalize x1 & x2

A =

[
1 2
2 4

]
= QΛQT = 1√

5

[
2 1
−1 2

] [
0 0
0 5

]
1√
5

[
2 1
−1 2

]
(∨)

Fact All eigenvalues of real symmetric matrix are real

proof: Ax = λx⇒ Āx̄ = λ̄x̄

(λ = a+ ib, λ̄ = a− ib)
⇒ Ax̄ = λ̄x̄ (A is real)

(complex eigenvalues of real A always comes in conjugate

pairs)
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Take transpose

⇒ x̄TAT = x̄T λ̄

⇒ x̄TA = x̄T λ̄ (A = AT )

Multiply by x on the right

⇒ x̄TAx = x̄T λ̄x 1©
On the other hand, Ax = λx

Multiply by x̄T on the left

⇒ x̄TAx = x̄Tλx 2©
Comparing 1© & 2©
⇒ λx̄Tx = λ̄x̄Tx

⇒ λ = λ̄ if x̄Tx 6= 0

(x̄Tx =
[
x̄1 · · · x̄n

] x1...
xn

 = |x1|2 + · · ·+ |xn|2
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⇒ x̄Tx 6= 0 if x 6= 0)

Note: eigenvectors come from solving (A− λI)x = 0 since λ all real

⇒eigenvectors all real

Fact Eigenvectors of a real symmetric matrix (correspond to different

eigenvalues) are always perpendicular

proof:

Let Ax = λ1x, Ay = λ2y

⇒ (Ax)Ty = λ1x
Ty, xTAy = λ2x

Ty

⇒ xTATy = λ1x
Ty

‖ ⇒ xTy = 0 (λ1 6= λ2)

xTAy = λ2x
Ty

⇒eigenvector for λ1 ⊥
eigenvector for λ2

(True for any pair)
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Chapter 6 Eigenvalues and Eigenvectors

Note: If A has complex entries, A has real eigenvalues & perpendicular

eigenvectors iff A = ĀT

(Proof of this follows same pattern)

Projection onto eigenvectors

If A = AT , we have

A = QΛQT

=
[
q1 · · · qn

] λ1 . . .

λn


qT

1
...

qT
n


= λ1q1qT

1 + · · ·+ λnqnqT
n

= λ1P1 + · · ·+ λnPn

↓ ↓
(projection onto eigenvectors)
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(Every symmetric matrix is a combination of perpendicular

projection matrices)

Eigenvalues v.s. Pivots

For eigenvalues, we solve det(A− λI) = 0

For pivots, we use Elimination (very different !)

Only connection so far:

product of pivots = determinant

=products of eigenvalues

For symmetric matrices,

# of positive eigenvalues = # of positive pivots

Special case: A has all λi > 0 iff all pivots are positive

(see Ex.4 on p.334 for a sketch of proof)
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Note: For large matrix, it is impractical to compute |A− λI| = 0

But NOT hard to compute pivots by elimination

⇒ can use signs of pivots to determine signs of λ

e.q., eigenvalues of A− bI are b less than eigenvalues of A,

check pivots > 0 or < 0

⇒ λ− b > 0 or < 0

⇒ λ > b or λ < b

(we can check whether λ > b or λ < b for any b !)

Now, we try to show that even for repeated eigenvalues, A = AT

has perpendicular eigenvectors

Fact Every square matrix factors into A = QTQ−1

where T: upper triangular, Q̄T = Q−1

If A has real eigenvalues, then Q & T can be chosen to be

real: QTQ = I
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Fact Eigenvectors of a real symmetric matrix (even with repeated

eigenvalues) are always perpendicular

Proof: For symmetric matrix A, eigenvalues are all real

⇒ A = QTQT , QTQ = I

⇒ QTAQ = QTQTQTQ = T

since A = AT ⇒ T = T T but T is upper-triangular

⇒ T = Λ is diagonal

⇒ A = QΛQT for orthogonal Q

⇒ A has orthonormal eigenvectors
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