EECS 205003 Session 27

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

∍

Symmetric matrices

- Recall: A is symmetric if $A^T = A$
- If a matrix has special properties(e.q., Markov matrices), its

eigenvalues & eigenvectors are likely to have special properties

Q: What is special about $A\mathbf{x} = \lambda \mathbf{x}$ if A is symmetric?

| Fact \mid For a symmetric matrix with real entries, we have

- 1. All eigenvalues are real
- 2. Eigenvectors can be chosen to be orthonormal
- Note: Every symmetric matrix can be diagonalized (will prove this later when repeated eigenvalues)
- Note: Its eigenvector matrix S becomes an orthogonal matrix Q where $Q^{-1} = Q^T$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

This leads to the Spectral Theorem Spectral Theorem Every symmetric matrix has the factorization $A = O\Lambda O^{T}$ with real eigenvalues in Λ and orthonormal eigenvectors in $S = Q$ Note: Easy to see $Q\Lambda Q^T$ is symmetric. Any $A=Q\Lambda Q^T$ is symmetric

Note: This is "Spectral Theorem" in math & "Principal Axis Theorem" in mechanics and physics

Reason: Approach in 3 steps

Step 1: By an example, showing real λ 's in Λ & orthonormal x in Q

- Step 2: By a proof when no repeated eigenvalues
- Step 3: By a proof that allows repeated eigenvalues

医电影 医重新的

$$
\begin{aligned}\n\text{Ex.1 (p.331) } A &= \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \\
|A - \lambda I| &= \lambda^2 - 5\lambda \Rightarrow \lambda = 0 \text{ or } 5 \\
(\text{can see this directly: } A \text{ is singular} \\
\Rightarrow \lambda_1 = 0 \text{ is an eigenvalue. } \text{tr}(A) = 1 + 4 = 5 \\
\Rightarrow \lambda_1 + \lambda_2 = 5 \Rightarrow \lambda_2 = 5\n\end{aligned}
$$

Eigenvectors:

$$
A\mathbf{x}_1 = 0 \Rightarrow \mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}
$$

$$
(A - 5I)\mathbf{x}_2 = \mathbf{0} \Rightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

Q: Why $x_1 \& x_2$ are orthogonal? \mathbf{x}_1 in $N(A)$, \mathbf{x}_2 in $C(A)$ $(A\mathbf{x_2} = 5\mathbf{x_2} \Rightarrow \mathbf{x_2}$ $(A\mathbf{x_2} = 5\mathbf{x_2} \Rightarrow \mathbf{x_2}$ $(A\mathbf{x_2} = 5\mathbf{x_2} \Rightarrow \mathbf{x_2}$ is a combination of columns of $A \Rightarrow \mathbf{x_2} \in C(A)$ K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ … 298

Q: $N(A) \perp C(A^T)$ not $C(A)$? But A is symmetric $\Rightarrow A^T = A$ $\Rightarrow C(A^T)=C(A)$ (row space $=$ column space) Normalize x_1 & x_2

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = Q\Lambda Q^T = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}
$$

$$
\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} (\vee)
$$

Fact All eigenvalues of real symmetric matrix are real proof: $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow \bar{A}\bar{\mathbf{x}} = \bar{\lambda}\bar{\mathbf{x}}$ $(\lambda = a + ib, \lambda = a - ib)$ $\Rightarrow A\bar{\mathbf{x}} = \bar{\lambda}\bar{\mathbf{x}}$ (A is real) (complex eigenvalues of real A always comes in conjugate pairs)

Che Lin (National Tsing Hua University) **[EECS 205003 Session 27](#page-0-0)** 5/11

Take transpose $\Rightarrow \bar{\mathbf{x}}^T A^T = \bar{\mathbf{x}}^T \bar{\lambda}$ $\Rightarrow \bar{\mathbf{x}}^T A = \bar{\mathbf{x}}^T \bar{\lambda} \ (A = A^T)$ Multiply by x on the right ⇒ x¯ ^T Ax = x¯ ^T λ¯x 1 On the other hand, $A\mathbf{x} = \lambda \mathbf{x}$ Multiply by $\bar{\mathbf{x}}^T$ on the left $\Rightarrow \bar{\mathbf{x}}^T A \mathbf{x} = \bar{\mathbf{x}}^T \lambda \mathbf{x}$ - 2 Comparing (1) & (2) $\Rightarrow \lambda \bar{\mathbf{x}}^T \mathbf{x} = \bar{\lambda} \bar{\mathbf{x}}^T \mathbf{x}$ $\Rightarrow \lambda = \overline{\lambda}$ if $\overline{\mathbf{x}}^T \mathbf{x} \neq 0$ $\sqrt{ }$ 1 \overline{x}_1 . . . $= |x_1|^2 + \cdots + |x_n|^2$ $\begin{bmatrix} \bar{\mathbf{x}}^T \mathbf{x} = \begin{bmatrix} \bar{x_1} & \cdots & \bar{x_n} \end{bmatrix} \end{bmatrix}$ $\overline{}$ \overline{x}_n Ω

 \Rightarrow $\mathbf{\bar{x}^T x} \neq 0$ if $\mathbf{x} \neq \mathbf{0}$)

Note: eigenvectors come from solving $(A - \lambda I)\mathbf{x} = 0$ since λ all real

⇒eigenvectors all real

Fact Eigenvectors of a real symmetric matrix (correspond to different eigenvalues) are always perpendicular

proof:

Let Ax = λ1x, Ay = λ2y ⇒ (Ax) ^T y = λ1x ^Ty, x ^TAy = λ2x ^Ty ⇒ x ^TA^T y = λ1x ^Ty k ⇒ x ^Ty = 0 (λ¹ 6= λ2) x ^TAy = λ2x ^Ty ⇒eigenvector for λ¹ ⊥ eigenvector for λ² (True for any pair) Che Lin (National Tsing Hua University) [EECS 205003 Session 27](#page-0-0) 7 / 11

Note: If A has complex entries, A has real eigenvalues & perpendicular eigenvectors iff $A = \bar{A}^T$ (Proof of this follows same pattern)

Projection onto eigenvectors

If $A=A^T$, we have $A = Q \Lambda Q^T$ $=\begin{bmatrix} {\bf q_1} & \cdots & {\bf q_n} \end{bmatrix}$ \lceil \vert λ_1 . . . λ_n 1 \vert $\sqrt{ }$ \vert $\mathbf{q^T_1}$ $\mathbf{q_n^T}$ 1 \vert $\mathbf{I} = \lambda_1 \mathbf{q_1} \mathbf{q_1^T} + \cdots + \lambda_n \mathbf{q_n} \mathbf{q_n^T}$ $=\lambda_1P_1+\cdots+\lambda_nP_n$ ↓ ↓ (projection onto eigenvectors)

※ 重 ※ ※ 重 ※ …

(Every symmetric matrix is a combination of perpendicular projection matrices)

Eigenvalues v.s. Pivots

For eigenvalues, we solve det $(A - \lambda I) = 0$

For pivots, we use Elimination (very different !)

Only connection so far:

product of pivots $=$ determinant

 $=$ products of eigenvalues

For symmetric matrices,

of positive eigenvalues $=$ # of positive pivots

Special case: A has all $\lambda_i > 0$ iff all pivots are positive

(see Ex.4 on p.334 for a sketch of proof)

Note: For large matrix, it is impractical to compute $|A - \lambda I| = 0$ But NOT hard to compute pivots by elimination \Rightarrow can use signs of pivots to determine signs of λ e.g., eigenvalues of $A - bI$ are b less than eigenvalues of A, check pivots > 0 or < 0 $\Rightarrow \lambda - b > 0$ or < 0 $\Rightarrow \lambda > b$ or $\lambda < b$ (we can check whether $\lambda > b$ or $\lambda < b$ for any b!) Now, we try to show that even for repeated eigenvalues. $A = A^T$ has perpendicular eigenvectors \mid Fact \mid Every square matrix factors into $A = QTQ^{-1}$ where T: upper triangular, $\overline{Q}^T = Q^{-1}$

> If A has real eigenvalues, then $Q \& T$ can be chosen to be real: $Q^T Q = I$ イロト イ押 トイヨ トイヨ トー

Fact Eigenvectors of a real symmetric matrix (even with repeated eigenvalues) are always perpendicular

Proof: For symmetric matrix A , eigenvalues are all real

$$
\Rightarrow A = QTQ^T, Q^TQ = I
$$

\n
$$
\Rightarrow Q^TAQ = Q^TQTQ^TQ = T
$$

\nsince $A = A^T \Rightarrow T = T^T$ but *T* is upper-triangular
\n
$$
\Rightarrow T = \Lambda \text{ is diagonal}
$$

\n
$$
\Rightarrow A = Q\Lambda Q^T \text{ for orthogonal } Q
$$

\n
$$
\Rightarrow A \text{ has orthonormal eigenvectors}
$$