EECS 205003 Session 27

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

.∋...>

Symmetric matrices

- Recall: A is symmetric if $A^T = A$
- If a matrix has special properties(e.q., Markov matrices), its

eigenvalues & eigenvectors are likely to have special properties

Q: What is special about $A\mathbf{x} = \lambda \mathbf{x}$ if A is symmetric?

Fact For a symmetric matrix with real entries, we have

- 1. All eigenvalues are real
- 2. Eigenvectors can be chosen to be orthonormal
- Note: Every symmetric matrix can be diagonalized (will prove this later when repeated eigenvalues)
- Note: Its eigenvector matrix S becomes an orthogonal matrix Q where $Q^{-1} = Q^T \label{eq:starses}$

This leads to the Spectral Theorem Spectral Theorem Every symmetric matrix has the factorization $A = Q\Lambda Q^T$ with real eigenvalues in Λ and orthonormal eigenvectors in S = QNote: Easy to see $Q\Lambda Q^T$ is symmetric. Any $A = Q\Lambda Q^T$ is symmetric

- Note: This is "Spectral Theorem" in math & "Principal Axis Theorem" in mechanics and physics
- Reason: Approach in 3 steps
- Step 1: By an example, showing real λ 's in Λ & orthonormal ${\bf x}$ in Q
- Step 2: By a proof when no repeated eigenvalues
- Step 3: By a proof that allows repeated eigenvalues

A B M A B M

Ex.1 (p.331)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

 $|A - \lambda I| = \lambda^2 - 5\lambda \Rightarrow \lambda = 0 \text{ or } 5$
(can see this directly: A is singular
 $\Rightarrow \lambda_1 = 0$ is an eigenvalue. $tr(A) = 1 + 4 = 5$
 $\Rightarrow \lambda_1 + \lambda_2 = 5 \Rightarrow \lambda_2 = 5$)

Eigenvectors:

$$A\mathbf{x_1} = \mathbf{0} \Rightarrow \mathbf{x_1} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$
$$(A - 5I)\mathbf{x_2} = \mathbf{0} \Rightarrow \mathbf{x_2} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

Q: Why $\mathbf{x_1} \& \mathbf{x_2}$ are orthogonal? $\mathbf{x_1}$ in N(A), $\mathbf{x_2}$ in C(A) $(A\mathbf{x_2} = 5\mathbf{x_2} \Rightarrow \mathbf{x_2}$ is a combination of columns of $A \Rightarrow \mathbf{x_2} \in C(A)$)

 $\begin{aligned} & \mathsf{Q} \colon N(A) \perp C(A^T) \text{ not } C(A) ? \\ & \mathsf{But } A \text{ is symmetric} \Rightarrow A^T = A \\ & \Rightarrow C(A^T) = C(A) \text{ (row space = column space)} \\ & \mathsf{Normalize } \mathbf{x_1} \And \mathbf{x_2} \end{aligned}$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = Q\Lambda Q^T = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$
$$\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} (\vee)$$

Fact All eigenvalues of real symmetric matrix are real proof: $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow \overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$ $(\lambda = a + ib, \overline{\lambda} = a - ib)$ $\Rightarrow A\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$ (A is real) (complex eigenvalues of real A always comes in conjugate pairs)

Che Lin (National Tsing Hua University)

Take transpose $\Rightarrow \bar{\mathbf{x}}^T A^T = \bar{\mathbf{x}}^T \bar{\lambda}$ $\Rightarrow \bar{\mathbf{x}}^T A = \bar{\mathbf{x}}^T \bar{\lambda} \ (A = A^T)$ Multiply by \mathbf{x} on the right $\Rightarrow \bar{\mathbf{x}}^T A \mathbf{x} = \bar{\mathbf{x}}^T \bar{\lambda} \mathbf{x}$ — (1) On the other hand, $A\mathbf{x} = \lambda \mathbf{x}$ Multiply by $\bar{\mathbf{x}}^T$ on the left $\Rightarrow \bar{\mathbf{x}}^T A \mathbf{x} = \bar{\mathbf{x}}^T \lambda \mathbf{x}$ — (2) Comparing (1) & (2) $\Rightarrow \lambda \bar{\mathbf{x}}^T \mathbf{x} = \bar{\lambda} \bar{\mathbf{x}}^T \mathbf{x}$ $\Rightarrow \lambda = \overline{\lambda} \text{ if } \overline{\mathbf{x}}^T \mathbf{x} \neq 0$ $(\bar{\mathbf{x}}^T \mathbf{x} = \begin{bmatrix} \bar{x_1} & \cdots & \bar{x_n} \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x \end{vmatrix} = |x_1|^2 + \cdots + |x_n|^2$

 $\Rightarrow \bar{\mathbf{x}}^{\mathbf{T}} \mathbf{x} \neq 0 \text{ if } \mathbf{x} \neq \mathbf{0}$

Note: eigenvectors come from solving $(A - \lambda I)\mathbf{x} = 0$ since λ all real \Rightarrow eigenvectors all real

Fact Eigenvectors of a real symmetric matrix (correspond to different eigenvalues) are always perpendicular

proof:

Let
$$A\mathbf{x} = \lambda_1 \mathbf{x}$$
, $A\mathbf{y} = \lambda_2 \mathbf{y}$
 $\Rightarrow (A\mathbf{x})^T \mathbf{y} = \lambda_1 \mathbf{x}^T \mathbf{y}$, $\mathbf{x}^T A \mathbf{y} = \lambda_2 \mathbf{x}^T \mathbf{y}$
 $\Rightarrow \mathbf{x}^T A^T \mathbf{y} = \lambda_1 \mathbf{x}^T \mathbf{y}$
 $\parallel \qquad \Rightarrow \mathbf{x}^T \mathbf{y} = 0 \ (\lambda_1 \neq \lambda_2)$
 $\mathbf{x}^T A \mathbf{y} = \lambda_2 \mathbf{x}^T \mathbf{y}$
 \Rightarrow eigenvector for $\lambda_1 \perp$
eigenvector for λ_2
(True for any pair)
Che Lin (National Tsing Hua University) EECS 205003 Session 27

Note: If A has complex entries, A has real eigenvalues & perpendicular eigenvectors iff $A = \overline{A}^T$ (Proof of this follows same pattern)

Projection onto eigenvectors

If $A = A^T$, we have $A = Q \Lambda Q^T$ $= \begin{bmatrix} \mathbf{q_1} & \cdots & \mathbf{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{q_1^T} \\ \vdots \\ \mathbf{q_n^T} \end{bmatrix}$ $=\lambda_1\mathbf{q_1q_1}^{\mathbf{T}}+\cdots+\lambda_n\mathbf{q_nq_n}^{\mathbf{T}}$ $=\lambda_1 P_1 + \dots + \lambda_n P_n$ \downarrow \downarrow (projection onto eigenvectors)

(Every symmetric matrix is a combination of perpendicular projection matrices)

Eigenvalues v.s. Pivots

For eigenvalues, we solve $det(A - \lambda I) = 0$

For pivots, we use Elimination (very different !)

Only connection so far:

product of pivots = determinant

=products of eigenvalues

For symmetric matrices,

of positive eigenvalues = # of positive pivots

Special case: A has all $\lambda_i > 0$ iff all pivots are positive

(see Ex.4 on p.334 for a sketch of proof)

Note: For large matrix, it is impractical to compute $|A - \lambda I| = 0$ But NOT hard to compute pivots by elimination \Rightarrow can use signs of pivots to determine signs of λ e.q., eigenvalues of A - bI are b less than eigenvalues of A, check pivots > 0 or < 0 $\Rightarrow \lambda - b > 0 \text{ or } < 0$ $\Rightarrow \lambda > b \text{ or } \lambda < b$ (we can check whether $\lambda > b$ or $\lambda < b$ for any b !) Now, we try to show that even for repeated eigenvalues, $A = A^T$ has perpendicular eigenvectors

Fact Every square matrix factors into
$$A = QTQ^{-1}$$

where T: upper triangular, $\bar{Q}^T = Q^{-1}$
If A has real eigenvalues, then $Q \& T$ can be chosen to be
real: $Q^TQ = I$

10/11

FactEigenvectors of a real symmetric matrix (even with repeated
eigenvalues) are always perpendicular

Proof: For symmetric matrix A, eigenvalues are all real

$$\begin{array}{l} \Rightarrow A = QTQ^{T}, \ Q^{T}Q = I \\ \Rightarrow Q^{T}AQ = Q^{T}QTQ^{T}Q = T \\ \text{since } A = A^{T} \Rightarrow T = T^{T} \text{ but } T \text{ is upper-triangular} \\ \Rightarrow T = \Lambda \text{ is diagonal} \\ \Rightarrow A = Q\Lambda Q^{T} \text{ for orthogonal } Q \\ \Rightarrow A \text{ has orthonormal eigenvectors} \end{array}$$