EECS 205003 Session 26

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

Markov matrices; Fourier series

Markov matrices

Suppose we have a positive vector
$$\mathbf{u_0} = \begin{bmatrix} a \\ 1-a \end{bmatrix}$$

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
 (Markov matrix columns add to 1)

if
$$\mathbf{u_1} = A\mathbf{u_0}$$
, $\mathbf{u_2} = A\mathbf{u_1} \cdots$

Q: What happens if we keep doing this?

$$\mathbf{u_1}, \mathbf{u_2}, \cdots$$
 converges to \mathbf{u}_{∞} (steady state)

For
$$\mathbf{u}_{\infty}$$
 , $\mathbf{u}_{\infty}=A\mathbf{u}_{\infty}$

(multiplied by A does NOT change \mathbf{u}_{∞})

 $(\mathbf{u}_{\infty} \text{ is an eigenvector with } \lambda = 1)$

Def Markov matrix

A is a Markov matrix if:

- 1. Every entry of A is nonnegative
- 2. Every col. of \boldsymbol{A} adds to 1

Fact

- 1. For nonnegative $\mathbf{u_0}$, $\mathbf{u_1} = A\mathbf{u_0}$ is also nonnegative
- 2. If components of ${\bf u_0}$ add to 1, so do the components of ${\bf u_1}=A{\bf u_0}$ Reason:
 - 1. trivial since both $A \& \mathbf{u_0}$ are nonnegative
 - 2. components of $\mathbf{u_0}$ add to 1

$$\Rightarrow$$
 [1, ···, 1] $\mathbf{u_0} = 1$

A is Markov \Rightarrow every column of A adds to $1 \Rightarrow [1, \, \cdots, \, 1]A = [1, \, \cdots, \, 1]$

$$[1, \cdots, 1] A \mathbf{u_0} = [1, \cdots, 1] \mathbf{u_0} = 1$$

 \Rightarrow components of $\mathbf{u_1}$ add to 1

Note: same fact applies to

$$\mathbf{u_2} = A\mathbf{u_1}$$
 , $\mathbf{u_3} = A\mathbf{u_2}$, \cdots

 \Rightarrow every $\mathbf{u_k} = A^k \mathbf{u_0}$ is nonnegative with components adding to 1 $(\mathbf{u_1}, \, \mathbf{u_2}, \, \cdots, \, \mathbf{u_k}, \, \cdots \, \text{are probability vectors.}$ The limit $\mathbf{u_{\infty}}$ is also a probability vector but we have to show that such limit exists)

Note: A^k is also a Markov matrix

$$([1, \dots, 1]A^k = [1, \dots, 1]AA^{k-1} = [1, \dots, 1]A^{k-1}$$

= \dots = [1, \dots, 1]A = 1)

Fraction of rental cars in Denver starts at 0.02 (outside is 0.98)

Every month: 80% of Denver cars stay in Denver (20% leave),

5% of outside cars comes in (95% stay outside)

$$\Rightarrow \begin{bmatrix} u_{Denver} \\ u_{outside} \end{bmatrix}_{t=k+1} = \begin{bmatrix} 0.8 & 0.05 \\ 0.2 & 0.95 \end{bmatrix} \begin{bmatrix} u_{Denver} \\ u_{outside} \end{bmatrix}_{t=k}$$

$$A$$

$$\begin{bmatrix} u_{Denver} \\ u_{outside} \end{bmatrix}_{t=0} = \begin{bmatrix} 0.02 \\ 0.98 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} u_{Denver} \\ u_{outside} \end{bmatrix}_{t=1} = \begin{bmatrix} 0.8 & 0.05 \\ 0.2 & 0.95 \end{bmatrix} \begin{bmatrix} 0.02 \\ 0.98 \end{bmatrix}$$

$$= \begin{bmatrix} 0.065 \\ 0.935 \end{bmatrix}$$

Q: What happens in the long run?

We are studying equations : $\mathbf{u}_{k+1} = A\mathbf{u}_k$

$$\Rightarrow$$
 $\mathbf{u_k} = A^k \mathbf{u_0} = c_1 \lambda_1^k \mathbf{x_1} + \dots + c_n \lambda_n^k \mathbf{x_n}$

Need eigenvalues & eigenvectors to diagonalize A

$$|A - \lambda I| = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 0.75$$

$$\Rightarrow (A - I)\mathbf{x_1} = \mathbf{0} \Rightarrow \mathbf{x_1} = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix}$$
 (components add to 1)

$$(A - 0.75I)\mathbf{x_2} = \mathbf{0} \Rightarrow \mathbf{x_2} = \begin{bmatrix} -1\\1 \end{bmatrix}$$

$$\mathbf{u_0} = \begin{bmatrix} 0.02 \\ 0.98 \end{bmatrix} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2} = 1 \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} + 0.18 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \mathbf{u_k} = 1(1)^k \begin{bmatrix} 0.2\\0.8 \end{bmatrix} + 0.18(0.75)^k \begin{bmatrix} -1\\1 \end{bmatrix}$$

(as $k \rightarrow \infty$) (steady state) (vanishing)


```
(eigenvector with \lambda=1 is the steady-state) (other eigenvector \mathbf{x_2} disappears \because |\lambda|<1) (More steps we take, closer to \mathbf{u}_{\infty}=(0.2,0.8)) (True even when \mathbf{u_0}=(0,1))
```

Fact A is a positive Markov matrix, then $\lambda_1=1$ is larger than $(a_{ij}>0)$

any other eigenvalues. The eigenvector \mathbf{x}_1 is the steady-state

$$\mathbf{u_k} = \mathbf{x_1} + c_2(\lambda_2)^k \mathbf{x_2} + \dots + c_n(\lambda_n)^k \mathbf{x_n}$$

 $\mathbf{u_{\infty}} = \mathbf{x_1}$ for any initial $\mathbf{u_0}$

Reason:

1. $\lambda = 1$ is an eigenvalue:

Every column of A-I adds to 1-1=0

 \Rightarrow rows of A-I add to the zero row

 $\Rightarrow A - I$ is singular

$$\Rightarrow |A - I| = 0 \Rightarrow \lambda = 1$$

Alternative reason:

rows of A-I add to the zero row

$$\Rightarrow [1,\cdots,1](A-I) = [0,\cdots,0]$$

$$\Rightarrow (A^T - I) \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \mathbf{0}$$

- $\Rightarrow \lambda = 1$ is an eigenvalue of A^T
- $\Rightarrow \lambda = 1$ is an eigenvalue of A

$$(|A - \lambda I| = |(A - \lambda I)^T| = |A^T - \lambda I| \Rightarrow A \& A^T$$
 have same eigenvalues)

eigenvalues)

2. No eigenvalue can have $|\lambda| > 1$:

If there is any eigenvalue $|\lambda| > 1$

 $\Rightarrow A^k$ will grow

But A^k is a Markov matrix

- \Rightarrow every column of A^k adds to 1
- \Rightarrow no room to grow \Rightarrow contradiction!
- 3. $c_1 = 1$ if components of $\mathbf{u_0} \& \mathbf{x_1}$ add to 1:

$$[1,\cdots,1]A\mathbf{x_i}=[1,\cdots,1]\lambda_i\mathbf{x_i}$$

$$[1,\cdots,1]\mathbf{x_i} = \lambda_i[1,\cdots,1]\mathbf{x_i}$$

For
$$\lambda_i, i \geq 2, \lambda_i \neq 1 \Rightarrow [1, \cdots, 1]\mathbf{x_i} = 0$$

$$\mathbf{u_0} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2} + \dots + c_n \mathbf{x_n}$$

$$\Rightarrow$$
[1,···,1] $\mathbf{u_0} = c_1$ [1,···,1] $\mathbf{x_1}$

$$\Rightarrow c_1 = 1$$
 if components of $\mathbf{u_0} \ \& \ \mathbf{x_1}$ add to 1

Note: In some applications, Markov matrices are defined differently: rows add up to 1 instead (calculations are transpose of everything we've done here)

Fourier series & projections

Expansion with an orthonormal basis

If we have an orthonormal basis $\mathbf{q_1},\,\mathbf{q_2},\,\cdots,\,\mathbf{q_n},$ we can write any vector as

$$\mathbf{v} = x_1 \mathbf{q_1} + \dots + x_n \mathbf{q_n}$$
where $\mathbf{q_i^T v} = x_1 \mathbf{q_i^T q_1} + \dots + x_i + \dots + x_n \mathbf{q_i^T q_n}$

$$= x_i \ (\mathbf{q_i^T q_j} = \mathbf{0}, \ i \neq j)$$

In terms of matrix:

$$\begin{aligned} [\mathbf{q_1}, \cdots, \mathbf{q_n}] \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix} &= \mathbf{v} \\ \Rightarrow Q\mathbf{x} &= \mathbf{v} \Rightarrow \mathbf{x} = Q^{-1}\mathbf{v} = Q^T\mathbf{v} \\ \Rightarrow x_i &= \mathbf{q_i^T}\mathbf{v} \end{aligned}$$

(key idea: express $\mathbf{v} = \text{combination of projection onto orthonormal basis vectors)}$

Fourier series

```
Same idea on functions! f(x) = a_0 + a_1 cos x + b_1 sin x + a_2 cos 2x + b_2 sin 2x + \cdots (express f(x) as combination of projection onto trigonometric fuctions) (extend to inifinte series) vectors: functions basis: 1. cos x, sin x, cos 2x, sin 2x, \cdots Q: What does orthogonal mean in this context?
```

Need to define inner product first

Vectors in \mathbb{R}^n :

$$\mathbf{v}^{\mathbf{T}}\mathbf{w} = v_1w_1 + v_2w_2 + \dots + v_nw_n$$

For functions:

$$(f.q) = \int_0^{2\pi} f(x)g(x)dx$$

(integrate over $[0, 2\pi]$ since Fourier series are periodic, i.e.,

$$f(x) = f(x + 2\pi)$$

Check orthogonality:

$$\int_{0}^{2\pi} sinxcosxdx = \frac{1}{2}(sinx)^{2}|_{0}^{2\pi} = 0$$

: (inner product=0)

Q: How to find Fourier coefficient a_0, a_1, b_1, \cdots ?

 a_0 : average of f(x)

$$\left(\frac{1}{2\pi} \int_0^{2\pi} f(x) dx = a_0 + \frac{1}{2\pi} \int_0^{2\pi} a_1 \cos x dx + \frac{1}{2\pi} \int_0^{2\pi} b_1 \sin x dx + \dots = a_0\right)$$

$$a_1: \int_0^{2\pi} f(x) cosx dx$$

$$= \int_0^{2\pi} (a_0 + a_1 cosx + b_1 sinx + \cdots) cosx dx$$

$$= 0 + \int_0^{2\pi} a_1 cos^2 x dx + 0 + \cdots$$

$$= \int_0^{2\pi} a_1 \frac{1 + cos2x}{2} dx = \pi a_1$$

$$\Rightarrow a_1 = \frac{1}{\pi} \int_0^{2\pi} f(x) cosx dx$$
Similarly,
$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) coskx dx$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) sinkx dx$$
(read Ex.3, p.449)