### EECS 205003 Session 25

#### Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

### Differential equations & $e^{At}$

### Scalar ODE (one equation)

$$\frac{du}{dt} = \lambda u$$
 has sol.s u(t)= $ce^{\lambda t}$ 

at 
$$t = 0$$
,  $u(0) = c$ 

$$\Rightarrow u(t) = u(0)e^{\lambda t}$$

#### Q:How about n equations?

#### Start with 2 equations

$$\frac{du_1}{dt} = -u_1 + 2u_2$$
 describe how values of var.s  $u_1 \& u_2$  affect

$$\frac{du_2}{dt} = u_1 - 2u_2$$
 each other over time

Just as we apply linear algebra to solve difference equations, we can use it to solve differential equations

**Differential equations:**  $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ 

Let 
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 starting from  $\mathbf{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$   $\Rightarrow A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$ 

We can guess that  $\mathbf{u}=e^{\lambda t}\mathbf{x}$  is a sol. when  $A\mathbf{x}=\lambda\mathbf{x}$ 

(eigenvalue & eigenvectors)

#### Q: Is this true?

$$\frac{d\mathbf{u}}{dt} = \lambda e^{\lambda t} \mathbf{x}$$

$$A\mathbf{u} = e^{\lambda t} A \mathbf{x} = \lambda e^{\lambda t} \mathbf{x}$$

$$\Rightarrow \frac{d\mathbf{u}}{dt} = A\mathbf{u}$$

#### Back to example:

$$A = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} : \mathbf{singular} \Rightarrow \lambda_1 = 0$$
  
$$\mathbf{trace}(A) = -3 = \lambda_1 + \lambda_2 \Rightarrow \lambda_2 = -3$$

### Find corresponding eigenvectors:

$$A\mathbf{x_1} = \mathbf{0} \Rightarrow \mathbf{x_1} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$(A+3I)\mathbf{x_2} = \mathbf{0} \Rightarrow \begin{bmatrix} 2 & 2\\1 & 1 \end{bmatrix} \mathbf{x_2} = \mathbf{0}$$

$$\Rightarrow \mathbf{x_2} = \begin{bmatrix} 1\\-1 \end{bmatrix}$$

$$\Rightarrow \mathbf{u_1}(t) = e^{\lambda_1 t} \mathbf{x_1} = e^{0t} \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$\mathbf{u_2}(t) = e^{\lambda_2 t} \mathbf{x_2} = e^{-3t} \begin{bmatrix} 1\\-1 \end{bmatrix} \text{(pure solutions)}$$

### Complete sol. :

$$\mathbf{u}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(steady state solution) (decays to zero as  $t \to \infty$ )

$$\mathbf{u}(0) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\Rightarrow c_1 = c_2 = \frac{1}{3}$$

$$\mathbf{u}(t) = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\mathbf{u}(\infty) = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 (steady state solution)

#### **Summary:**

- Step 1: Write u(0) as combination  $c_1\mathbf{x_1} + \cdots + c_n\mathbf{x_n}$  of eigenvectors of A
- Step 2: Multiply each eigenvector  $\mathbf{x_i}$  by  $e^{\lambda it}$  (pure solution)
- Step 3: Complete solution is a combination of pure solutions

$$\mathbf{u}(t) = c_1 e^{\lambda_1 t} \mathbf{x_1} + \dots + c_n e^{\lambda_n t} \mathbf{x_n}$$

(Analogy:  $c_1a_1^k\mathbf{x_1} + \cdots + c_n\lambda_n^k\mathbf{x_n}$  solution to difference equations)

### **Stability**

Not all systems have a steady state

- $\Rightarrow$  eigenvalues of A tell us what to expect
- 1. Stability:  $\mathbf{u(t)} \rightarrow \mathbf{0}$  when  $\text{Re}(\lambda) < 0$
- 2. Steady state: One eigenvalue is 0 and all other eigenvalues have negative real parts
- 3. Blow up: Re( $\lambda$ )> 0 for any  $\lambda$

### For $2 \times 2$

Fact For 2×2 matrix 
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 system is stable if Re( $\lambda$ )< 0

$$\Leftrightarrow$$
 trace  $T = a + d < 0 \ (\lambda_1 + \lambda_2 < 0)$ 

$$\det D = ad - bc > 0 \ (\lambda_1 \lambda_2 > 0)$$

Reason:

" $\Rightarrow$ " If  $\lambda$ 's are real & negative

sum = 
$$T < 0$$
,  $\lambda_1 \lambda_2 = D > 0$ 

" $\Leftarrow$ " If D > 0,  $\lambda_1 \lambda_2$  has same sign

If T < 0, both  $\lambda_1, \lambda_2 < 0$ 

### Complex $\lambda$ 's :

$$\lambda_1 = r + is$$
,  $\lambda_2 = r - is$  (otherwise  $T$  is not real)

$$D = \lambda_1 \lambda_2 = r^2 + s^2 > 0$$

$$T = \lambda_1 + \lambda_2 = 2r$$

so if 
$$T < 0 \Rightarrow \text{Re}(\lambda_1)$$
,  $\text{Re}(\lambda_2) < 0$ 

if  $r < 0 \Rightarrow T < 0$ 

### Matrix exponential: $e^{At}$

**Q**: What does  $e^{At}$  mean if A is a matrix ?

Recall: for a real number

$$e^x = 1 + x + \frac{x^2}{2!} + \dots$$



### Define $e^{At}$ using the same formula

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$$

Note 1: derivative of  $e^{At}$ 

$$\frac{de^{At}}{dt} = A + A^2t + \frac{1}{2}A^3t^2 + \dots = Ae^{At}$$

Note 2: eigenvalues of  $e^{At}$ 

$$e^{At}\mathbf{x} = (I + At + \frac{(At)^2}{2!} + \cdots)\mathbf{x}$$
$$= (1 + \lambda t + \frac{(\lambda t)^2}{2!} + \cdots)\mathbf{x}$$
$$= e^{\lambda t}\mathbf{x} \Rightarrow \mathbf{eigenvalues} = e^{\lambda t}$$

Note 3: 
$$e^{At} = Se^{\Lambda t}S^{-1}$$

$$e^{At} = I + At + \frac{(At)^2}{2!} + \cdots$$

$$= SS^{-1} + S\Lambda S^{-1} + S(\frac{\Lambda^2 t^2}{2!})S^{-1} + \cdots$$

$$= Se^{\Lambda t} S^{-1}$$

$$= S \begin{bmatrix} e^{\lambda_1 t} & & & \\ & e^{\lambda_2 t} & & \\ & & \ddots & \\ & & & e^{\lambda_n t} \end{bmatrix} S^{-1}$$

(easier way to compute  $e^{At}$ )

Alternative way to solve:  $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ 

Note:  $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ 

(couples the pure solutions)

Let u=Sv (S: matrix of eigenvectors)

$$\Rightarrow S \frac{d\mathbf{v}}{dt} = AS\mathbf{v}$$

$$\Rightarrow \frac{d\mathbf{v}}{dt} = S^{-1}AS\mathbf{v} = \Lambda\mathbf{v}$$

This diagonalize the system:

$$\frac{dv_i}{dt} = \lambda_i v_i, i = 1, \cdots, n$$

#### **General solution:**

$$\mathbf{v}(t) = e^{\Lambda t} \mathbf{v}(0)$$

$$\Rightarrow S^{-1} \mathbf{u}(t) = e^{\Lambda t} S^{-1} \mathbf{u}(0)$$

$$\Rightarrow \mathbf{u}(t) = S e^{\Lambda t} S^{-1} \mathbf{u}(0) = e^{At} \mathbf{u}(0)$$

#### Recall:

$$\mathbf{u}(0) = c_{1}\mathbf{x}_{1} + c_{2}\mathbf{x}_{2} + \dots + c_{n}\mathbf{x}_{n}$$

$$= S \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} \Rightarrow S^{-1}\mathbf{u}(0) = \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix}$$

$$\Rightarrow e^{At}\mathbf{u}(0) = Se^{\Lambda t}S^{-1}\mathbf{u}(0)$$

$$= \begin{bmatrix} \mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \end{bmatrix} \begin{bmatrix} e^{\lambda_{1}t} \\ \vdots \\ c_{n} \end{bmatrix}$$

$$= c_{1}e^{\lambda_{1}t}\mathbf{x}_{1} + \dots + c_{n}e^{\lambda_{n}t}\mathbf{x}_{n}$$
(same as before)

(read Ex6, p.321)

Note 1:  $e^{At}$  always has inverse  $e^{-At}$ 

Reason: 
$$e^{At} = Se^{\Lambda t}S^{-1}$$

$$\Rightarrow (e^{At})^{-1} = S(e^{\Lambda t})^{-1}S^{-1}$$
  
=  $Se^{-\Lambda t}S^{-1} = e^{-At}$ 

(-A & A have same eigenvectors and eigenvalues with a minus sign)

Note 2: The eigenvalues of  $e^{At}$  are always  $e^{\lambda t}$ 

Reason: 
$$e^{At} = Se^{\Lambda t}S^{-1}$$
 
$$\Rightarrow e^{At}S = Se^{\Lambda t}$$
 
$$\Rightarrow \text{eigenvalues } e^{\lambda_1 t} \cdots e^{\lambda_n t}$$

Note 3: When A is skew-symmetric  $e^{At}$  is orthogonal ( $A^T=-A$ )

(Inverse = tranpose = 
$$e^{-At}$$
)

#### Reason:

$$\begin{split} e^{At} &= I + At + \frac{1}{2!}(At)^2 + \cdots \\ \Rightarrow (e^{At})^T &= I + A^T t + \frac{1}{2!}(A^T t)^2 + \cdots \\ &= I + (-A)t + \frac{1}{2!}(-At)^2 + \cdots \\ &= e^{-At} \end{split}$$

### (Read Ex5 p.320)

#### Second order

$$y'' + by' + ky = 0$$

guess solution  $y = e^{\lambda t}$ 

$$\Rightarrow (\lambda^2 + b\lambda + k)e^{\lambda t} = 0$$

or we can change it into a  $2\times2$  first-order system

Let 
$$\mathbf{u} = \begin{bmatrix} y' \\ y \end{bmatrix}$$
  

$$\Rightarrow \mathbf{u}' = \begin{bmatrix} y'' \\ y' \end{bmatrix} = \begin{bmatrix} -b & -k \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y' \\ y \end{bmatrix}$$

$$\Rightarrow \mathbf{u}' = A\mathbf{u}$$

### Find eigenvalues of A:

$$|A - \lambda I| = \begin{vmatrix} -b - \lambda & -k \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + b\lambda + k = 0$$

(same as before)

eigenvectors: 
$$\mathbf{x_1} = \begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix}$$
,  $\mathbf{x_2} = \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}$ 

$$\Rightarrow \mathbf{u}(t) = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix} + c_2 e^{\lambda_2 t} \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix}$$

```
k-th order equation: we get a k \timesk matrix: coeff. of equation in the 1^{st} row & 1's in the diagonal below that & the rest of entries = 0 (Read Ex4, p.320)
```