EECS 205003 Session 25

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

Che Lin (National Tsing Hua University) EECS 205003 Session 25



Chapter 6 Eigenvalues and Eigenvectors

Differential equations & e

Scalar ODE (one equation)

du __ — oAt
% = Au has sol.s u(t)=ce

att =0, u(0) =c

= u(t) = u(0)eM

Q:How about n equations?
Start with 2 equations

dd% = —uy + 2uy describe how values of var.s u;&us affect
d% =uj; —2uz each other over time

Just as we apply linear algebra to solve difference equations, we can
use it to solve differential equations
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Chapter 6 Eigenvalues and Eigenvectors

Differential equations: %‘; = Au

_|w . |1
Letu = |:U2:| starting from u(0) = [O]
-1 2
S A= [ L 2]

We can guess that u = ¢’

x is a sol. when Ax = \x
(eigenvalue & eigenvectors)

Q: Is this true ?

du __ At du __

Au = eMAx = \eMx

Back to example:

A= [_1 _22] : singular = A\ =0

trace(A) =-3 =X\ + X=X =-3
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Chapter 6 Eigenvalues and Eigenvectors

Find corresponding eigenvectors :

Ax1 =0=x71 = |:i:|

(A+30)xs = 0= ﬁ ﬂ Xz = 0
[
X2 = _1

ug(t) = eMfxg =3t [ 1 } (pure solutions)

Complete sol. :

u(t) =c m + cge™ ¥ [_11]

(steady state solution) (decays to zero as t — o0)
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Chapter 6 Eigenvalues and Eigenvectors
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Summmary:

Step 1: Write u(0) as combination c¢;x3 + - - - + ¢, X, of eigenvectors
of A

Step 2: Multiply each eigenvector x; by ¢ (pure solution)

Step 3: Complete solution is a combination of pure solutions
u(t) = creMixy + -+ + cpetix

(Analogy: cra1*x1 + - -+ + ey "%y, solution to difference equations)
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Chapter 6 Eigenvalues and Eigenvectors

Stability

Not all systems have a steady state

= eigenvalues of A tell us what to expect

1. Stability: u(t) — 0 when Re()\) <0

2. Steady state: One eigenvalue is 0 and all other eigenvalues have
negative real parts

3. Blow up: Re()\)> 0 for any \

For 2x2

For 2x2 matrix A = [Z Z] system is stable if Re(\)< 0

strace T=a+d<0 (A + X2 <0)
det D =ad —bc >0 (A Ay > 0)
Reason:

"="If \'s are real & negative

sum =T7T<0, MqAdo=D >0

Che Lin (National Tsing Hua University) EECS 205003 Session 25 6/14



Chapter 6 Eigenvalues and Eigenvectors

"<" If D >0, A1 )\2 has same sign

If T'<0, both A\, A2 <0

Complex \'s :

A1 =71 +1s, Aa =71 —is (otherwise T" is not real)
D=XMNX=1r24+5>0

T=M4+X=2r

so if T'< 0= Re(\1), Re(A\2)< 0
ifr<0=T<0

Matrix exponential: e

Q: What does ¢! mean if A is a matrix ?
Recall: for a real number

=14z +L 4.
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Chapter 6 Eigenvalues and Eigenvectors

At

Define ¢ using the same formula

At — T4 Ap4 G5 G2
Note 1: derivative of ¢t

dei® — A4 A%+ 5432 4. = Aet

Note 2: eigenvalues of e

eAtx:(I+At+(At)2 + 0 )x

— (I 4+ A 4 x

= eMx = eigenvalues = ¢

Note 3: e4t = SeftS—1

(a2

=SS~ 4 SAST! + S(A;f)s—l o
= Sehtg!

At

A= T4 At +
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Chapter 6 Eigenvalues and Eigenvectors

(easier way to compute ¢4?)
Alternative way to solve: ¥ = Au

dt
Note: 2% = Au

(couples the pure solutions)

Let u=Sv (S: matrix of eigenvectors)
dv

= & = S TASv = Av

This diagonalize the system:

dc;;ﬁi :)\wi,izl, e, N
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Chapter 6 Eigenvalues and Eigenvectors

General solution:

v(t) = eMv(0)

= S~hu(t) = eMS~u(0)

= u(t) = SeMS1u(0) = eA*u(0)

Recall:

u(0) = c1x1 + coXa2 + -+ + CpXn
Cc1 C1

=S|:|=5"u0) =

Cn Cn

= eAtu(0) = SelS~1u(0)

e)qt c1

-

= creMtxy 4+ -+ petntxg

(same as before)
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Chapter 6 Eigenvalues and Eigenvectors

(read Ex6, p.321)
Note 1: ¢”* always has inverse e~ 4
Reason: ¢4t = SeftS—1
= ()1 = §(eMt)-15-1
— Ge—Mtg-1 _ —At
(—A & A have same eigenvectors and eigenvalues with a minus sign)
Note 2: The eigenvalues of ¢! are always et
Reason: et = SeftS—1
= eAtg = Selt

At .. o Ant

= eigenvalues ¢

Note 3: When A is skew-symmetric e/ is orthogonal (A7 = —A)

(Inverse = tranpose = e~ )
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Chapter 6 Eigenvalues and Eigenvectors

Reason:

eM =T+ At + H(At)2 + - -

= (eMT =T+ ATt + H(ATt)? + -
=1+ (—A)t+ 3 (—At)? + -+
A

(Read Ex5 p.320)

Second order

v +by +ky=0

guess solution y = e

= (N +bA+k)eM =0

or we can change it into a 2x2 first-order system
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Chapter 6 Eigenvalues and Eigenvectors

/
Letu=[y]
)

/! /

P 7 I e e A ]

=v=[ =1 VL
=u = Au

Find eigenvalues of A:

—-b—-X\ —k

[A=Arf=| 7 7 )

‘ =X +bA+k=0
(same as before)

eigenvectors: x; = [)\11], X9 = [)\12}
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Chapter 6 Eigenvalues and Eigenvectors

k-th order equation:
we get a k xk matrix:

coeff. of equation in the 1! row & 1's in the diagonal below that &
the rest of entries = 0

(Read Ex4, p.320)
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