EECS 205003 Session 24

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

э

∍

Diagonalization & powers of A

We learned eigenvalues & eigenvectors

 \Rightarrow We can diagonalize a matrix A using eigenvecotrs if A has n independent eigenvectors

Diagonalizize a matrix: $S^{-1}AS = \Lambda$

 $Fact | Suppose n \times n$ matrix A has n independent eigenvectors

 x_1, \ldots, x_n . Put them into columns of an eigenvector matrix

 $S.$ Then $S^{-1}AS$ is the eigenvalue matrix Λ , i.e.,

$$
S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
$$

Reason:

$$
AS = A \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_n} \end{bmatrix}
$$

$$
= \begin{bmatrix} \lambda_1 \mathbf{x_1} & \lambda_2 \mathbf{x_2} & \dots & \lambda_n \mathbf{x_n} \end{bmatrix}
$$

$$
= S \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = S \Lambda
$$

Since columns of S are independent

 $\Rightarrow \; S$ is invertible $\Rightarrow \; S^{-1}$ exists

 $AS = S\Lambda \Rightarrow S^{-1}AS = \Lambda$ or $A = S\Lambda S^{-1}$

Note: A can be diagonalize since S has an inverse

 \Rightarrow without n independent eigenvectors, we cannot diagonalize

Powers of A

Q: What are the eigenvalue & eigenvectors of $A^2?$

```
If A\mathbf{x} = \lambda \mathbf{x}then A(Ax) = \lambda Ax\Rightarrow A^2x = \lambda^2x
(Eigenvalues of A^2 are squares of eigenvalues ofA)(Eigenvectors of A^2 are the same as eigenvectors of A)
```

```
Alternatively,
A = S\Lambda S^{-1}\Rightarrow A^2 = S\Lambda S^{-1}S\Lambda S^{-1} = S\Lambda^2 S^{-1}
```
Similarly, $A^k = S \Lambda^k S^{-1}$ (eigenvalues raised to the k^{th} power)

```
(eigenvectors stay the same)
```
メミメ メミメー

Note 1: we can multiply eigenvectors by nonzero constants

- $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow A(c\mathbf{x}) = \lambda(c\mathbf{x})$
- \Rightarrow cx is also an eigenvector

Note 2: there is no connection between invertibility & diagonalizability

- Invertibility: whether eigenvalues $\lambda = 0$ or $\lambda \neq 0$
- $\lambda = 0 \Rightarrow A\mathbf{x} = \mathbf{0}$ for some nonzero $\mathbf{x} \Rightarrow A$ is singular
- Diagonalizability: whether we have n independent eigenvectors
- A has independent column vector $\Leftrightarrow A$ is invertible
- A has independent eigenvectors $\Leftrightarrow A$ is diagonalizable

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Note 3: Suppose all eigenvalues $\lambda_1 \ldots \lambda_n$ are different

 \Rightarrow eigenvectors $x_1 \dots x_n$ are independent

 \Rightarrow A can be diagonalized Any matrix with no repeated eigenvalues can be diagonalized Reason: check 2×2 case

Suppose $c_1x_1 + c_2x_2 = 0$ ($x_1 \& x_2$: eigenvector) multiplied by $A \Rightarrow c_1 A x_1 + c_2 A x_2 = 0$ \Rightarrow $c_1\lambda_1\mathbf{x}_1 + c_2\lambda_2\mathbf{x}_2 = 0$ multiplied by $\lambda_2 \Rightarrow c_1 \lambda_2 \mathbf{x_1} + c_2 \lambda_2 \mathbf{x_2} = \mathbf{0}$ -)

 $c_1(\lambda_1 - \lambda_2)\mathbf{x_1} = \mathbf{0}$ \Rightarrow c₁ = 0 if $\lambda_1 \neq \lambda_2$ Simil[ar](#page-4-0)ly, $c_2 = 0$, if $\lambda_1 \neq \lambda_2$ $\lambda_1 \neq \lambda_2$ $\lambda_1 \neq \lambda_2$. So x_1 , x_2 are linear i[nd](#page-6-0)e[pe](#page-5-0)[n](#page-6-0)[de](#page-0-0)[nt](#page-14-0)

Ex: powers of
$$
A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}
$$

\n $det(A - \lambda I) = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 0.5$
\n $(A - \lambda_1 I)\mathbf{x_1} = 0 \Rightarrow \mathbf{x_1} = (0.6, 0.4)$
\n $(A - \lambda_2 I)\mathbf{x_2} = 0 \Rightarrow \mathbf{x_2} = (1, -1)$
\n $A = S\Lambda S^{-1}$
\n $\Rightarrow \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$
\nsame *S* for A^2
\n $\Rightarrow A^2 = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^2 & 0 \\ 0 & 0.5^2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$

É

メロトメ 倒 トメ ヨ トメ ヨ ト

$$
\begin{aligned}\n\text{same } S \text{ for } A^k \\
\Rightarrow A^k &= \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 0.5^k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix} \\
\text{Limit } k & \Rightarrow \infty \\
\Rightarrow A^\infty &= \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix} \\
\text{Fact}\n\end{aligned}
$$

If A has n independent eigenvectors with eigenvalue λ_i , then $A^k\rightarrow 0$ as $k\rightarrow\infty$ iff all $|\lambda_i| < 1$ (zero matrix)

4 D F

化重变 化重变

э

Repeated eigenvalues

If A has repeated eigenvalues, it may or may not have independent eigenvectors

$$
\begin{aligned} \text{Ex1: } A &= I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \\ \Rightarrow \lambda_1 &= \lambda_2 = 1 \\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \Rightarrow \text{any } \mathbf{x} \text{ would work} \\ \Rightarrow N(A - I) \text{ is spanned by } \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \end{aligned}
$$

 \Rightarrow independent eigenvectors

4 D F

4 E X 4 E X

$$
\begin{aligned} \text{Ex2:} \ A &= \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \lambda_1 = \lambda_2 = 2\\ (A - \lambda I)\mathbf{x} &= \mathbf{0} \Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \\ \Rightarrow \mathbf{x} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ (N(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) \text{ has } \text{dim=1}) \end{aligned}
$$

⇒ only one eigenvector

 \Rightarrow no independent eigenvectors

Difference equation $u_{k+1} = Au_k$

Starting with u_0

$$
\mathbf{u_{k+1}} = A\mathbf{u_k}
$$
 is a first-order difference equation

sol: $\mathbf{u_k} = A^k \mathbf{u_0}$

4 0 8

造

化重新润滑脂

```
write u_0 as combination of eigenvectors of A
i.e.,
u_0 = c_1x_1 + c_2x_2 + \cdots + c_nx_n= Sc
```
then

$$
A\mathbf{u_0} = c_1\lambda_1\mathbf{x_1} + c_2\lambda_2\mathbf{x_2} + \dots + c_n\lambda_n\mathbf{x_n}
$$

= $S\Lambda\mathbf{c}$

and

$$
A^k \mathbf{u_0} = c_1 \lambda_1^k \mathbf{x_1} + c_2 \lambda_2^k \mathbf{x_2} + \dots + c_n \lambda_n^k \mathbf{x_n}
$$

= $S \Lambda^k \mathbf{c}$
 $\Rightarrow \mathbf{u_k} = A^k \mathbf{u_0} = c_1 \lambda_1^k \mathbf{x_1} + \dots + c_n \lambda_n^k \mathbf{x_n} = S \Lambda^k \mathbf{c}$

造

メ 重 トメ 重 トッ

4 D F

Fibonacci sequence

The sequence: $0, 1, 1, 2, 3, 5, 8, 13, \cdots$

 $F_{k+2} = F_{k+1} + F_k \ \ \left(2^{nd}$ order difference equation)

Q: How do we solve a 2^{nd} order equation?

convert it into 1^{st} -order equations

Let
$$
\mathbf{u_k} = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}
$$
, then
\n
$$
F_{k+2} = F_{k+1} + F_k
$$
\n
$$
F_{k+1} = F_{k+1}
$$
\nequivalent to

$$
\mathbf{u}_{\mathbf{k+1}} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right] \mathbf{u}_{\mathbf{k}}
$$

Step1: Find eigenvalues & eigenvectors

$$
|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0
$$

\n
$$
\Rightarrow \lambda_1 = \frac{1}{2}(1 + \sqrt{5}), \ \lambda_2 = \frac{1}{2}(1 - \sqrt{5})
$$

\nsince $(A - \lambda I)\mathbf{x} = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \mathbf{x} = \mathbf{0}$
\nif $\mathbf{x} = \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \Rightarrow \mathbf{x_1} = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}, \ \mathbf{x_2} = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$

Step2: Find $u_0 = c_1x_1 + c_2x_2$

5

$$
\mathbf{u_0} = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}
$$

\n
$$
\Rightarrow c_1 = -c_2 = \frac{1}{\sqrt{5}}
$$

4 D F

∢ 御 ▶ 《 君 ▶ 《 君 ▶ 》

造

Step3:

$$
\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \mathbf{u_k} = c_1 \lambda_1^k \mathbf{x_1} + c_2 \lambda_2^k \mathbf{x_2}
$$

$$
\Rightarrow F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^k
$$

using eigenvalues & eigenvectors, we obtain closed-form expression

for Fibonacci sequence

 ${\bf Summary:}$ when a sequence evolves overtime following 1^{st} order difference equation \Rightarrow eigenvalues of the system matrix determine long term behavior of the series