EECS 205003 Session 24

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

.∋...>

Diagonalization & powers of A

We learned eigenvalues & eigenvectors

 \Rightarrow We can diagonalize a matrix A using eigenvectors if A has n independent eigenvectors

Diagonalizize a matrix: $S^{-1}AS = \Lambda$

Fact Suppose $n \times n$ matrix A has n independent eigenvectors

 $\mathbf{x_1}, \ldots, \mathbf{x_n}.$ Put them into columns of an eigenvector matrix

S. Then $S^{-1}AS$ is the eigenvalue matrix Λ , i.e.,

$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Reason:

$$AS = A \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \dots & \mathbf{x_n} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 \mathbf{x_1} & \lambda_2 \mathbf{x_2} & \dots & \lambda_n \mathbf{x_n} \end{bmatrix}$$
$$= S \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} = S\Lambda$$

Since columns of S are independent

 $\Rightarrow S$ is invertible $\Rightarrow S^{-1}$ exists

 $AS=S\Lambda\Rightarrow S^{-1}AS=\Lambda \text{ or } A=S\Lambda S^{-1}$

Note: A can be diagonalize since S has an inverse

 \Rightarrow without n independent eigenvectors, we cannot diagonalize

Powers of A

Q: What are the eigenvalue & eigenvectors of A^2 ?

If $A\mathbf{x} = \lambda \mathbf{x}$ then $A(A\mathbf{x}) = \lambda A\mathbf{x}$ $\Rightarrow A^2\mathbf{x} = \lambda^2\mathbf{x}$ (Eigenvalues of A^2 are squares of eigenvalues of A) (Eigenvectors of A^2 are the same as eigenvectors of A)

$$\label{eq:alternatively,} \begin{split} &A = S\Lambda S^{-1} \\ &\Rightarrow A^2 = S\Lambda S^{-1}S\Lambda S^{-1} = S\Lambda^2 S^{-1} \end{split}$$

Similarly, $A^k = S\Lambda^k S^{-1}$ (eigenvalues raised to the k^{th} power)

```
(eigenvectors stay the same)
```

Note 1: we can multiply eigenvectors by nonzero constants

- $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow A(c\mathbf{x}) = \lambda(c\mathbf{x})$
- $\Rightarrow c\mathbf{x}$ is also an eigenvector

Note 2: there is no connection between invertibility & diagonalizability

- Invertibility: whether eigenvalues $\lambda=0$ or $\lambda\neq 0$
- $\lambda = 0 \Rightarrow A\mathbf{x} = \mathbf{0}$ for some nonzero $\mathbf{x} \Rightarrow \mathsf{A}$ is singular
- Diagonalizability: whether we have n independent eigenvectors
- A has independent column vector $\Leftrightarrow A$ is invertible
- A has independent eigenvectors $\Leftrightarrow A$ is diagonalizable

Note 3: Suppose all eigenvalues $\lambda_1 \dots \lambda_n$ are different

 \Rightarrow eigenvectors $\mathbf{x}_1 \dots \mathbf{x}_n$ are independent

 \Rightarrow A can be diagonalized Any matrix with no repeated eigenvalues can be diagonalized Reason: check 2 × 2 case

Suppose $c_1\mathbf{x_1} + c_2\mathbf{x_2} = \mathbf{0}$ ($\mathbf{x_1} \& \mathbf{x_2}$: eigenvector) multiplied by $A \Rightarrow c_1A\mathbf{x_1} + c_2A\mathbf{x_2} = \mathbf{0}$ $\Rightarrow c_1\lambda_1\mathbf{x_1} + c_2\lambda_2\mathbf{x_2} = \mathbf{0}$ multiplied by $\lambda_2 \Rightarrow c_1\lambda_2\mathbf{x_1} + c_2\lambda_2\mathbf{x_2} = \mathbf{0}$ -)

$$\begin{split} c_1(\lambda_1 - \lambda_2) \mathbf{x_1} &= \mathbf{0} \\ \Rightarrow c_1 &= 0 \text{ if } \lambda_1 \neq \lambda_2 \\ \text{Similarly, } c_2 &= 0, \text{ if } \lambda_1 \neq \lambda_2. \text{ So } \mathbf{x_1}, \text{ } \mathbf{x_2} \text{ are linear independent} \end{split}$$

Ex: powers of
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$

 $det(A - \lambda I) = 0 \Rightarrow \lambda_1 = 1, \ \lambda_2 = 0.5$
 $(A - \lambda_1 I)\mathbf{x_1} = 0 \Rightarrow \mathbf{x_1} = (0.6, 0.4)$
 $(A - \lambda_2 I)\mathbf{x_2} = 0 \Rightarrow \mathbf{x_2} = (1, -1)$
 $A = S\Lambda S^{-1}$
 $\Rightarrow \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$
same S for A^2
 $\Rightarrow A^2 = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^2 & 0 \\ 0 & 0.5^2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$

æ

イロト イヨト イヨト イヨト

same S for
$$A^k$$

$$\Rightarrow A^k = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 0.5^k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$$
Limit $k \to \infty$

$$\Rightarrow A^{\infty} = \begin{bmatrix} 0.6 & 1 \\ 0.4 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0.4 & -0.6 \end{bmatrix}$$
Fact

If A has n independent eigenvectors with eigenvalue λ_i , then $A^k \to 0$ as $k \to \infty$ iff all $|\lambda_i| < 1$ (zero matrix)

э

Repeated eigenvalues

If \boldsymbol{A} has repeated eigenvalues, it may or may not have independent eigenvectors

Ex1:
$$A = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\Rightarrow \lambda_1 = \lambda_2 = 1$
 $(A - \lambda I)\mathbf{x} = \mathbf{0} \Rightarrow \text{ any } \mathbf{x} \text{ would work}$
 $\Rightarrow N(A - I) \text{ is spanned by } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $\Rightarrow \mathsf{independent} \ \mathsf{eigenvectors}$

→ ∢ ∃ →

Ex2:
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \lambda_1 = \lambda_2 = 2$$

 $(A - \lambda I)\mathbf{x} = \mathbf{0} \Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0}$
 $\Rightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} (N(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) \text{ has dim} = \mathbf{1})$

 \Rightarrow only one eigenvector

 \Rightarrow no independent eigenvectors

Difference equation $\mathbf{u_{k+1}} = A\mathbf{u_k}$

Starting with \mathbf{u}_0

$${f u_{k+1}}=A{f u_k}$$
 is a first-order difference equation sol: ${f u_k}=A^k{f u_0}$

write
$$\mathbf{u_0}$$
 as combination of eigenvectors of A
i.e.,
 $\mathbf{u_0} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2} + \dots + c_n \mathbf{x_n}$
 $= S\mathbf{c}$

then

$$A\mathbf{u_0} = c_1\lambda_1\mathbf{x_1} + c_2\lambda_2\mathbf{x_2} + \dots + c_n\lambda_n\mathbf{x_n}$$
$$= S\Lambda \mathbf{c}$$

and

$$A^{k}\mathbf{u}_{0} = c_{1}\lambda_{1}^{k}\mathbf{x}_{1} + c_{2}\lambda_{2}^{k}\mathbf{x}_{2} + \dots + c_{n}\lambda_{n}^{k}\mathbf{x}_{n}$$
$$= S\Lambda^{k}\mathbf{c}$$
$$\Rightarrow \mathbf{u}_{k} = A^{k}\mathbf{u}_{0} = c_{1}\lambda_{1}^{k}\mathbf{x}_{1} + \dots + c_{n}\lambda_{n}^{k}\mathbf{x}_{n} = S\Lambda^{k}\mathbf{c}$$

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Fibonacci sequence

The sequence: $0, 1, 1, 2, 3, 5, 8, 13, \cdots$

 $F_{k+2} = F_{k+1} + F_k$ (2nd order difference equation)

Q: How do we solve a 2^{nd} order equation?

convert it into 1^{st} -order equations

Let
$$\mathbf{u_k} = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$
, then
 $F_{k+2} = F_{k+1} + F_k$
 $F_{k+1} = F_{k+1}$
equivalent to

$$\mathbf{u_{k+1}} = \begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix} \mathbf{u_k}$$

Step1: Find eigenvalues & eigenvectors

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0$$

$$\Rightarrow \lambda_1 = \frac{1}{2}(1 + \sqrt{5}), \ \lambda_2 = \frac{1}{2}(1 - \sqrt{5})$$

since $(A - \lambda I)\mathbf{x} = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \mathbf{x} = \mathbf{0}$
if $\mathbf{x} = \begin{bmatrix} \lambda \\ 1 \end{bmatrix} \Rightarrow \mathbf{x_1} = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}, \ \mathbf{x_2} = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$

Step2: Find $\mathbf{u_0} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2}$

$$\mathbf{u_0} = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$$

 $\Rightarrow c_1 = -c_2 = \frac{1}{\sqrt{5}}$

æ

イロト イヨト イヨト ・

Step3:

$$\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \mathbf{u}_{\mathbf{k}} = c_1 \lambda_1^k \mathbf{x}_1 + c_2 \lambda_2^k \mathbf{x}_2$$
$$\Rightarrow F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^k$$

using eigenvalues & eigenvectors, we obtain closed-form expression

for Fibonacci sequence

Summary: when a sequence evolves overtime following 1^{st} order difference equation \Rightarrow eigenvalues of the system matrix determine long term behavior of the series