EECS 205003 Session 23

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

4 D F

∍

Ch6 Eigenvalues and Eigenvectors

• 6.1 Introduction to Eigenvalues

- 6.2 Diagonalizing a Matrix
- 6.3 Applications to Differential Equations
- 6.4 Symmetric Matrices
- **6.5 Positive Definite Matrices**
- 6.6 Similar Matrices
- 6.7 Singular Value Decomposition (SVD)

Eigenvalues & Eigenvectors

Eigenvalues: special numbers associated with a matrix Eigenvectors: special vectors

Q : How special ?

Almost all vectors change direction when multiplied by A but Eigenvectors x are in the same direction as Ax

$$
Def | For an eigenvector of A (non-zero)
$$

 $Ax = \lambda x, \lambda$: eigenvalue

(λ tells whether the special vector x is stretched or shrunk or reversed or left unchanged)

Eigenvalue 0

If eigenvalue $\lambda = 0$, then \exists nonzero x such that $Ax = 0$ $x = 0 \Rightarrow x$ is in nullspace of A \Rightarrow vectors of eigenvalue 0 makes up $N(A)$ If A is singular, then $\lambda = 0$ is an eigenvalue of A (otherwise consider null space: $Ax = 0 = 0x \Rightarrow x = 0 \Rightarrow N(A) = \{0\} \Rightarrow$ contradiction !)

Projection matrix P

Suppose P : projection onto a plane For any vector on the plane, we have $Px_1 = x_1 \Rightarrow x_1$ is an eigenvector with eigenvalue 1 A vector x_2 perpendicular to the plane $Px_2 = 0 \Rightarrow x_2$ is an eigenvector with eigenvalue 0

(nonzero vector $x_2 \in N(A) \Rightarrow A$ singular)

The eigenvectors of P spans the entire space (N[ot](#page-2-0) [tr](#page-4-0)[u](#page-2-0)[e f](#page-3-0)[o](#page-4-0)[r a](#page-0-0)[ny](#page-15-0) [m](#page-0-0)[at](#page-15-0)[ri](#page-0-0)[x\)](#page-15-0)

$$
\begin{aligned} \text{Ex: } P &= \left[\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array} \right] \\ \lambda &= 1 \Rightarrow P\mathbf{x} = \mathbf{x} \Rightarrow \mathbf{x} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \\ \lambda &= 0 \Rightarrow P\mathbf{x} = 0 \Rightarrow \mathbf{x} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \end{aligned}
$$

Note: Since $P = P^{\mathsf{T}}$, eigenvectors are perpendicular (will prove this later)

Ex: The reflection matrix $R=\left[\begin{array}{cc} 0 & 1 \ 1 & 0 \end{array}\right]$ has eigenvalues 1 $\&$ -1 Recall: Eigenvectors for $P: \left[\begin{array}{c} 1 \ 1 \end{array} \right]$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 −1 1 $Rx = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$ $= 1 \cdot \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$ $\Bigg, \lambda = 1$ 1 $Rx = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} 1 \\ -1 \end{array}\right]$ $\Big] = -1 \cdot \Big[\begin{array}{c} 1 \end{array}$ $\Big]$, $\lambda = -1$ −1 \Rightarrow same eigenvectors as P Why? $R = 2P - I$ Æ $e = (1 - P)$ Δ \mathbf{C} $P_1 = \frac{1}{2}$ $= x - 2(7-p)$ $\triangleright \alpha$ $=(2P-I)Z$

If x is an eigenvector of P
\nthen
$$
Px = \lambda x \Rightarrow 2Px = 2\lambda x
$$

\n $\qquad \qquad - \qquad Ix = x$
\n $\qquad \qquad (2P - I)x = (2\lambda - 1)x$
\n $\qquad \qquad \Rightarrow \qquad Rx = (2\lambda - 1)x$
\nSo same eigenvector for R but eigenvalue: $\lambda \rightarrow 2\lambda - 1$

$$
\begin{bmatrix} 1 \\ 1 \end{bmatrix} : 2(1) - 1 = 1
$$

$$
\begin{bmatrix} 1 \\ -1 \end{bmatrix} : 2(0) - 1 = -1
$$

∢ □ ▶ ∢ *⊖*! \rightarrow э. 어서 돈이

×.

重

The equation for eigenvalues

An $n \times n$ matrix will have n eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ Solve $Ax = \lambda x$ to obtain eigenvalues $\&$ eigenvectors $\Rightarrow (A - \lambda I)x = 0$ In order for x to be an eigenvector, $A - \lambda I$ must be singular $\Rightarrow det(A - \lambda I) = 0$ (characteristic polynomial) (involves only λ , not x)

To obtain eigenvectors

For each eigenvalue λ , solve $(A - \lambda I)x = 0$ or $Ax = \lambda x$ (in nullspace of $A - \lambda I$)

Ex:
$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$
 (singular)

When A is singular, $\lambda = 0$ is one of eigenvalues Since $Ax = 0x = 0$ has solutions, vectors in $N(A)$ are eigenvectors By eigenvalue equation,

$$
det(A - \lambda I) = det\begin{bmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix} = (1 - \lambda)(4 - \lambda) - 4
$$

= $\lambda^2 - 5\lambda = \lambda(\lambda - 5) = 0$
 $\Rightarrow \lambda = 0$ (as expected) or $\lambda = 5$

Now, find eigenvectors

$$
(A - 0I)\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ for } \lambda_1 = 0
$$

$$
(A - 5I)\mathbf{x} = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ for } \lambda_2 = 5
$$

(Matrix $A - 0I \& A - 5I$ are singular since $\lambda = 0, \lambda = 5$ are eigenvalues $(-2, 1), (1, 2)$ are in the nullspaces)

→ 御き → 君き → 君き

4 0 F

Note:
$$
\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$
 has same eigenvector as $B = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$
\n $Ax = (B+I)x = \lambda x + x = (\lambda + 1)x$
\n \Rightarrow eigenvalues of A are one plus eigenvalues of B
\nbut eigenvectors stay the same

Bad news:

Elimination does not preserve $\lambda's$

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$
 has $\lambda = 0, \lambda = 5$

$$
U = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}
$$
 has $\lambda = 0, \lambda = 1$

∢ 口 ≯ ∢ 何

∍

メイヨメ

 $\left | \, Fact \, \right |$ Eigenvalues of U sit on its diagonal (pivots) Recall: $detU=u_{11}\cdots u_{nn}$ so $det(U - \lambda I) = (u_{11} - \lambda) \cdots (u_{nn} - \lambda) = 0$ $\Rightarrow \lambda = u_{11}, \lambda = u_{22}, \cdots, \lambda = u_{nn}$ Eigenvalues are changed during row operations !

Good news: When *A* is
$$
n \times n
$$
,
\n(1) $\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn} = \text{trace}(A)$
\nFor 2×2 : $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
\n $det(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc$
\n $= \lambda^2 - (\text{trace}A)\lambda + detA$

∢ ロ ▶ . ∢ 何 ▶ . ∢ ヨ ▶ . ∢ ヨ ▶ . .

In general, $det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$ from LHS, check coefficient for λ^{n-1} $\overline{}$ I $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ I $\overline{}$ I $= (a_{11} - \lambda)C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}$ $a_{11} - \lambda$ · · · · · · · a_{1n} : $a_{22} - \lambda$: $a_{n1} \qquad \cdots \qquad \cdots \qquad a_{nn} - \lambda$ $\overline{}$ I $\overline{}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ for C_{12} , first row & 2nd column are crossed out \Rightarrow $(a_{11} - \lambda)$, $(a_{22} - \lambda)$ are crossed out \Rightarrow degree at most λ^{n-2} Similarly for C_{1i} , $j \neq 1$ So λ^{n-1} comes from $(a_{11}-\lambda)\cdots(a_{nn}-\lambda)$ \Rightarrow coefficient for $\lambda^{n-1}=(-1)^n$ trace A from RHS, $(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \Rightarrow$ coefficient for $\lambda^{n-1} = (-1)^n (\lambda_1 + \cdots + \lambda_n)$ $\Rightarrow \lambda_1 + \cdots + \lambda_n = \text{trace} A$

(2) $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ $\det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) = 0$ (polynomial of degree n) Let $\lambda = 0$, we have $det(A) = \lambda_1, \lambda_1 \cdots \lambda_n$ A caution: If $Ax = \lambda x$, $Bx = \alpha x$ $\Rightarrow (A+B)x = (\lambda + \alpha)x$ So $A + B$ has eigenvalue $\lambda + \alpha$? Not really ! Only true when $A \& B$ have the same eigenvectors Similarly, eigenvalues of $AB \neq \lambda(A)\lambda(B)$

- ← 何 ト → ヨ ト → ヨ ト

Complex eigenvalues

The matrix
$$
Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$
 rotates every vector by 90°

trace $= 0 = \lambda_1 + \lambda_2$, determinant $= 1 = \lambda_1 \lambda_2$ The only real eigenvector is 0 since any other vector changes direction when multiplied by Q

$$
det(A - \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0 \Rightarrow \lambda = i, -i
$$

Note: If $a + bi$ is an eigenvalue $\Rightarrow a - bi$ is also eigenvalue Note: symmetric matrices have Real eigenvalues anti-symmetric matrices have Imaginary eigenvalues $(A^{\mathsf{T}} = -A, \text{ like } Q)$

イロト イ押 トイヨ トイヨ トー ヨ

Triangular matrix & repeated eigenvalues

$$
A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}, \lambda_1 = 3, \lambda_2 = 3
$$

To find eigenvectors,

$$
(A - 3I)x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x = 0
$$

\n
$$
\Rightarrow x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$
, there is NO independent eigenvector x_2

◂**◻▸ ◂◚▸**

3 E K 3 E K

∍