EECS 205003 Session 23

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

.∋...>

Ch6 Eigenvalues and Eigenvectors

• 6.1 Introduction to Eigenvalues

- 6.2 Diagonalizing a Matrix
- 6.3 Applications to Differential Equations
- 6.4 Symmetric Matrices
- 6.5 Positive Definite Matrices
- 6.6 Similar Matrices
- 6.7 Singular Value Decomposition (SVD)

Eigenvalues & Eigenvectors

Eigenvalues: special numbers associated with a matrix Eigenvectors: special vectors

Q: How special ?

Almost all vectors change direction when multiplied by A but Eigenvectors ${\pmb x}$ are in the same direction as $A{\pmb x}$

$$Def$$
 For an eigenvector of A (non-zero)

 $A\boldsymbol{x} = \lambda \boldsymbol{x}, \lambda$: eigenvalue

 $(\lambda \mbox{ tells whether the special vector } {\pmb x} \mbox{ is stretched or shrunk or reversed or left unchanged)}$

Eigenvalue 0

If eigenvalue $\lambda = 0$, then \exists nonzero x such that $Ax = 0x = \mathbf{0} \Rightarrow x$ is in nullspace of A \Rightarrow vectors of eigenvalue 0 makes up N(A)If A is singular, then $\lambda = 0$ is an eigenvalue of A(otherwise consider null space: $Ax = \mathbf{0} = 0x \Rightarrow x = \mathbf{0} \Rightarrow N(A) = \{\mathbf{0}\} \Rightarrow$ contradiction !)

Projection matrix P

Suppose *P*: projection onto a plane For any vector on the plane, we have $Px_1 = x_1 \Rightarrow x_1$ is an eigenvector with eigenvalue 1 *A* vector x_2 perpendicular to the plane $Px_2 = 0 \Rightarrow x_2$ is an eigenvector with eigenvalue 0 (nonzero vector $x_2 \in N(A) \Rightarrow A$ singular)

The eigenvectors of P spans the entire space (Not true for any matrix)

Image: Image:

Ex:
$$P = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

 $\lambda = 1 \Rightarrow P \mathbf{x} = \mathbf{x} \Rightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 $\lambda = 0 \Rightarrow P \mathbf{x} = 0 \Rightarrow \mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Note: Since $P = P^{\mathsf{T}}$, eigenvectors are perpendicular (will prove this later)

6.1 Introduction to Eigenvalues

Ex: The reflection matrix $R=\left[egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight]$ has eigenvalues 1 & -1 Recall: Eigenvectors for P: $\begin{bmatrix} 1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1 \end{bmatrix}$ $R\boldsymbol{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \lambda = 1$ $R\boldsymbol{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -1 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \lambda = -1$ \Rightarrow same eigenvectors as P Why? R = 2P - I1t e= (I-P)2 RX = X - 2e $= \chi - \chi (I - P) \Delta$ Þ X =(2P-I)X

If
$$x$$
 is an eigenvector of P
then $Px = \lambda x \Rightarrow 2Px = 2\lambda x$
 $-)$ $Ix = x$
 $(2P - I)x = (2\lambda - 1)x$
 \Rightarrow $Rx = (2\lambda - 1)x$
So same eigenvector for R but eigenvalue: $\lambda \rightarrow 2\lambda - 1$
 $\begin{bmatrix} 1\\1 \end{bmatrix}$: $2(1) - 1 = 1$

$$\begin{bmatrix} 1\\ -1 \end{bmatrix} : 2(0) - 1 = -1$$

æ

メロト メポト メヨト メヨト

The equation for eigenvalues

An $n \times n$ matrix will have n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ Solve $A \boldsymbol{x} = \lambda \boldsymbol{x}$ to obtain eigenvalues & eigenvectors $\Rightarrow (A - \lambda I) \boldsymbol{x} = \boldsymbol{0}$ In order for \boldsymbol{x} to be an eigenvector, $A - \lambda I$ must be singular $\Rightarrow det(A - \lambda I) = 0$ (characteristic polynomial) (involves only λ , not \boldsymbol{x})

(日)

To obtain eigenvectors

For each eigenvalue λ , solve $(A - \lambda I)x = 0$ or $Ax = \lambda x$ (in nullspace of $A - \lambda I$)

Ex:
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 (singular)

When A is singular, $\lambda = 0$ is one of eigenvalues Since Ax = 0x = 0 has solutions, vectors in N(A) are eigenvectors By eigenvalue equation,

$$det(A - \lambda I) = det \begin{bmatrix} 1 - \lambda & 2\\ 2 & 4 - \lambda \end{bmatrix} = (1 - \lambda)(4 - \lambda) - 4$$
$$= \lambda^2 - 5\lambda = \lambda(\lambda - 5) = 0$$
$$\Rightarrow \lambda = 0 \text{(as expected) or } \lambda = 5$$

Now, find eigenvectors

$$(A - 0I)\boldsymbol{x} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} -2\\ 1 \end{bmatrix} \text{ for } \lambda_1 = 0$$
$$(A - 5I)\boldsymbol{x} = \begin{bmatrix} -4 & 2\\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ 2 \end{bmatrix} \text{ for } \lambda_2 = 5$$

(Matrix A - 0I & A - 5I are singular since $\lambda = 0, \lambda = 5$ are eigenvalues (-2, 1), (1, 2) are in the nullspaces)

< ロト < 同ト < ヨト < ヨト

Note:
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 has same eigenvector as $B = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$
 $Ax = (B+I)x = \lambda x + x = (\lambda + 1)x$
 \Rightarrow eigenvalues of A are one plus eigenvalues of B
but eigenvectors stay the same

Bad news:

Elimination does not preserve $\lambda's$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \text{ has } \lambda = 0, \lambda = 5$$
$$U = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \text{ has } \lambda = 0, \lambda = 1$$

▶ ∢ ∃ ▶

Fact Eigenvalues of U sit on its diagonal (pivots) Recall: $detU=u_{11}\cdots u_{nn}$ so $det(U - \lambda I) = (u_{11} - \lambda)\cdots (u_{nn} - \lambda) = 0$ $\Rightarrow \lambda = u_{11}, \ \lambda = u_{22}, \cdots, \lambda = u_{nn}$ Eigenvalues are changed during row operations !

Good news: When A is
$$n \times n$$
,
(1) $\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn} = \operatorname{trace}(A)$
For 2×2 : $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 $det(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc$
 $= \lambda^2 - (\operatorname{trace} A)\lambda + detA$

6.1 Introduction to Eigenvalues

In general, $det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$ from LHS, check coefficient for λ^{n-1} $a_{11} - \lambda \quad \cdots \quad a_{1n}$ $= (a_{11} - \lambda)C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$ for C_{12} , first row & 2nd column are crossed out $\Rightarrow (a_{11} - \lambda), (a_{22} - \lambda)$ are crossed out \Rightarrow degree at most λ^{n-2} Similarly for C_{1i} , $j \neq 1$ So λ^{n-1} comes from $(a_{11} - \lambda) \cdots (a_{nn} - \lambda)$ \Rightarrow coefficient for $\lambda^{n-1} = (-1)^n$ traceA from RHS. $(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) \Rightarrow$ coefficient for $\lambda^{n-1} = (-1)^n (\lambda_1 + \cdots + \lambda_n)$ $\Rightarrow \lambda_1 + \dots + \lambda_n = \text{trace}A$

6.1 Introduction to Eigenvalues

(2) $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$ $det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) = 0$ (polynomial of degree n) Let $\lambda = 0$, we have $det(A) = \lambda_1, \ \lambda_1 \cdots \lambda_n$ A caution: If $A\mathbf{x} = \lambda \mathbf{x}$. $B\mathbf{x} = \alpha \mathbf{x}$ $\Rightarrow (A+B)\mathbf{x} = (\lambda + \alpha)\mathbf{x}$ So A + B has eigenvalue $\lambda + \alpha$? Not really ! Only true when A & B have the same eigenvectors Similarly, eigenvalues of $AB \neq \lambda(A)\lambda(B)$

- 4 間 と 4 道 と 4 道 と -

Complex eigenvalues

The matrix
$$Q = \left[egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight]$$
 rotates every vector by 90°

trace $= 0 = \lambda_1 + \lambda_2$, determinant $= 1 = \lambda_1 \lambda_2$ The only real eigenvector is **0** since any other vector changes direction when multiplied by Q

$$det(A - \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0 \Rightarrow \lambda = i, -i$$

Note: If a + bi is an eigenvalue $\Rightarrow a - bi$ is also eigenvalue Note: symmetric matrices have Real eigenvalues anti-symmetric matrices have Imaginary eigenvalues $(A^{\mathsf{T}} = -A, \text{ like } Q)$

イロト イヨト イヨト ・

Triangular matrix & repeated eigenvalues

$$A = \begin{bmatrix} 3 & 1\\ 0 & 3 \end{bmatrix}, \lambda_1 = 3, \lambda_2 = 3$$

To find eigenvectors,

$$(A - 3I)\boldsymbol{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$$

$$\Rightarrow \boldsymbol{x_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ there is NO independent eigenvector } \boldsymbol{x_2}$$

3 1 4 3 1