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6.1 Introduction to Eigenvalues

Eigenvalues & Eigenvectors

Eigenvalues: special numbers associated with a matrix
Eigenvectors: special vectors

Q : How special ?

Almost all vectors change direction when multiplied by A but
Eigenvectors x are in the same direction as Ax

Def For an eigenvector of A (non-zero)

Ax = λx, λ: eigenvalue
(λ tells whether the special vector x is stretched or shrunk or reversed or
left unchanged)
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6.1 Introduction to Eigenvalues

Eigenvalue 0

If eigenvalue λ = 0, then ∃ nonzero x such that Ax = 0x = 0⇒ x is in
nullspace of A
⇒ vectors of eigenvalue 0 makes up N(A)
If A is singular, then λ = 0 is an eigenvalue of A
(otherwise consider null space: Ax = 0 = 0x⇒ x = 0⇒ N(A) = {0} ⇒
contradiction !)

Projection matrix P

Suppose P : projection onto a plane
For any vector on the plane, we have
Px1 = x1 ⇒ x1 is an eigenvector with eigenvalue 1
A vector x2 perpendicular to the plane Px2 = 0⇒ x2 is an eigenvector
with eigenvalue 0
(nonzero vector x2 ∈ N(A)⇒ A singular)
The eigenvectors of P spans the entire space (Not true for any matrix)
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6.1 Introduction to Eigenvalues

Ex: P =

[
0.5 0.5
0.5 0.5

]
λ = 1⇒ Px = x⇒ x =

[
1
1

]
λ = 0⇒ Px = 0⇒ x =

[
1
−1

]
Note: Since P = PT, eigenvectors are perpendicular (will prove this later)
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6.1 Introduction to Eigenvalues

Ex: The reflection matrix R =

[
0 1
1 0

]
has eigenvalues 1 & -1

Recall: Eigenvectors for P :

[
1
1

]
,

[
1
−1

]
Rx =

[
0 1
1 0

] [
1
1

]
= 1 ·

[
1
1

]
, λ = 1

Rx =

[
0 1
1 0

] [
1
−1

]
= −1 ·

[
1
−1

]
, λ = −1

⇒ same eigenvectors as P
Why? R = 2P − I
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6.1 Introduction to Eigenvalues

If x is an eigenvector of P
then Px = λx⇒ 2Px = 2λx

−) Ix = x
—————————
(2P − I)x = (2λ− 1)x

⇒ Rx = (2λ− 1)x
So same eigenvector for R but eigenvalue: λ → 2λ− 1[
1
1

]
: 2(1)− 1 = 1[

1
−1

]
: 2(0)− 1 = -1

Che Lin (National Tsing Hua University) EECS 205003 Session 23 7 / 16



6.1 Introduction to Eigenvalues

The equation for eigenvalues

An n× n matrix will have n eigenvalues λ1, λ2, · · · , λn
Solve Ax = λx to obtain eigenvalues & eigenvectors
⇒ (A− λI)x = 0
In order for x to be an eigenvector, A− λI must be singular
⇒ det(A− λI) = 0 (characteristic polynomial)
(involves only λ, not x)
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6.1 Introduction to Eigenvalues

To obtain eigenvectors

For each eigenvalue λ, solve (A− λI)x = 0 or Ax = λx
(in nullspace of A− λI)

Ex: A =

[
1 2
2 4

]
(singular)

When A is singular, λ = 0 is one of eigenvalues
Since Ax = 0x = 0 has solutions, vectors in N(A) are eigenvectors
By eigenvalue equation,

det(A− λI) = det

[
1− λ 2
2 4− λ

]
= (1− λ)(4− λ)− 4

= λ2 − 5λ = λ(λ− 5) = 0
⇒ λ = 0(as expected) or λ = 5
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6.1 Introduction to Eigenvalues

Now, find eigenvectors

(A− 0I)x =

[
1 2
2 4

] [
x1
x2

]
=

[
0
0

]
⇒

[
x1
x2

]
=

[
−2
1

]
for λ1 = 0

(A− 5I)x =

[
−4 2
2 −1

] [
x1
x2

]
=

[
0
0

]
⇒

[
x1
x2

]
=

[
1
2

]
for λ2 = 5

(Matrix A− 0I & A− 5I are singular since λ = 0, λ = 5 are eigenvalues
(−2, 1), (1, 2) are in the nullspaces)
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6.1 Introduction to Eigenvalues

Note:

[
1 2
2 4

]
has same eigenvector as B =

[
0 2
2 3

]
Ax = (B + I)x = λx+ x = (λ+ 1)x
⇒ eigenvalues of A are one plus eigenvalues of B

but eigenvectors stay the same

Bad news:
Elimination does not preserve λ′s

A =

[
1 2
2 4

]
has λ = 0, λ = 5

U =

[
1 2
0 0

]
has λ = 0, λ = 1
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6.1 Introduction to Eigenvalues

Fact Eigenvalues of U sit on its diagonal (pivots)
Recall: detU=u11 · · ·unn
so det(U − λI) = (u11 − λ) · · · (unn − λ) = 0
⇒ λ = u11, λ = u22, · · · , λ = unn
Eigenvalues are changed during row operations !

Good news: When A is n× n,
(1) λ1 + λ2 + · · ·+ λn = a11 + a22 + · · ·+ ann = trace(A)

For 2× 2: A =

[
a b
c d

]
det(A− λI) = λ2 − (a+ d)λ+ ad− bc
= λ2 − (traceA)λ+ detA
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6.1 Introduction to Eigenvalues

In general, det(A− λI) = (λ1 − λ) · · · (λn − λ)
from LHS, check coefficient for λn−1∣∣∣∣∣∣∣∣∣∣
a11 − λ · · · · · · a1n

... a22 − λ
...

...
. . .

...
an1 · · · · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
= (a11 − λ)C11 + a12C12 + · · ·+ a1nC1n

for C12, first row & 2nd column are crossed out ⇒ (a11 − λ), (a22 − λ)
are crossed out ⇒ degree at most λn−2

Similarly for C1j , j 6= 1
So λn−1 comes from (a11 − λ) · · · (ann − λ)
⇒ coefficient for λn−1 = (−1)ntraceA
from RHS,
(λ1 − λ) · · · (λn − λ)⇒ coefficient for λn−1 = (−1)n(λ1 + · · ·+ λn)
⇒ λ1 + · · ·+ λn = traceA
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6.1 Introduction to Eigenvalues

(2) det(A) = λ1λ2 · · ·λn
det(A− λI) = (λ1 − λ) · · · (λn − λ) = 0

(polynomial of degree n)
Let λ = 0, we have det(A) = λ1, λ1 · · ·λn
A caution:
If Ax = λx, Bx = αx
⇒ (A+B)x = (λ+ α)x
So A+B has eigenvalue λ+ α?
Not really !
Only true when A & B have the same eigenvectors
Similarly, eigenvalues of AB 6= λ(A)λ(B)
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6.1 Introduction to Eigenvalues

Complex eigenvalues

The matrix Q =

[
0 −1
1 0

]
rotates every vector by 90◦

trace = 0 = λ1 + λ2, determinant = 1 = λ1λ2
The only real eigenvector is 0 since any other vector changes direction
when multiplied by Q

det(A− λI) =
∣∣∣∣ −λ −1

1 −λ

∣∣∣∣ = λ2 + 1 = 0⇒ λ = i, -i

Note: If a+ bi is an eigenvalue ⇒ a− bi is also eigenvalue
Note: symmetric matrices have Real eigenvalues

anti-symmetric matrices have Imaginary eigenvalues
(AT = −A, like Q)
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6.1 Introduction to Eigenvalues

Triangular matrix & repeated eigenvalues

A =

[
3 1
0 3

]
, λ1 = 3, λ2 = 3

To find eigenvectors,

(A− 3I)x =

[
0 1
0 0

]
x = 0

⇒ x1 =

[
1
0

]
, there is NO independent eigenvector x2
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