
EECS205000: Linear Algebra Spring 2019
College of Electrical Engineering and Computer Science
National Tsing Hua University

Homework #3 Solutions

Coverage: Chapter 1–6
Instructor: Chong-Yung Chi TAs: Amin Jalili, Yi-Wei Li, Ping-Rui Chiang & Guei-Ming Liu

Problem 1. (20 points)

(a) (10 points) Let P and Z be positive semidefinite matrices such that P2 = Z2. Then P = Z.

(b) (10 points) Let A ∈ Rn×n be invertible. Using the result in part (a), prove that there exist unique matrices
Q and P which are orthogonal and positive-semidefinite matrices, respectively such that A = QP.

Solution:

(a) Let α = {x1, . . . ,xn} be an orthonormal basis consisting of eigenvectors of P. then we have

Pxi = λixi, ∀ xi ∈ α.

Then we can write

P2xi = λ2ixi = Z2xi, ∀ xi ∈ α. (1)

Consider the case λi = 0. We have

‖Zxi‖2 = x∗iZ
TZxi = x∗iZ

2xi = x∗iP
2xi = ‖Pxi‖2 = 0,

which implies that Zxi = Pxi = 0. Thus Z and P have the identical eigenspaces.
Now, consider the case λi > 0. By (1) we have

(Z2 − λ2i I)xi = (Z + λiI)(Z− λiI)xi = 0. (2)

Here, Z+λiI is invertible since det(Z+λiI) 6= 0 (otherwise, −λi is a eigenvalue of Z which is impossible).
Then we have

(Z− λiI)xi = 0,

which implies Pxi = λixi = Zxi. This means that P and Z meet on the same basis α and therefore
P = Z. �

(b) By singular value decomposition we have A = UΣVT where UTU = I and VTV = I. Then we can
write

A = (UVT )(VΣVT ) = QP,

where Q , UVT is an orthogonal matrix and P , VΣVT is a positive-semidefinite matrix. By
contradiction assume A = QP = UZ where Q, U are orthogonal matrices and P, Z are positive-
semidefinite matrices. Since A is invertible, P and Z are also invertible. Then we have

UTQ = UTQPP−1 = UTUZP−1 = ZP−1.

Since Q, U are orthogonal matrices, then ZP−1 is also an orthogonal matrix. Then we have

(ZP−1)TZP−1 = P−1ZTZP−1 = I,

which implies that Z2 = P2. Since Z and P are positive-semidefinite matrices, then by part (a) we have
Z = P. �
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Problem 2. (15 points) Let A be an invertible matrix.

(a) (5 points) Show that for any eigenvalue λ of A, λ−1 is an eigenvalue of A−1.

(b) (5 points) Show that the eigenspace of A corresponding to λ is the same as the eigenspace of A−1

corresponding to λ−1.

(c) (5 points) Show that if A is invertible and diagonalizable, then A−1 is also diagonalizable.

Solution:

(a) We know Ax = λx where λ 6= 0 (otherwise if λ = 0, Ax = 0, x 6= 0 which implies A is NOT
INVERTIBLE). Then we can write

A−1Ax = λA−1x =⇒ λ−1x = A−1x.

�

(b) Let Eλ be the eigenspace of A corresponding to λ and Eλ−1 be the eigenspace of A−1 corresponding to
λ−1. If x ∈ Eλ, we have

Ax = λx =⇒ λ−1x = A−1x,

and hence x ∈ Eλ−1 . Conversely, if x ∈ Eλ−1 we have

A−1x = λ−1x =⇒ x = λ−1Ax =⇒ Ax = λx,

and hence x ∈ Eλ. �

(c) Let A be diagonalizable and we can write A = SDS−1 where D = Diag ([λ1, . . . , λn]) is a diagonal
matrix containing the eigenvalues of A. Since A and S are invertible, then we have

A−1 = (SDS−1)−1 = SD−1S−1,

where D−1 = Diag
(
[λ−11 , . . . , λ−1n ]

)
. Thereby, A−1 is diagonalizable. �

Problem 3. (20 points) The matrix A ∈ Rn×n can be written as A = LDU, where L and U are lower
unitriangular and upper unitriangular matrices, respectively, and D is a diagonal matrix. Show that LDU
decomposition can be reduced to A = LDLT if A is a nonsingular symmetric matrix.

Solution:

Suppose A is a nonsingular symmetric matrix. By LDU decomposition we have A = LDU where L and U
are lower unitriangular and upper unitriangular matrices (and hence invertible) with all the diagonal entries
equal to unity, respectively, and D is a diagonal matrix. Clearly, (U−1)TAU−1 is symmetric and we can
write

(U−1)TAU−1 = (U−1)TLDUU−1 = (U−1)TLD.

Since (U−1)TLD is symmetric and (U−1)T is lower unitriangular matrix, those imply that (U−1)TLD is a
diagonal matrix. Besides, (U−1)TL is a diagonal matrix since D is diagonal matrix. Due to that (U−1)T

and L are lower unitriangular matrices, it implies that (UT )−1L = In where In is the n× n identity matrix.
Hence, L = UT . �

Problem 4. (15 points) The Frobenius norm defined for A ∈ Cn×n by ‖A‖F =
(
Tr(AHA)

)1/2
where

Tr(·) denotes the trace of a matrix. Show that

‖A‖F ≤ (rank(A))1/2‖A‖2,

where ‖A‖2 = max‖x‖2=1 ‖Ax‖2 and x is an n× 1 vector.

Solution:
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We know that rank(A) = rank(AHA) and the eigenvalues of AHA are ordered as λmax(AHA) = λ1 ≥ λ2 ≥
. . . ≥ λr > λr+1 = . . . = λn = 0. Then we have

‖A‖F = (Tr(AHA))1/2 =

(
n∑
i=1

λi(A
HA)

)1/2

≤ (rank(A))1/2λ1/2max(AHA).

On the other hand, since AHA is Hermitian we can write AHA = UDUH where U is a unitary matrix and
D is diagonal. Then we have

‖A‖22 = max
‖x‖2=1

‖Ax‖22 = max
‖x‖2=1

xHAHAx = max
‖x‖2=1

xHUDUHx = max
‖y‖2=1

yHDy = max
‖y‖2=1

n∑
i=1

λi|yi|2

≤ λmax(AHA),

and for x to be the corresponding eigenvector of λmax(AHA), ‖Ax‖2 attains its maximum and hence ‖A‖2 =

λ
1/2
max(AHA) and thereby

‖A‖F ≤ (rank(A))1/2‖A‖2.

�

Problem 5. (5 points) Let A =

[
6 −1
3 2

]
. Find a general formula based on n (a positive integer) for An.

Solution:

The idea to solve this problem is by matrix diagonalization where A = UDU−1. For that the characteristic
polynomial is

det (A− λI) = det

([
6− λ −1

3 2− λ

])
= λ2 − 8λ+ 15 = 0, (3)

which implies λ1 = 5 and λ2 = 3. Hence, the eigenvalue matrix is

D =

[
5 0
0 3

]
. (4)

Then we can obtain the matrix containing the eigenvectors of A as

U =

[
1 1/3
1 1

]
. (5)

And its inverse can be obtained as

U−1 =
1

2

[
3 −1
−3 3

]
. (6)

Then we can write

An = (UDU−1)n = (UDU−1)(UDU−1) . . . (UDU−1) = UDnU−1, (7)

and hence we have

An = U

[
5n 0
0 3n

]
U−1 =

1

2

[
1 1/3
1 1

] [
5n 0
0 3n

] [
3 1
−3 3

]
=

1

2

[
3× 5n − 3n 5n + 3n

3× 5n − 3n+1 5n + 3n+1

]
. (8)
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Problem 6. (5 points) Define the matrix A as

1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 0 0 · · · 0

9 0 · · · 0 1 0 · · · 0

0 9 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 9 0 0 · · · 1





n× 2n

2n× n

be a 2n× 2n matrix. Find A` where ` is a positive integer number.

Solution:

This matrix can be easily written in block matrix form as

A =

[
In 0n
9In In

]
.

Then we have

A2 =

[
In 0n
9In In

] [
In 0n
9In In

]
=

[
In 0n

18In In

]
,

A3 =

[
In 0n

18In In

] [
In 0n
9In In

]
=

[
In 0n

27In In

]
,

and finally

A` =

[
In 0n

9`In In

]
.

Problem 7. (5 points) Let V be a finite dimensional vector space with dim(V ) = n. Prove that every
basis for V contains the same number of vectors.

Solution:

Suppose α is a basis for V containing n vectors and β be any arbitrary basis for V containing m vectors.
Then we have:
case 1: if m > n; then, there is a subset S ⊂ β containing n+ 1 vectors. Since S is linearly independent and
V = span{α}, then n+ 1 ≤ n which is a clear contradiction. Hence m ≤ n.
case 2: if m < n; then, there is a subset S ⊂ α containing m + 1 vectors. Since S is linearly independent
and V = span{β}, then m+ 1 ≤ m which is a clear contradiction. Hence m ≥ n. Then by case 1 and case 2
we have n = m and the proof is completed. �

Problem 8. (10 points) Let A =

2 3 0
1 3 1
2 −1 4

. Find J and invertible S such that J = S−1AS where J is

the Jordan canonical form of A.

Solution:
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First, we need to find the eigenvalues and then we have

(2− λ)

∣∣∣∣3− λ 1
−1 4− λ

∣∣∣∣− 3

∣∣∣∣1 1
2 4− λ

∣∣∣∣ = 0,

after simplification we have λ1 = 2, λ2 = 2 and λ3 = 5. The we have

N(A− 2I) = span


−1

0
1

 .

Besides,

N(A− 5I) = span


1

1
1

 .

Then the Jordan matrix is

J =

2 1 0
0 2 0
0 0 5

 .
Moreover, let S = [s1 s2 s3] and for this Jordan decomposition we can write

AS = SJ,

which implies that
[As1 As2 As3] = [2s1 s1 + 2s2 5s3],

and hence

As1 = 2s1 =⇒ (A− 2I)s1 = 0, (9)

As2 = s1 + 2s2 =⇒ (A− 2I)s2 = s1, (10)

As3 = 5s3 =⇒ (A− 5I)s3 = 0, (11)

s1, s2, s3. are linearly independent. (12)

From (9), (10) implies that (A − 2I)2s2 = 0 and together with (2) implies that s2 ∈ N
(
(A− 2I)2

)
but

s2 6∈ N(A− 2I), thereby we have

s2 =

 1/3
−1/3

0

 .
Then

s1 =

−1
0
1

 ∈ N(A− 2I).

Then choose s3 such that s3 ∈ N(A− 5I) and being linearly independent with s1 and s2 as

s3 =

1
1
1

 .
Hence the matrices can be obtained as

S =

−1 1/3 1
0 −1/3 1
1 0 1

 , S−1 =

−1/3 −1/3 2/3
1 −2 1

1/3 1/3 1/3

 .
Problem 9. (10 points) Consider the matrix A =

[
2 −1
1 2

]
.
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(a) (5 points) Find the complete solution for the equation dx(t)
dt = Ax(t) with the initial condition x(0) =

[0 2]T .

(b) (5 points) Find the singular value decomposition as A = UΣVT using diagonalization of the matrix
ATA.

Solution:

(a) We need first to find the eigenvalues and eigenvector of this matrix. We have A = QΛQ−1 where

Λ =

[
2 + i 0

0 2− i

]
, Q =

[
i −i
1 1

]
, Q−1 =

1

2

[
−i 1
i 1

]
.

We know the complete solution for the above linear differential equation is as follows

x(t) = C1e
(2+i)t

[
i
1

]
+ C2e

(2−i)t
[
−i
1

]
,

where by the initial condition we can obtain C1 = C2 = 1. Hence, we have

x(t) = e(2+i)t
[
i
1

]
+ e(2−i)t

[
−i
1

]
.

(b) To find the singular value decomposition, we have

ATA = VΣTUUTΣVT = VΣ2VT =

[
5 0
0 5

]
, V = I,

where I is the identity matrix. Clearly, we have Au1 = σ1v1 and Au2 = σ2v2 where σ1 = σ2 =
√

5.
Then we can obtain

u1 =

√
5

5

[
2
−1

]
,

√
5

5

[
1
2

]
.

And therefore,

U =

√
5

5

[
2 1
−1 2

]
.


