EECS205000: Linear AlgebraSpring 2019College of Electrical Engineering and Computer ScienceNational Tsing Hua University		
Homework $#3$		
Coverage: Chapter 1–6		
Due date: 5 June, 2019		
Instructor: Chong-Yung Chi TAs: Amin Jalili, Yi-Wei Li, Ping-Rui Chiang &	Guei-Ming Liu	

Notice:

- 1. Please hand in your answer sheets by yourself to TAs in the class time or to the WCSP Lab., EECS building, R706, before 23:59 of the due date. No late homework will be accepted.
- 2. This homework includes 9 Problems in 11 pages with 100 points.
- 3. Please justify your answers with clear, logical and solid reasoning or proofs.
- 4. You need to **print** the Problem Set and aanswer the problems in the **blank boxes** after each problem or sub-problm. We provided enough space for every problem. However, if you need more space, you can print it in one-side manner (each page in one side of an A4), and use the back side as an additional space.
- 5. Please do the homework independently by yourself. However, you may discuss with someone else but copyied homework is not allowed. This will show your respect toward the academic integrity.
- 6. Write your name, student ID, email and department on the begining of your ansewr sheets.
- 7. Your legible handwriting is fine. However, you are very welcome to use text formatting packages for writing your answers.

Name	
Student ID	
Department	
Email Address	

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

Problem 1. (20 points)

(a) (10 points) Let \mathbf{P} and \mathbf{Z} be positive semidefinite matrices such that $\mathbf{P}^2 = \mathbf{Z}^2$. Then $\mathbf{P} = \mathbf{Z}$.

(b) (10 points) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be invertible. Using the result in part (a), prove that there exist unique matrices \mathbf{Q} and \mathbf{P} which are orthogonal and positive-semidefinite matrices, respectively such that $\mathbf{A} = \mathbf{Q}\mathbf{P}$.

Problem 2. (15 points) Let A be an invertible matrix.

(a) (5 points) Show that for any eigenvalue λ of **A**, λ^{-1} is an eigenvalue of **A**⁻¹.

(b) (5 points) Show that the eigenspace of **A** corresponding to λ is the same as the eigenspace of \mathbf{A}^{-1} corresponding to λ^{-1} .

(c) (5 points) Show that if **A** is invertible and diagonalizable, then \mathbf{A}^{-1} is also diagonalizable.

Problem 3. (15 points) The matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as $\mathbf{A} = \mathbf{LDU}$, where \mathbf{L} and \mathbf{U} are lower unitriangular and upper unitriangular matrices, respectively, and \mathbf{D} is a diagonal matrix. Show that \mathbf{LDU} decomposition can be reduced to $\mathbf{A} = \mathbf{LDL}^T$ if \mathbf{A} is a nonsingular symmetric matrix.

Problem 4. (15 points) The Frobenius norm defined for $\mathbf{A} \in \mathbb{C}^{n \times n}$ by $\|\mathbf{A}\|_F = (\operatorname{Tr}(\mathbf{A}^H \mathbf{A}))^{1/2}$ where $\operatorname{Tr}(\cdot)$ denotes the trace of a matrix. Show that

$$\|\mathbf{A}\|_F \le (\operatorname{rank}(\mathbf{A}))^{1/2} \|\mathbf{A}\|_2,$$

where $\|\mathbf{A}\|_2 = \max_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2$ and \mathbf{x} is an $n \times 1$ vector.

Problem 5. (5 points) Let $\mathbf{A} = \begin{bmatrix} 6 & -1 \\ 3 & 2 \end{bmatrix}$. Find a general formula based on n (a positive integer) for \mathbf{A}^n .

Problem 6. (5 points) Define the matrix A as

Problem 7. (5 points) Let V be a finite dimensional vector space with dim(V) = n. Prove that every basis for V contains the same number of vectors.

Problem 8. (10 points) Let $\mathbf{A} = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 3 & 1 \\ 2 & -1 & 4 \end{bmatrix}$. Find \mathbf{J} and invertible \mathbf{S} such that $\mathbf{J} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ where \mathbf{J} is the Jordan canonical form of \mathbf{A} .

Problem 9. (10 points) Consider the matrix $\mathbf{A} = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$.

- (a) Find the complete solution for the equation $\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}\mathbf{x}(t)$ with the initial condition $\mathbf{x}(0) = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$.
- (b) Find the singular value decomposition as $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ using diagonalization of the matrix $\mathbf{A}^T \mathbf{A}$.