

Problem 1. (35 points) Which of the following statements is TRUE and which one is FALSE? Justify your answers.

(i) Let $V \triangleq {\mathbf{x} = (x_1, x_2, x_3) | \mathbf{x} \in \mathbb{R}^3}$. Let $\mathbf{y} = (y_1, y_2, y_3), \mathbf{w} = (w_1, w_2, w_3) \in V, t \in \mathbb{R}$ and consider $y + w \triangleq (y_1 + w_1, y_2 + 2w_2, y_3 - 3w_3),$ $t\mathbf{v} \triangleq (tu_1, tu_2, tu_3).$

Then V is a subspace.

- (ii) The set A of all 2×2 lower triangular matrices forms a subspace for the space $\mathbb{R}^{2 \times 2}$.
- (iii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Suppose the system $\mathbf{A}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions and $\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has one solution. This implies the system $ABx = 0_n$ has exactly one solution.
- (iv) Let $A \in \mathbb{R}^{n \times n}$. If **x** is in the nullspace of **A**, then **x** is in the nullspace of A^2 .

(v) The set
$$
\mathcal{B} \triangleq \{(a, b, c) \in \mathbb{R}^3 \mid a = 4b\}
$$
 is not a subspace of \mathbb{R}^3 .

(vi) Let $\mathbf{A} =$ \lceil $\overline{1}$ 1 3 2 4 2 6 1 . Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{b} =$ \lceil $\overline{1}$ b_1 b_2 b_3 1 . This linear system of equations is not consistent for any \bf{b} (i.e., no solution for any \bf{b}).

(vii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{A}\mathbf{B} = \mathbf{I}_n$ where \mathbf{I}_n is the $n \times n$ identity matrix. Then, $rank(\mathbf{A}) = n$.

Solution:

(i) FALSE. Let $y = (y_1, y_2, y_3)$, $\mathbf{w} = (w_1, w_2, w_3)$, $\mathbf{z} = (z_1, z_2, z_3) \in V$, then we have

$$
(\mathbf{y} + \mathbf{w}) + \mathbf{z} = (y_1 + w_1 + z_1, y_2 + 2w_2 + 2z_2, y_3 - 3w_3 - 3z_3),
$$

\n
$$
\mathbf{y} + (\mathbf{w} + \mathbf{z}) = (y_1 + w_1 + z_1, y_2 + 2w_2 + 4z_2, y_3 - 3w_3 + 9z_3),
$$

\n
$$
\implies (\mathbf{y} + \mathbf{w}) + \mathbf{z} \neq \mathbf{y} + (\mathbf{w} + \mathbf{z}),
$$

and hence V lacks the associativity of addition and is not a vector space.

(ii) TRUE. Clearly $\mathbf{0}_{2\times 2} \in \mathcal{A}$. Then, Let $\mathbf{A}_1 = \begin{bmatrix} a_1 & 0 \\ a_2 & d_1 \end{bmatrix}$ c_1 d_1 $\begin{bmatrix} a_2 & 0 \\ 0 & d \end{bmatrix}$ c_2 d_2 $\Big] \in \mathcal{A}$. Then, we have $\mathbf{A}_1 + \mathbf{A}_2 = \begin{bmatrix} a_1 & 0 \\ a_2 & d \end{bmatrix}$ c_1 d_1 $+\begin{bmatrix} a_2 & 0 \\ 0 & a_1 \end{bmatrix}$ c_2 d_2 $=\begin{bmatrix} a_1 + a_2 & 0 \\ 0 & a_1 - a_2 \end{bmatrix}$ $c_1 + c_2 \quad d_1 + d_2$ C \in A .

Also,

$$
\alpha \mathbf{A}_1 = \begin{bmatrix} \alpha a_1 & 0 \\ \alpha c_1 & \alpha d_1 \end{bmatrix} \in \mathcal{A}.
$$

where $\alpha \in \mathbb{R}$. Therefore, A is a subspace of $\mathbb{R}^{2 \times 2}$.

- (iii) FALSE. Since the system $\mathbf{A}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions, this implies \mathbf{A} has a nontrivial nullspace. Moreover, the system $Bx = 0_n$ has one solution and this implies **B** is invertible. Then, for all x such that $Bx \in N(A)$ (i.e., Bx is in the null space of A), we have $ABx = 0_n$. Hence, the system $ABx = 0$ _n has infinitely many solutions.
- (iv) True. Let $A \in \mathbb{R}^{n \times n}$. If **x** is in the nullspace of **A** (i.e., $\mathbf{x} \in N(A)$) we have

$$
\mathbf{A}\mathbf{x} = \mathbf{0}_n,
$$

and then by multiplying from the left side with A we have

$$
\mathbf{A}^2 \mathbf{x} = \mathbf{A} \mathbf{0}_n = \mathbf{0}_n,
$$

and clearly $\mathbf{x} \in N(\mathbf{A}^2)$.

- (v) FALSE. Clearly $0_3 \in \mathcal{B}$. Let $\mathbf{u}_1 = (4b_1, b_1, c_1)$ and $\mathbf{u}_2 = (4b_2, b_2, c_2) \in \mathcal{B}$. Then, $\alpha \mathbf{u}_1 + \beta \mathbf{u}_2 =$ $(4(\alpha b_1 + \beta b_2), \alpha b_1 + \beta b_2, \alpha c_1 + \beta c_2) \in \mathcal{B}$ and hence it is a subspace.
- (vi) FALSE. By reduced row echelon form we have

$$
\begin{bmatrix} 1 & 3 & b_1 \ 2 & 4 & b_2 \ 2 & 6 & b_3 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -2b_1 + 3b_2/2 \\ 0 & 1 & b_1 - b_2/2 \\ 0 & 0 & b_3 - 2b_1 \end{bmatrix},
$$

which implies that this system is consistent when $b_3 = 2b_1$.

(vii) TRUE.

Claim 1: $rank(AB) \leq rank(A)$.

Proof: Suppose by contradiction $rank(AB) > rank(A)$. Let $C(A) = \{Ax \mid x \in \mathbb{R}^{n \times n}\}\$ and $C(AB) =$ ${ABx | x \in \mathbb{R}^{n \times n}}$ be the column spaces of **A** and **AB**, respectively. Then by assumption there exists $y \in C(AB)$ but $y \notin C(A)$. Then, we have

 $ABz = y$,

where $\mathbf{z} \in \mathbb{R}^n$. Clearly, $\mathbf{A}\mathbf{w} = \mathbf{y}$ where $\mathbf{w} \triangleq \mathbf{B}\mathbf{z}$ and hence $\mathbf{y} \in C(\mathbf{A})$. This is a clear contradiction to the first assumption and thereby $rank(AB) \leq rank(A)$.

Clearly by Claim 1 we have $n = rank(I_n) = rank(AB) \le rank(A)$. On the other hand, for $\mathbf{A} \in \mathbb{R}^{n \times n}$ we have $rank(\mathbf{A}) \leq n$. Hence, $rank(\mathbf{A}) = n$.

 \Box

Problem 2. (5 points) Consider the matrix $A =$ \lceil $\Big\}$ 1 −1 −1 1 2 0 2 0 $0 -1 -2 0$ 3 −3 −2 4 1 $\Big\}$. Use elimination steps to find the

matrix **E** such that $EA = I$, where I is the identity matrix.

Solution:

By considering
$$
\mathbf{E}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix}
$$
 we have

$$
\mathbf{E}_1 \mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 2 & 4 & -2 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.
$$

Then by
$$
\mathbf{E}_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}
$$
 we have
\n
$$
\mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \ 0 & 1 & 2 & -2 \ 0 & 0 & 0 & -1 \end{bmatrix}.
$$
\nBy considering $\mathbf{E}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$ we obtain
\n
$$
\mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & -1 \ 0 & 1 & 2 & -2 \ 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \end{bmatrix}.
$$
\nBy $\mathbf{E}_4 = \begin{bmatrix} 1 & 0 & -1 & 0 \ 0 & 1 & -2 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$ we have
\n
$$
\mathbf{E}_4 \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -2 \ 0 & 1 & 0 & -4 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & -1 \end{bmatrix}.
$$
\nFinally, by $\mathbf{E}_5 = \begin{bmatrix} 1 & 0 & 0 & -2 \ 0 & 1 & 0 & -4 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & -1 \end{bmatrix}$
\n
$$
\mathbf{E}_5 \mathbf{E}_4 \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -2 \ 0 & 1 & 0 & -4 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix}.
$$
\nHence, $\mathbf{E} \mathbf{A} = \mathbf{I}$ where $\mathbf{E} = \mathbf{E}_5 \mathbf{E}_4 \mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1 = \begin{bmatrix} 4 &$

- (i) (5 points) Find a decomposition of **A** such that $A = LU$ where L is a lower unitriangular matrix and U is an upper triangular matrix.
- (ii) (5 points) Consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2 & 6 & 19 \end{bmatrix}^T$. Solve this system using the resulting LU decomposition in part (i).

Solution:

(i) By considering
$$
\mathbf{M}_1 = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix}
$$
 we have
\n
$$
\mathbf{M}_1 \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -4 \\ 0 & -6 & -17 \end{bmatrix}.
$$
\n[1 \quad 0 \quad 0]

Then, by
$$
\mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}
$$
 we have

$$
\mathbf{M}_2 \mathbf{M}_1 \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -9 \end{bmatrix}.
$$

Clearly, $\mathbf{U} \triangleq \mathbf{M}_2 \mathbf{M}_1 \mathbf{A}$. And then,

$$
\mathbf{A} = \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \mathbf{U},
$$

which implies $\mathbf{A}=\mathbf{L}\mathbf{U}$ where

$$
\mathbf{L} \triangleq \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}.
$$

 $Ax = LUx = b.$

(ii) Let $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$. Then, we have

Suppose $y \triangleq Ux$. Then,

$$
\mathbf{L}\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 19 \end{bmatrix},
$$

Using forward substitution, we can find

$$
\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 9 \end{bmatrix}.
$$

Finally, doing backward substitution we have

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.
$$

Problem 4. (15 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be two subspaces with dimensions p and q , respectively.

- (i) (5 points) Prove that $W_1 \cap W_2$ is the *largest subspace* of V contained in both W_1 and W_2 .
- (ii) (5 points) Assume $p \geq q$. Show that:

$$
dim(W_1 \cap W_2) \le q.
$$

(iii) (5 points) Let $V = \mathbb{R}^3$ and assume $p > q > 0$. Let $W_1 + W_2 \triangleq {\mathbf{w}_1 + \mathbf{w}_2 \mid \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2}$. Find an example of subspaces W_1 and W_2 such that

$$
dim(W_1 + W_2) = p + q.
$$

Solution:

- (i) Let's first show that $W_1 \cap W_2$ is a subspace. Clearly, $\mathbf{0} \in W_1 \cap W_2$. Let $\mathbf{u}, \mathbf{v} \in W_1 \cap W_2$. Since W_1 is a subspace of V and $W_1 \cap W_2 \subset W_1$, then $\mathbf{u} + \mathbf{v} \in W_1$ and $c\mathbf{u} \in W_1$ where $c \in \mathbb{R}$. Similarly, $\mathbf{u} + \mathbf{v} \in W_2$ and $c\mathbf{u} \in W_2$. This implies $\mathbf{u} + \mathbf{v} \in W_1 \cap W_2$ and $c\mathbf{u} \in W_1 \cap W_2$. Hence, $W_1 \cap W_2$ is closed under addition and scalar multiplication and then $W_1 \cap W_2$ is a subspace of V. Now, we need to show that for any arbitrary subspace $U \subset V$ such that $U \subseteq W_1$ and $U \subseteq W_2$, then $U \subseteq W_1 \cap W_2$. It is true since $u \in W_1$ and $u \in W_2$ implies $u \in W_1 \cap W_2$. Therefore, $W_1 \cap W_2$ is the largest subspace of V contained in W_1 and W_2 and the proof is completed.
- (ii) Clearly, $W_1 \cap W_2 \subset W_2$ and hence $dim(W_1 \cap W_2) \leq dim(W_2) = q$.

$$
\Box
$$

(iii) Suppose W_1 be the xy-plane with dimension $p = 2$ and W_2 be the z-axis with dimension $q = 1$. Then, $W_1 + W_2 = \mathbb{R}^3$ and hence $dim(W_1 + W_2) = p + q = 3$.

Problem 5. (15 points) Let $A =$ \lceil $\overline{1}$ 1 1 1 1 1 −1 −1 −1 1 1 0 0 1 1 1 1 . Let's denote $C(.)$, $N(.)$, $rank(.)$ as the column

space, null space and rank of corresponding matrix, respectively. Find $C(A)$, $N(A)$, $dim(N(A))$, $C(A^T)$, $N({\bf A}^T).$

Solution:

The reduced row echelon form of **A** can be obtained as follows. Let R_i denotes the *i*-th row of the **A**.

$$
\xrightarrow{R_2=R_2+R_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix},
$$

and by swapping the R_2 and R_3 we have

$$
\xrightarrow{R_2 \to R_3 \text{ and } R_3 \to R_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix},
$$

and then,

$$
\xrightarrow{R_1=R_1-R_2 \text{ and } R_3=R_3/2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.
$$

Finally,

$$
\xrightarrow{R_2=R_2-R_3} rref(\mathbf{A}) = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.
$$

Clearly, the first, third and fourth columns are linearly independent and hence $rank(A) = 3$ and $dim(N(A)) =$ $5 - 3 = 2.$

$$
C(\mathbf{A}) = span\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.
$$

Then,

$$
\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + x_4\mathbf{a}_4 + x_5\mathbf{a}_5 = \mathbf{0}_5,
$$

where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$ are the columns of $rref(\mathbf{A}^T)$ and $\mathbf{a}_1 = \mathbf{a}_2, \mathbf{a}_4 = \mathbf{a}_5$. Hence, we can write

$$
(x_1 + x_2)\mathbf{a}_1 + x_3\mathbf{a}_3 + (x_4 + x_5)\mathbf{a}_4 = \mathbf{0}_3
$$

and since \mathbf{a}_1 , \mathbf{a}_3 and \mathbf{a}_4 are independent then

$$
x_1 + x_2 = 0,
$$

$$
x_4 + x_5 = 0,
$$

and therefore

$$
N(\mathbf{A}) = span \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} \right\}.
$$

$$
\mathbf{A}^T = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},
$$

Besides,

and the reduced row echelon form of A^T can be obtained as follows. Let R_i denotes the *i*-th row of the A^T .

$$
\frac{R_2 = R_2 - R_1 \, , \, R_3 = R_3 - R_1}{R_4 = R_4 - R_1 \text{ and } R_5 = R_5 - R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix},
$$

and by swapping the \mathbb{R}_2 and \mathbb{R}_4 we have

$$
\xrightarrow{R_2 \to R_4 \text{ and } R_4 \to R_2} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix},
$$

and then,

$$
\frac{R_5 = R_5 - R_2 \ , \ R_1 = R_1 + R_2/2}{R_2 = R_2/2} \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
$$

Finally,

$$
\xrightarrow{R_1=R_1-R_3/2, R_2=R_2-R_3/2} rref(\mathbf{A}^T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Clearly, $rank(\mathbf{A}^T) = 3$ and $dim(N(\mathbf{A}^T)) = 3 - 3 = 0$. Then,

$$
C(\mathbf{A}^T) = span\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ and } N(\mathbf{A}^T) = \{0_3\}.
$$

Problem 6. (10 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be two subspaces. Then sum of the two subspaces is defined as

$$
S = W_1 + W_2 \triangleq \{ \mathbf{w}_1 + \mathbf{w}_2 \, | \, \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2 \}.
$$

Then we define *direct sum* of the two subspaces as

$$
\mathcal{S} \triangleq W_1 \oplus W_2,
$$

if: (1) $S = W_1 + W_2$ and (2) $W_1 \cap W_2 = \{0\}$ (here \oplus accounts for the direct sum).

- (i) (5 points) Prove that $V = W_1 \oplus W_2$ if and only if any vector $\mathbf{v} \in V$ can be uniquely written as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W_1$ and $\mathbf{v}_2 \in W_2$.
- (ii) (5 points) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Solution:

(i) (\Rightarrow) Suppose $V = W_1 \oplus W_2$ and let $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 = \mathbf{w}_1 + \mathbf{w}_2$ where $\mathbf{v}_1, \mathbf{w}_1 \in W_1$ and $\mathbf{v}_2, \mathbf{w}_2 \in W_2$. Since W_1 and W_2 are subspaces, clearly $\mathbf{v}_1 - \mathbf{w}_1 \in W_1$ and $\mathbf{v}_2 - \mathbf{w}_2 \in W_2$. Then, $\mathbf{v}_1 - \mathbf{w}_1 = \mathbf{w}_2 - \mathbf{v}_2 \in W_2$. Since $W_1 \cap W_2 = \{0\}$, then $\mathbf{v}_1 = \mathbf{w}_1$ and $\mathbf{v}_2 = \mathbf{w}_2$. Hence, $\mathbf{v} \in V$ can be written as the sum of two vectors in W_1 and W_2 . (∈) Suppose for any $\mathbf{v} \in V$ we have $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W_1$ and $\mathbf{v}_2 \in W_2$. Let $V = W_1 + W_2$ where $W_1 \cap W_2 \neq \{0\}$. Suppose by contradiction $\mathbf{w} \in W_1 \cap W_2$ and $\mathbf{w} \neq \mathbf{0}$. Then we can write $\mathbf{w} = \mathbf{w} + \mathbf{0}$ where $\mathbf{w} \in W_1$ and $\mathbf{0} \in W_2$ or $\mathbf{w} = \mathbf{0} + \mathbf{w}$ where $\mathbf{0} \in W_1$ and $\mathbf{w} \in W_2$. Hence, it is a clear contraction

with the first assumption and hence $V = W_1 \oplus W_2$.

(ii) (\Leftarrow) If $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then clearly $W_1 \cup W_2 = W_1$ or W_2 wheih is a subspace in either case. (\Rightarrow) Assume by contradiction $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$. This implies there are $\mathbf{w}_1 \in W_1$ but $\mathbf{w}_1 \notin W_2$ and $\mathbf{w}_2 \in W_2$ but $\mathbf{w}_2 \notin W_1$. Then, clearly $\mathbf{w}_1 + \mathbf{w}_2 \in W_1 \cup W_2$ (i.e., $\mathbf{w}_1 + \mathbf{w}_2 \in W_1$ or W_2) since $W_1 \cup W_2$ is a subspace of V. Consider the case $\mathbf{w}_1 + \mathbf{w}_2 \in W_1$. Clearly, $(\mathbf{w}_1 + \mathbf{w}_2) - \mathbf{w}_1 \in W_1$ and hence $\mathbf{w}_2 \in W_1$. This is a clear contradiction to the assumption that $\mathbf{w}_2 \in W_2$ but $\mathbf{w}_2 \notin W_1$ and the proof is completed. \Box

Problem 7. (10 points) Let
$$
\mathbf{w}_1 = \begin{bmatrix} 3 \\ 3 \\ 9 \\ 6 \end{bmatrix}
$$
, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ \beta \\ 3 \\ 2 \end{bmatrix}$ and $\mathbf{w}_3 = \begin{bmatrix} 2 \\ 3 \\ 3\beta \\ 2\beta \end{bmatrix}$ where $\alpha \in \mathbb{R}$.

- (i) (5 points) Find the values of β such that \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 are linearly independent.
- (ii) (5 points) Find the values of β such that $\mathbf{w}_3 \in span{\mathbf{w}_1, \mathbf{w}_2}$.

Solution:

(i) For w_1, w_2 and w_3 to be linearly independent, we must have

$$
c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3 = 0,
$$

if and only if $c_1 = c_2 = c_3 = 0$. Then,

$$
\begin{bmatrix} 3 & 1 & 2 & 0 \ 3 & \beta & 3 & 0 \ 9 & 3 & 3\beta & 0 \ 6 & 2 & 2\beta & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 2 & 0 \ 0 & \beta - 1 & 1 & 0 \ 0 & 0 & 3\beta - 6 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix},
$$

which implies that $\beta \neq 1$ and $\beta \neq 2$.

(ii) We have $\mathbf{w}_3 \in \text{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ if and only if $\mathbf{w}_3 = c_1\mathbf{w}_1 + c_2\mathbf{w}_2$ where $c_1, c_2 \in \mathbb{R}$. We can write

$$
\begin{bmatrix} 3 & 1 & 2 \ 3 & \beta & 3 \ 9 & 3 & 3\beta \ 6 & 2 & 2\beta \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 2 \ 0 & \beta - 1 & 1 \ 0 & 0 & 3\beta - 6 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$

For $\beta = 2$ this system is consistent and hence $c_1 = 1/3$ and $c_2 = 1$.