EECS205000: Linear AlgebraSpring 2019College of Electrical Engineering and Computer ScienceSpring 2019National Tsing Hua UniversitySpring 2019	
Homework $\#1$ Solutions	
Coverage: Chapter 1–3	
Instructor: Chong-Yung Chi	TAs: Amin Jalili, Yi-Wei Li & Ping-Rui Chiang

Problem 1. (35 points) Which of the following statements is TRUE and which one is FALSE? Justify your answers.

(i) Let $V \triangleq \{\mathbf{x} = (x_1, x_2, x_3) \mid \mathbf{x} \in \mathbb{R}^3\}$. Let $\mathbf{y} = (y_1, y_2, y_3), \mathbf{w} = (w_1, w_2, w_3) \in V, t \in \mathbb{R}$ and consider $\mathbf{y} + \mathbf{w} \triangleq (y_1 + w_1, y_2 + 2w_2, y_3 - 3w_3),$ $t\mathbf{y} \triangleq (ty_1, ty_2, ty_3).$

Then V is a subspace.

- (ii) The set \mathcal{A} of all 2×2 lower triangular matrices forms a subspace for the space $\mathbb{R}^{2 \times 2}$.
- (iii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Suppose the system $\mathbf{A}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions and $\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has one solution. This implies the system $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has exactly one solution.
- (iv) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. If \mathbf{x} is in the nullspace of \mathbf{A} , then \mathbf{x} is in the nullspace of \mathbf{A}^2 .

(v) The set
$$\mathcal{B} \triangleq \{(a, b, c) \in \mathbb{R}^3 \mid a = 4b\}$$
 is not a subspace of \mathbb{R}^3 .

(vi) Let $\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 2 & 6 \end{bmatrix}$. Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{x} \in \mathbb{R}^2$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. This linear system of equations is not consistent for any \mathbf{b} (i.e., no solution for any \mathbf{b}).

(vii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $\mathbf{AB} = \mathbf{I}_n$ where \mathbf{I}_n is the $n \times n$ identity matrix. Then, $rank(\mathbf{A}) = n$.

Solution:

(i) FALSE. Let $\mathbf{y} = (y_1, y_2, y_3), \mathbf{w} = (w_1, w_2, w_3), \mathbf{z} = (z_1, z_2, z_3) \in V$, then we have

$$(\mathbf{y} + \mathbf{w}) + \mathbf{z} = (y_1 + w_1 + z_1, y_2 + 2w_2 + 2z_2, y_3 - 3w_3 - 3z_3),$$

$$\mathbf{y} + (\mathbf{w} + \mathbf{z}) = (y_1 + w_1 + z_1, y_2 + 2w_2 + 4z_2, y_3 - 3w_3 + 9z_3),$$

$$\implies (\mathbf{y} + \mathbf{w}) + \mathbf{z} \neq \mathbf{y} + (\mathbf{w} + \mathbf{z}),$$

and hence V lacks the associativity of addition and is not a vector space.

(ii) TRUE. Clearly $\mathbf{0}_{2\times 2} \in \mathcal{A}$. Then, Let $\mathbf{A}_1 = \begin{bmatrix} a_1 & 0 \\ c_1 & d_1 \end{bmatrix} \in \mathcal{A}$ and $\mathbf{A}_2 = \begin{bmatrix} a_2 & 0 \\ c_2 & d_2 \end{bmatrix} \in \mathcal{A}$. Then, we have $\mathbf{A}_1 + \mathbf{A}_2 = \begin{bmatrix} a_1 & 0 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & 0 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & 0 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix} \in \mathcal{A}$.

Also,

$$\alpha \mathbf{A}_1 = \begin{bmatrix} \alpha a_1 & 0 \\ \alpha c_1 & \alpha d_1 \end{bmatrix} \in \mathcal{A}.$$

where $\alpha \in \mathbb{R}$. Therefore, \mathcal{A} is a subspace of $\mathbb{R}^{2 \times 2}$.

- (iii) FALSE. Since the system $\mathbf{A}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions, this implies \mathbf{A} has a nontrivial nullspace. Moreover, the system $\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has one solution and this implies \mathbf{B} is invertible. Then, for all \mathbf{x} such that $\mathbf{B}\mathbf{x} \in N(\mathbf{A})$ (i.e., $\mathbf{B}\mathbf{x}$ is in the null space of \mathbf{A}), we have $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}_n$. Hence, the system $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}_n$ has infinitely many solutions.
- (iv) True. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. If \mathbf{x} is in the nullspace of \mathbf{A} (i.e., $\mathbf{x} \in N(\mathbf{A})$) we have

$$\mathbf{A}\mathbf{x} = \mathbf{0}_n$$

and then by multiplying from the left side with \mathbf{A} we have

$$\mathbf{A}^2\mathbf{x} = \mathbf{A}\mathbf{0}_n = \mathbf{0}_n$$

and clearly $\mathbf{x} \in N(\mathbf{A}^2)$.

- (v) FALSE. Clearly $\mathbf{0}_3 \in \mathcal{B}$. Let $\mathbf{u}_1 = (4b_1, b_1, c_1)$ and $\mathbf{u}_2 = (4b_2, b_2, c_2) \in \mathcal{B}$. Then, $\alpha \mathbf{u}_1 + \beta \mathbf{u}_2 = (4(\alpha b_1 + \beta b_2), \alpha b_1 + \beta b_2, \alpha c_1 + \beta c_2) \in \mathcal{B}$ and hence it is a subspace.
- (vi) FALSE. By reduced row echelon form we have

$$\begin{bmatrix} 1 & 3 & b_1 \\ 2 & 4 & b_2 \\ 2 & 6 & b_3 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 & -2b_1 + 3b_2/2 \\ 0 & 1 & b_1 - b_2/2 \\ 0 & 0 & b_3 - 2b_1 \end{bmatrix},$$

which implies that this system is consistent when $b_3 = 2b_1$.

(vii) TRUE.

Claim 1: $rank(\mathbf{AB}) \leq rank(\mathbf{A})$.

Proof: Suppose by contradiction $rank(\mathbf{AB}) > rank(\mathbf{A})$. Let $C(\mathbf{A}) = {\mathbf{Ax} \mid \mathbf{x} \in \mathbb{R}^{n \times n}}$ and $C(\mathbf{AB}) = {\mathbf{ABx} \mid \mathbf{x} \in \mathbb{R}^{n \times n}}$ be the column spaces of \mathbf{A} and \mathbf{AB} , respectively. Then by assumption there exists $\mathbf{y} \in C(\mathbf{AB})$ but $\mathbf{y} \notin C(\mathbf{A})$. Then, we have

ABz = y,

where $\mathbf{z} \in \mathbb{R}^n$. Clearly, $\mathbf{A}\mathbf{w} = \mathbf{y}$ where $\mathbf{w} \triangleq \mathbf{B}\mathbf{z}$ and hence $\mathbf{y} \in C(\mathbf{A})$. This is a clear contradiction to the first assumption and thereby $rank(\mathbf{A}\mathbf{B}) \leq rank(\mathbf{A})$.

Clearly by Claim 1 we have $n = rank(\mathbf{I}_n) = rank(\mathbf{AB}) \leq rank(\mathbf{A})$. On the other hand, for $\mathbf{A} \in \mathbb{R}^{n \times n}$ we have $rank(\mathbf{A}) \leq n$. Hence, $rank(\mathbf{A}) = n$.

Problem 2. (5 points) Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 2 & 0 & 2 & 0 \\ 0 & -1 & -2 & 0 \\ 3 & -3 & -2 & 4 \end{bmatrix}$. Use elimination steps to find the matrix \mathbf{E} such that $\mathbf{E} \mathbf{A} = \mathbf{L}$ where \mathbf{L} is the identity matrix.

matrix \mathbf{E} such that $\mathbf{E}\mathbf{A} = \mathbf{I}$, where \mathbf{I} is the identity matrix.

Solution:

By considering
$$\mathbf{E}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{bmatrix}$$
 we have
$$\mathbf{E}_{1}\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 2 & 4 & -2 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Then by
$$\mathbf{E}_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1/2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 we have

$$\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$
By considering $\mathbf{E}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ we obtain

$$\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$
By $\mathbf{E}_{4} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ we have

$$\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$
Finally, by $\mathbf{E}_{5} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ we have

$$\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
Hence, $\mathbf{E}\mathbf{A} = \mathbf{I}$ where $\mathbf{E} = \mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1} = \begin{bmatrix} 4 & 0 & -1 & -1 \\ 8 & -1 & -3 & -2 \\ -4 & 1/2 & 1 & 1 \\ 1 & -1/2 & -1 & 0 \end{bmatrix}.$
Problem 3. (10 points) Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 4 \end{bmatrix}.$

- (i) (5 points) Find a decomposition of \mathbf{A} such that $\mathbf{A} = \mathbf{L}\mathbf{U}$ where \mathbf{L} is a lower unitriangular matrix and \mathbf{U} is an upper triangular matrix.
- (ii) (5 points) Consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2 & 6 & 19 \end{bmatrix}^T$. Solve this system using the resulting LU decomposition in part (i).

Solution:

(i) By considering
$$\mathbf{M}_1 = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix}$$
 we have
$$\mathbf{M}_1 \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -4 \\ 0 & -6 & -17 \end{bmatrix}.$$

Then, by
$$\mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$
 we have

$$\mathbf{M}_2 \mathbf{M}_1 \mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -4 \\ 0 & 0 & -9 \end{bmatrix}.$$

Clearly, $\mathbf{U} \triangleq \mathbf{M}_2 \mathbf{M}_1 \mathbf{A}$. And then,

$$\mathbf{A} = \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \mathbf{U},$$

which implies $\mathbf{A} = \mathbf{L}\mathbf{U}$ where

$$\mathbf{L} \triangleq \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}.$$

Ax = LUx = b.

(ii) Let $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$. Then, we have

Suppose $\mathbf{y} \triangleq \mathbf{U}\mathbf{x}$. Then,

$$\mathbf{Ly} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 19 \end{bmatrix},$$

Using forward substitution, we can find

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 9 \end{bmatrix}.$$

Finally, doing backward substitution we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

Problem 4. (15 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be two subspaces with dimensions p and q, respectively.

- (i) (5 points) Prove that $W_1 \cap W_2$ is the *largest subspace* of V contained in both W_1 and W_2 .
- (ii) (5 points) Assume $p \ge q$. Show that:

$$\dim(W_1 \cap W_2) \le q.$$

(iii) (5 points) Let $V = \mathbb{R}^3$ and assume p > q > 0. Let $W_1 + W_2 \triangleq \{\mathbf{w}_1 + \mathbf{w}_2 \mid \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2\}$. Find an example of subspaces W_1 and W_2 such that

$$\dim(W_1 + W_2) = p + q.$$

Solution:

- (i) Let's first show that $W_1 \cap W_2$ is a subspace. Clearly, $\mathbf{0} \in W_1 \cap W_2$. Let $\mathbf{u}, \mathbf{v} \in W_1 \cap W_2$. Since W_1 is a subspace of V and $W_1 \cap W_2 \subset W_1$, then $\mathbf{u} + \mathbf{v} \in W_1$ and $c\mathbf{u} \in W_1$ where $c \in \mathbb{R}$. Similarly, $\mathbf{u} + \mathbf{v} \in W_2$ and $c\mathbf{u} \in W_2$. This implies $\mathbf{u} + \mathbf{v} \in W_1 \cap W_2$ and $c\mathbf{u} \in W_1 \cap W_2$. Hence, $W_1 \cap W_2$ is closed under addition and scalar multiplication and then $W_1 \cap W_2$ is a subspace of V. Now, we need to show that for any arbitrary subspace $U \subset V$ such that $U \subseteq W_1$ and $U \subseteq W_2$, then $U \subseteq W_1 \cap W_2$. It is true since $\mathbf{u} \in W_1$ and $\mathbf{u} \in W_2$ implies $\mathbf{u} \in W_1 \cap W_2$. Therefore, $W_1 \cap W_2$ is the largest subspace of V contained in W_1 and W_2 and the proof is completed.
- (ii) Clearly, $W_1 \cap W_2 \subset W_2$ and hence $\dim(W_1 \cap W_2) \leq \dim(W_2) = q$.

(iii) Suppose W_1 be the xy-plane with dimension p = 2 and W_2 be the z-axis with dimension q = 1. Then, $W_1 + W_2 = \mathbb{R}^3$ and hence $dim(W_1 + W_2) = p + q = 3$.

Problem 5. (15 points) Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$. Let's denote C(.), N(.), rank(.) as the column space, null space and rank of corresponding matrix, respectively. Find $C(\mathbf{A})$, $N(\mathbf{A})$, $dim(N(\mathbf{A}))$, $C(\mathbf{A}^T)$,

 $N(\mathbf{A}^T).$

Solution:

The reduced row echelon form of A can be obtained as follows. Let R_i denotes the *i*-th row of the A.

$$\xrightarrow{R_2=R_2+R_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix},$$

and by swapping the R_2 and R_3 we have

$$\xrightarrow{R_2 \to R_3 \text{ and } R_3 \to R_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix}$$

and then,

$$\xrightarrow{R_1 = R_1 - R_2 \text{ and } R_3 = R_3/2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Finally,

$$\xrightarrow{R_2 = R_2 - R_3} rref(\mathbf{A}) = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Clearly, the first, third and fourth columns are linearly independent and hence $rank(\mathbf{A}) = 3$ and $dim(N(\mathbf{A})) =$ 5 - 3 = 2. 7 6 7 6 7 8

$$C(\mathbf{A}) = span\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

Then,

$$\mathbf{A}\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + x_4\mathbf{a}_4 + x_5\mathbf{a}_5 = \mathbf{0}_5$$

where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5$ are the columns of $rref(\mathbf{A}^T)$ and $\mathbf{a}_1 = \mathbf{a}_2, \mathbf{a}_4 = \mathbf{a}_5$. Hence, we can write

$$(x_1 + x_2)\mathbf{a}_1 + x_3\mathbf{a}_3 + (x_4 + x_5)\mathbf{a}_4 = \mathbf{0}_3$$

and since \mathbf{a}_1 , \mathbf{a}_3 and \mathbf{a}_4 are independent then

$$x_1 + x_2 = 0, x_4 + x_5 = 0,$$

and therefore

$$N(\mathbf{A}) = span \left\{ \begin{bmatrix} 1\\ -1\\ 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0\\ -1\\ 1 \end{bmatrix} \right\}$$
$$\mathbf{A}^{T} = \begin{bmatrix} 1 & -1 & 0\\ 1 & -1 & 0\\ 1 & -1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix},$$

Besides,

and the reduced row echelon form of \mathbf{A}^T can be obtained as follows. Let R_i denotes the *i*-th row of the \mathbf{A}^T .

$$\xrightarrow{R_2 = R_2 - R_1, R_3 = R_3 - R_1}_{R_4 = R_4 - R_1 \text{ and } R_5 = R_5 - R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \\ \end{pmatrix},$$

and by swapping the R_2 and R_4 we have

$$\xrightarrow{R_2 \to R_4 \text{ and } R_4 \to R_2} \begin{cases} 1 & -1 & 0\\ 0 & 2 & 1\\ 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 2 & 1 \end{bmatrix},$$

and then,

$$\xrightarrow[R_5=R_5-R_2, R_1=R_1+R_2/2]{R_2=R_2/2} \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

Finally,

$$\underbrace{R_1 = R_1 - R_3/2, R_2 = R_2 - R_3/2}_{R_1 = R_2 - R_3/2} rref(\mathbf{A}^T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Clearly, $rank(\mathbf{A}^T) = 3$ and $dim(N(\mathbf{A}^T)) = 3 - 3 = 0$. Then,

$$C(\mathbf{A}^{T}) = span \left\{ \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1\\1 \end{bmatrix} \right\} \text{ and } N(\mathbf{A}^{T}) = \{\mathbf{0}_{3}\}.$$

Problem 6. (10 points) Let V be a finite dimensional vector space and $W_1, W_2 \subset V$ be two subspaces. Then *sum* of the two subspaces is defined as

$$S = W_1 + W_2 \triangleq \{\mathbf{w}_1 + \mathbf{w}_2 \mid \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2\}.$$

Then we define *direct sum* of the two subspaces as

$$\mathcal{S} \triangleq W_1 \oplus W_2,$$

if: (1) $S = W_1 + W_2$ and (2) $W_1 \cap W_2 = \{\mathbf{0}\}$ (here \oplus accounts for the direct sum).

- (i) (5 points) Prove that $V = W_1 \oplus W_2$ if and only if any vector $\mathbf{v} \in V$ can be uniquely written as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ where $\mathbf{v}_1 \in W_1$ and $\mathbf{v}_2 \in W_2$.
- (ii) (5 points) Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Solution:

- (i) (⇒) Suppose V = W₁ ⊕ W₂ and let v = v₁ + v₂ = w₁ + w₂ where v₁, w₁ ∈ W₁ and v₂, w₂ ∈ W₂. Since W₁ and W₂ are subspaces, clearly v₁ w₁ ∈ W₁ and v₂ w₂ ∈ W₂. Then, v₁ w₁ = w₂ v₂ ∈ W₂. Since W₁ ∩ W₂ = {0}, then v₁ = w₁ and v₂ = w₂. Hence, v ∈ V can be written as the sum of two vectors in W₁ and W₂.
 (⇐) Suppose for any v ∈ V we have v = v₁ + v₂ where v₁ ∈ W₁ and v₂ ∈ W₂. Let V = W₁ + W₂ where W₁ ∩ W₂ ≠ {0}. Suppose by contradiction w ∈ W₁ ∩ W₂ and w ≠ 0. Then we can write w = w + 0
 - $W_1 \cap W_2 \neq \{\mathbf{0}\}$. Suppose by contradiction $\mathbf{w} \in W_1 \cap W_2$ and $\mathbf{w} \neq \mathbf{0}$. Then we can write $\mathbf{w} = \mathbf{w} + \mathbf{0}$ where $\mathbf{w} \in W_1$ and $\mathbf{0} \in W_2$ or $\mathbf{w} = \mathbf{0} + \mathbf{w}$ where $\mathbf{0} \in W_1$ and $\mathbf{w} \in W_2$. Hence, it is a clear contraction with the first assumption and hence $V = W_1 \oplus W_2$.
- (ii) (\Leftarrow) If $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then clearly $W_1 \cup W_2 = W_1$ or W_2 which is a subspace in either case. (\Rightarrow) Assume by contradiction $W_1 \not\subseteq W_2$ and $W_2 \not\subseteq W_1$. This implies there are $\mathbf{w}_1 \in W_1$ but $\mathbf{w}_1 \notin W_2$ and $\mathbf{w}_2 \in W_2$ but $\mathbf{w}_2 \notin W_1$. Then, clearly $\mathbf{w}_1 + \mathbf{w}_2 \in W_1 \cup W_2$ (i.e., $\mathbf{w}_1 + \mathbf{w}_2 \in W_1$ or W_2) since $W_1 \cup W_2$ is a subspace of V. Consider the case $\mathbf{w}_1 + \mathbf{w}_2 \in W_1$. Clearly, $(\mathbf{w}_1 + \mathbf{w}_2) - \mathbf{w}_1 \in W_1$ and hence $\mathbf{w}_2 \in W_1$. This is a clear contradiction to the assumption that $\mathbf{w}_2 \in W_2$ but $\mathbf{w}_2 \notin W_1$ and the proof is completed.

Problem 7. (10 points) Let
$$\mathbf{w}_1 = \begin{bmatrix} 3 \\ 3 \\ 9 \\ 6 \end{bmatrix}$$
, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ \beta \\ 3 \\ 2 \end{bmatrix}$ and $\mathbf{w}_3 = \begin{bmatrix} 2 \\ 3 \\ 3\beta \\ 2\beta \end{bmatrix}$ where $\alpha \in \mathbb{R}$.

- (i) (5 points) Find the values of β such that \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 are linearly independent.
- (ii) (5 points) Find the values of β such that $\mathbf{w}_3 \in span\{\mathbf{w}_1, \mathbf{w}_2\}$.

Solution:

(i) For \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 to be linearly independent, we must have

$$c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3 = 0,$$

if and only if $c_1 = c_2 = c_3 = 0$. Then,

$$\begin{bmatrix} 3 & 1 & 2 & | & 0 \\ 3 & \beta & 3 & | & 0 \\ 9 & 3 & 3\beta & | & 0 \\ 6 & 2 & 2\beta & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 2 & | & 0 \\ 0 & \beta - 1 & 1 & | & 0 \\ 0 & 0 & 3\beta - 6 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

which implies that $\beta \neq 1$ and $\beta \neq 2$.

(ii) We have $\mathbf{w}_3 \in span\{\mathbf{w}_1, \mathbf{w}_2\}$ if and only if $\mathbf{w}_3 = c_1\mathbf{w}_1 + c_2\mathbf{w}_2$ where $c_1, c_2 \in \mathbb{R}$. We can write

$$\begin{bmatrix} 3 & 1 & | & 2 \\ 3 & \beta & 3 \\ 9 & 3 & 3\beta \\ 6 & 2 & 2\beta \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & | & 2 \\ 0 & \beta - 1 & | & 1 \\ 0 & 0 & | & 3\beta - 6 \\ 0 & 0 & | & 0 \end{bmatrix}$$

For $\beta = 2$ this system is consistent and hence $c_1 = 1/3$ and $c_2 = 1$.