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7.2 Positive Definite Matrices and the SVD

This chapter about applications af 4 depends on two important ideas in linear algebra.
These ideas have big parts to play, we focus on them now.

1. Positive definite symmetric matrices  (bothAT 4 andATCA are positive definite)
2. Singular Value Decomposition (4 = U VT gives perfect bases for the 4 subspaces)

Those are orthogonal matricés and V' in the SVD. Their columns are orthonormal

eigenvectors ofAA™ and ATA. The entries in the diagonal matriX are thesquare

roots of the eigenvalues. The matricdst™ and AT 4 have the same nonzero eigenvalues.
Section 6.5 showed that the eigenvectors of these symmme#iidces are orthogonal.

| will show now thatthe eigenvalues od" A are positive if A has independent columns.

StartwithATAx = Ax. Thenx'ATAx = Ax"x. Therefored = ||Ax]||?/||x||*> > 0

| separatedc " AT Ax into (Ax)"(Ax) = ||Ax]||?>. We don't havel = 0 becaused’4 is
invertible (sinced has independent columns). The eigenvalues must be positive

Those are the key steps to understanding positive definiteaas They give us three
tests onS—three ways to recognize when a symmetric mafriis positive definite :

Positive 1. Allthe eigenvalues of are positive.
definite 2. The “energy” x"Sx is positive for all nonzero vectors.
symmetric 3. S has the formS = AT A with independent columns iA.

There is also a test on the pivaall > 0) and a test om determinantgall > 0).

Example 1  Are these matrices positive definite ? When their eigengadue positive,
construct matriced with S = AT 4 and find the positive energy’ Sx.

(@) s:[g” (b) s:[i 2] © s:[g i]

Solution The answers arges yes andno. The eigenvalues of those matricesre
(@) 4andl:positive (b) 9andl: positive (c) 9and-—1: not positive

A quicker test than eigenvalues use® determinants: the 1 by 1 determinantS;; and
the2 by 2 determinant ofS. Example (b) has;; = 5 and detS = 25— 16 = 9 (pass.
Example (c) has;; = 4 but detS = 16 — 25 = -9 (fail the tes}.
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Positive energy is equivalent to positive eigenvalugeshensS is symmetric. Let me
test the energy "Sx in all three examples. Two examples pass and the third fails :

[x1  x2] g (1) il =4x74+x3>0 Positive energy whernx £ 0
2
(5 47 x1 ] ) 5 .
[x1  x2] 4 5 N = 5x1 + 8x1x2 + 5x5 Positive energy wherx # 0
2
i 4 5 1T X1 1 2 2
[x1 x2] 5 4 N = 4x7 + 10x1x2 + 4x5 Energy—2 when x = (1,-1)
2

Positive energy is a fundamental property. This is the befitition of positive definiteness

When the eigenvalues are positive, there will be many mestricthat giveA™ 4 = S.
One choice of4 is symmetric and positive definite! Thet'4 is 42, and this choice
A = /S is atrue square root &f. The successful examples (a) and (b) hsive: A2:

Lo V=0 v ) e (25 ][0 00T 5

We know that all symmetric matrices have the fofm= VAV with orthonormal
eigenvectors ir’. The diagonal matrix\ has a square roafA, when all eigenvalues are
positive. In this casel = /S = VA VT is the symmetric positive definite square root

ATA = VSVS = (VVAVHYWVVAVT) = VV/AVAVT = S becausd TV = I.
Starting from this unique square roofS, other choices off come easily. Multiplyy/S

by any matrixQ that has orthonormal columns (so tiaf Q0 = I). ThenQ /S is another
choice forA4 (not a symmetric choice). In fact all choices come this way :

ATA = (QVS) (0VS) =V/SQT0VS = 5. 1)

I will choose a particula® in Example 1, to get particular choices 4f

Example 1 (continued ChooseQ = [ (1) _(1) } to multiply +/S. Thend = 0/S.
To -17[207 [0 -1 1. T[40

A_[l O}[Ol} _[2 o} haSS_AA_[oJ
Jo —17[2 11 [-1 =2 a5 04

A_[l OHIZ]_[Z 1} hass_AA_[45].
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Positive Semidefinite Matrices

Positivesemidefinitematrices include positive definite matrices, and more. migkies of
S can be zero. Columns of can be dependent. The energySx can be zero-but not
negative This gives new equivalent conditions on a (possibly siaguhatrixS = ST.

1’ All eigenvalues ofS satisfyA > 0 (semidefinite allows zero eigenvalues).
2’ The energy is nonnegative for every. x 'Sx > 0 (zero energy is allowed).
3 S hasthe formd™4 (everyA is allowed; its columns can be dependent).

Example 2  The first two matrices are singular and positive semidefirkiat not the
third :

d) s:[g ” @) s:[j j] ) s:[_j _j].

The eigenvalues arg 0 and8, 0 and—8,0. The energies ' Sx arex2 and4(x; + x2)2
and—4(x; — x»2)2. So the third matrix is actuallyegativesemidefinite.

Singular Value Decomposition

Now we start withA, square or rectangular. Applications also start this waye-rhatrix
comes from the model. The SVD splits any matrix ietthogonalU timesdiagonal &
times orthogonal V'. Those orthogonal factors will give orthogonal bases fer fibur
fundamental subspaces associated with

Let me describe the goal for amy by n matrix, and then how to achieve that goal.

Find orthonormal bases v;,...,v, for R" and uy,...,u,, for R™ sothat
Avy=o1u1 ... Av, =o,u, Avp41 =0 ... Av,=0 (2
Therank of4 isr. Those requirementsin (4) are expressed by a multiplicatid = U X.

Ther nonzero singular values > o, > ... > g, > 0 are on the diagonal of :

01 0

AV =US Alwi...vrooovn | = | w1 ooty .. i "~0 3)
r

0 0

The lastn — r vectors inV are a basis for the nullspace af The lastn — r vectors inU
are a basis for the nullspace 4f. The diagonal matri is m by n, with r nonzeros.
Remember that —! = VT, because the columns, ..., v, are orthonormal inR” :

Singular Value Decomposition AV =UX becomes A=UXV'. (4)
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The SVD has orthogonal matricésandV’, containing eigenvectors ofA" andA' A.
Comment A square matrix is diagonalized by its eigenvectordx; = A;x; is like
Av; = o;u;. But even ifA hasn eigenvectors, they may not be orthogonal. We neex
bases—an input basis ob’s in R* and an output basis afs in R”. With two bases, any
m by n matrix can be diagonalized. The beauty of those bases ishbatcan be chosen
orthonormal. The® "U = I andV'V = 1.

Thewv’s are eigenvectors of the symmetric matsix= ATA. We can guarantee their
orthogonality, so thatz}vl- = 0 for j # i. That matrixS is positive semidefinite, so its

eigenvalues arel.2 > 0. The key to the SVD is thatAv; is orthogonal to A v; :

, T T yT T2 Yoo 0 =i
Orthogonal u’s  (Avj) (Avi) = v;(4A Av;) = v;(0o/v;) = 0’ it i (5)
This says that the vectorgs = Av;/o; are orthonormalfor = 1,...,r. They are a basis
for the column space ofi. And theu’s are eigenvectors of the symmetric matdx T,
which is usually different frons = ATA (but the eigenvalues?, ..., o2 are the same).

Example 3  Find the input and output eigenvecterandu for the rectangular matrix :

[ 2207_ T
A_[_l | O}_UEV.

Solution ComputeS = AT A4 and its unit eigenvectons; , v,, v3. The eigenvalues?
ares, 2, 0 so the positive singular values are = +/8 ando, = +/2:

53 0 1 V2 { V2 0
ATA=1|3 5 0| has v =3 V2. va =3 V2|, v3=|0
00 0 0 0 1

The outputst; = Av;/o; andu, = Aw, /o, are also orthonormal, with; = /8 and
02 = /2. Those vectora; andu, are in the column space df :

o[ 31815 (1] men[ 3380502

ThenU = I and the Singular Value Decomposition for tRiby 3 matrix isUZ VT :

[ r]-[a][ 7 A B A
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The Fundamental Theorem of Linear Algebra

| think of the SVD as the final step in the Fundamental TheorEirst come thedimen-
sionsof the four subspaces in Figure 7.3. Then comediteogonalityof those pairs of
subspaces. Now come thethonormal bases af’s andu’s that diagonalized :

Av; = oju; for j<r A"u;, = o;jv; for j<r
SVD J JUj J = J JjVj J =
Av; =0 for j >r Alu; =0 for j >r

Multiplying Av; = o,u; by A" and dividing bys; gives that equatiod "u; = ojv;.

dim r
column
space

of A

o1uy

Av1 = 01Uq

Ur+1
nullspace

of AT

nullspace
of A

dmn—r dmm —r

Figure 7.3: Orthonormal bases©t andu’s that diagonalized : m by n with rankr.

The “norm” of A is its largest singular value|{A|| = o1. This measures the largest
possible ratio of|Av|| to ||v||. That ratio of lengths is a maximum when= v; and
Av = oqu;y. This singular valuer; is a much better measure for the size of a matrix than
the largest eigenvalue. An extreme case can have zero aeiges\and just one eigenvector
(1,1) for A. But AT 4 can still be large : iy = (1, —1) thenAw is 200 times larger.

A= |: 100 —100

100 —100 ] has Amax=0. But omax = normof 4 =200. (6)
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The Condition Number

A valuable property oA = UX VT is that it puts the pieces of in order of importance
Multiplying a columnu; times a rows; v produces one piece of the matrix. There will be
r nonzero pieces from nonzeras’s, when A has rank-. The pieces add up td, when
we multiply columns ofU times rows ofS VT :

The pieces _ _ T T
have rank 1 A=\ wuy ...ur || ..... =u(o1vy) + -+ u(ov,). (7)
The first piece gives the norm of which iso;. The last piece gives the norm df !,
which is1/0, whenA is invertible. Thecondition number is o, times1/o,, :

Condition number of A c(A) = |4l |1A7Y] = a (8)

n

This numberc(A) is the key to numerical stability in solvingv = b. When A4 is an
orthogonal matrix, the symmetrk = A" A is the identity matrix. So all singular values of
an orthogonal matrix are = 1. At the other extreme, a singular matrix hgs = 0.

In that case = oo. Orthogonal matrices have the best condition nunaberl.

Data Matrices: Application of the SVD

“Big datd is the linear algebra problem of this century (and we wowlve it here).
Sensors and scanners and imaging devices produce enormlouseg of information.
Making decisive sense of that datélie problem for a world of analysts (mathematicians
and statisticians of a new type). Most often the data com#eeifiorm of a matrix.

The usual approach is by PCARrincipal Component AnalysisThat is essentially
the SVD. The first piecelule holds the most information (in statistics this piece has
the greatest variance). It tells us the most. The Chaptent@Noclude references.

B REVIEW OF THE KEY IDEAS =

. Positive definite symmetric matrices have positive eigkragand pivots and energy.
. S = AT A'is positive definite if and only i has independent columns.

. xTATAx = (Ax)"(Ax) is zero whemdx = 0. AT A can be positiveemidefinite

. The SVD is a factorizatiost = UX VT = (orthogona) (diagona) (orthogona).

. The columns o andU are eigenvectors A" 4 andA4 A" (singular vectors off).

. Those orthonormal bases achiete; = o;u; andA is diagonalized.

~N O o b~ WON P

. The largest piece ol = oyu;v] +--- + o,u,v] gives the norn|A|| = o7.
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Problem Set 7.2

For a2 by 2 matrix, suppose thé by 1 and2 by 2 determinanta andac — b? are
positive. There > b2 /a is also positive.

(i) A, andA, have thesame sigrbecause their produgt A, equals .
(i) That sign is positive becaudg + A, equals .

Conclusion Thetests: > 0,ac — b? > 0 guarantee positive eigenvalues A,.

Which of S, S5, S3, S4 has two positive eigenvalues? Useandac — b2, don’t
compute thel's. Find anx with xTS;x < 0, confirming thatd, fails the test.

5 6 1 -2 110 110
Sl_|:6 7} Sz_[—z —5] 53_[10 100] 54—[10 101]'

For which number$ andc are these matrices positive definite ?

1 b 2 4 c b
s=ls] os=lie] s e)
What is the energy = ax? + 2bxy + cy? = x'Sx for each of these matrices ?
Complete the square to writeas a sum of square§( )2 + d2( )2

1 2 1 3
Sz[2 9] and Sz[3 9]

x"Sx = 2x;x, certainly has a saddle point and not a minimun{n). What
symmetric matrixS produces this energy ? What are its eigenvalues ?

Test to see if4" 4 is positive definite in each case :

1
1 2 1 1 2
A:[O 3] and A4 = ? and A:[1 ) 1].

1
1
2
Which 3 by 3 symmetric matrice§ andT produce these quadratic energies ?

xTSx = 2(xf + x% + xzt — X1X2 — X2X3). Why is S positive definite?
x'Tx = 2(x% + x% + x% — X1X2 — X1X3 — X2X3). Why is T semidefinite ?

Compute the three upper left determinantsSofo establish positive definiteness.
(The first is2.) Verify that their ratios give the second and third pivots.

20
Pivots = ratios of determinants S = 5 3
3 8

S NN
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9 For what numbers andd areS andT positive definite? Test thedeterminants:

c 1 1
S=|1 ¢ 1 and T=12
3

R

3
4
5

10 If S is positive definite thels ! is positive definite Best proof: The eigenvalues

of S~! are positive because . Second proofonly for2 by 2):
. 1 1 c —b .
The entriesofS™" = pass the determinant tests .
ac—b2|-b a

11 If S andT are positive definite, their suri + 7 is positive definite Pivots and
eigenvalues are not convenient for- 7. Better to prover (S + T)x > 0.

12 A positive definite matrixcannot have a zer¢or even worse, a negative number)
on its diagonal Show that this matrix fails to have' Sx > 0:

4 1 1 X1
[x1 x2 x3]|1 0 2| x| isnotpositive when(xi,xz.x3) =( , . ).
1 2 5 X3

13 Adiagonal entryz;; of a symmetric matrix cannot be smaller than all #he If it
were, themrd — a;; 1 would have eigenvalues and would be positive definite.
But4A —a;;I hasa on the main diagonal.

14  Show thatif all A > 0 thenx™Sx > 0. We must do this foeverynonzerox,
not just the eigenvectors. So write as a combination of the eigenvectors and
explain why all “cross terms” arex] x ; = 0. ThenxTSx is

(c1x14-+cnxn) (CiAix 14+ cprnxp) = cf)lele +---+cf)t,,xlxn > 0.

15 Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix 5 = 1.

(c) A diagonal matrix with positive diagonal entries is fiva definite.

(d) A symmetric matrix with a positive determinant might etpositive definite !
16  With positive pivots inD, the factorizationS = LDLT becomes.+/D~/DLT.

(Square roots of the pivots give = +/D+/D.) Thend = /DL yields the
Cholesky factorizationS = AT 4 which is “symmetrized. U”:

3 1
0 2

4 8

From A:[ 3 25

} find S. From S = [ } find A = chol(S).
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18

19

20

21

22

23

24

25
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WithoutmultiplyingS:[COSQ _S'”e}[z 0][_0059 Sme],find

siné cosf [0 5 sing cos#
(a) the determinant of (b) the eigenvalues §
(c) the eigenvectors &§ (d) a reason whys is symmetric positive definite.

For Fi(x,y) = $x* + x?y + y? and F2(x, y) = x3 + xy — x find the second
derivative matrice$f; and H> :

02F/3x%  0%F/dxdy

Test for minimum H =
0%F/dydx  0°F/dy?

} is positive definite

H; is positive definite saF; is concave ug= convex). Find the minimum point
of F; and the saddle point df, (look only where first derivatives are zero).

The graph ot = x? + y? is a bowl opening upward. The graphot x2 — y? is

a saddle The graph o = —x? — y? is a bowl opening downward. What is a test

ona,b,c forz = ax? + 2bxy + cy? to have a saddle point &, 0) ?

Which values ofc give a bowl and whiche give a saddle point for the graph of
z = 4x? + 12xy + cy? ? Describe this graph at the borderline value .of

WhenS andT are symmetric positive definité5;7 might not even be symmetric.
But its eigenvalues are still positive. Start fré$Tx = Ax and take dot products
with Tx. Then provel > 0.

SupposeC is positive definite (so TCy > 0 whenevery # 0) and4 has indepen-
dent columns (solx # 0 wheneverx # 0). Apply the energy test ta"ATCAx
to show thatd™ C A4 is positive definite the crucial matrix in engineering

Find the eigenvalues and unit eigenvectoysv, of AT A. Then findu; = Av, /oy :

|12 T, |10 20 T _| 5 15
A_[3 6] and 4 A_|:20 40] and A4 —|:15 45].

Verify thatu; is a unit eigenvector afi AT. Complete the matricds, =, V.

SVD [é é]z[ul uz][‘“ 0][01 vz]T.

Write down orthonormal bases for the four fundamental sabsg of this4.

(2) Why is the trace oft" 4 equal to the sum of ali?; ?

(b) For every rank-one matrix, why & = sum of allal?j ?
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26

27

28

29

30
31

32

&%

Find the eigenvalues and unit eigenvectorglbt andAA". Keep eacv = ou:

Fibonacci matrix A= [ } (1) i|

Construct the singular value decomposition and verify thatjualsU V.

Computed™ 4 andAAT and their eigenvalues and unit eigenvectorsifandU.

Rectangular matrix A= [ (l) i (1) }

CheckAV = U X (this will decide+ signs inU). X has the same shape ds

Construct the matrix with rank one that hd® = 12u for v = %(1, 1,1,1) and
u = £(2,2,1). Its only singular value is; =

Supposé is invertible (witho; > 0, > 0). Changed by as small a matrix as
possibleto produce a singular matrizy. Hint: U andV do not change.

From A= [ u, u, ][ a1 o }[ v V2 ]T find the nearestl.

The SVD forA4 + I doesn'tuses + I. Why isa (A + I) notjusto(A4) + 1 ?

Multiply ATAv = o%v by A. Put in parentheses to show thé is an eigenvector
of AAT. We divide by its length|Av|| = o to get the unit eigenvectar.

My favorite example of the SVD is wheAv(x) = dv/dx, with the endpoint con-
ditionsv(0) = 0 andv(l) = 0. We are looking for orthogonal functiongx)

so that their derivativedv = dv/dx are also orthogonal. The perfect choice is
v = sinrx andv, = sin2xx andv, = sinkzx. Then eachy; is a cosine.

The derivative ofv, is Av; = mcoszx = mu;. The singular values ar®, = 7
ando, = km. Orthogonality of the sines (and orthogonality of the cesinis the
foundation for Fourier series.

You may object todlV = U3X. The derivativeA = d/dx is not a matrix! The
orthogonal facto/ has functions sikzx in its columns, not vectors. The matrix
U has cosine functions césx. Since when is this allowed? One answer is to
refer you to thehebfun package on the web. This extends linear algebra to matrice
whose columns are functions—not vectors.

Another answer is to replact/dx by a first difference matrid. Its shape will be
N + 1 by N. A hasl’s down the diagonal and1’s on the diagonal below. Then
AV = U ¥ has discrete sines ¥ and discrete cosines ii. For N = 2 those will
be sines and cosines 8° and60° in v; andu; .

Can you construct the difference matrix (3 by 2) and A4 (2 by 2)? The dis-
crete sines are; = (+/3/2,+/3/2) andv, = (v/3/2,—+/3/2). Test thatdv, is
orthogonal todv,. What are the singular values ando, in X ?





