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Preface

I will be happy with this preface if three important points come through clearly:

1. The beauty and variety of linear algebra, and its extreme usefulness
2. The goals of this book, and the new features in this Fourth Edition

3. The steady support from our linear algebra websites and the video lectures

May I begin with notes about two websites that are constantly used, and the new one.

ocw.mit.edu Messages come from thousands of students and faculty about linear algebra
on this OpenCourseWare site. The 18.06 course includes video lectures of a complete
semester of classes. Those lectures offer an independent review of the whole subject based
on this textbook—the professor’s time stays free and the student’s time can be 3 a.m.
(The reader doesn’t have to be in a class at all.) A million viewers around the world have
seen these videos (amazing). I hope you find them helpful.

web.mit.edu/18.06 This site has homeworks and exams (with solutions) for the current
course as it is taught, and as far back as 1996. There are also review questions, Java demos,
Teaching Codes, and short essays (and the video lectures). My goal is to make this book
as useful as possible, with all the course material we can provide.

math.mit.edu/linearalgebra The newest website is devoted specifically to this Fourth Edi-
tion. It will be a permanent record of ideas and codes and good problems and solutions.
Sevetal sections of the book are directly available online, plus notes on teaching linear
algebra. The content is growing quickly and contributions are welcome from everyone.

The Fourth Edition

Thousands of readers know earlier editions of Introduction to Linear Algebra. The new
cover shows the Four Fundamental Subspaces—the row space and nullspace are on
the left side, the column space and the nullspace of AT are on the right. It is not usual
to put the central ideas of the subject on display like this! You will meet those four spaces
in Chapter 3, and you will understand why that picture is so central to linear algebra.
Those were named the Four Fundamental Subspaces in my first book, and they start
from a matrix A. Each row of A is a vector in n-dimensional space. When the matrix

\'
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has m rows, each column is a vector in m-dimensional space. The crucial operation in
linear algebra is taking linear combinations of vectors. (That idea starts on page 1 of the
book and never stops.) When we take all linear combinations of the column vectors, we get
the column space. If this space includes the vector b, we can solve the equation Ax = b.

I have to stop here or you won’t read the book. May I call special attention to the new
Section 1.3 in which these ideas come early—with two specific examples. You are not
expected to catch every detail of vector spaces in one day! But you will see the first matrices
in the book, and a picture of their column spaces, and even an inverse matrix. You will be
learning the language of linear algebra in the best and most efficient way: by using it.

Every section of the basic course now ends with Challenge Problems. They follow a
large collection of review problems, which ask you to use the ideas in that section—-the
dimension of the column space, a basis for that space, the rank and inverse and determinant
and eigenvalues of A. Many problems look for computations by hand on a small matrix,
and they have been highly praised. The new Challenge Problems go a step further, and
sometimes they go deeper. Let me give four examples:

Section 2.1: Which row exchanges of a Sudoku matrix produce another Sudoku matrix?

Section 2.4: From the shapes of 4, B, C, is it faster to compute A B times C or A times BC?

Background: The great fact about multiplying matrices is that AB fimes C gives the same
answer as A times BC. This simple statement is the reason behind the rule for matrix
multiplication. If AB is square and C is a vector, it’s faster to do BC first. Then multiply
by A to produce ABC. The question asks about other shapes of A, B, and C.

Section 3.4: If Ax = b and Cx = b have the same solutions for every b,is A = C?

Section 4.1: What conditions on the four vectors r, n, ¢, £ allow them to be bases for
the row space, the nullspace, the column space, and the left nullspace of a 2 by 2 matrix?

The Start of the Course

The equation Ax = b uses the language of linear combinations right away. The vector
Ax is a combination of the columns of A. The equation is asking for a combination that
produces b. The solution vector x comes at three levels and all are important:

1. Direct solution to find x by forward elimination and back substitution.
2. Matrix solution using the inverse of A: x = A~ !b (if A has an inverse).

3. Vector space solution x = y + z as shown on the cover of the book:

Particular solution (to Ay = b) plus nullspace solution (to Az = 0)

Direct elimination is the most frequently used algorithm in scientific computing, and the
idea is not hard. Simplify the matrix A so it becomes triangular—then all solutions come
quickly. I don’t spend forever on practicing elimination, it will get learned.

The speed of every new supercomputer is tested on Ax = b: it’s pure linear algebra.
IBM and Los Alamos announced a new world record of 10> operations per second in 2008.
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That petaflop speed was reached by solving many equations in parallel. High performance
computers avoid operating on single numbers, they feed on whole submatrices.

The processors in the Roadrunner are based on the Cell Engine in PlayStation 3.
What can I say, video games are now the largest market for the fastest computations.

Even a supercomputer doesn’t want the inverse matrix: too slow. Inverses give the sim-
plest formula x = A~!b but not the top speed. And everyone must know that determinants
are even slower—there is no way a linear algebra course should begin with formulas for
the determinant of an n by #» matrix. Those formulas have a place, but not first place.

Structure of the Textbook

Already in this preface, you can see the style of the book and its goal. That goal is serious,
to explain this beautiful and useful part of mathematics. You will see how the applications
of linear algebra reinforce the key ideas. I hope every teacher will learn something new;
familiar ideas can be seen in a new way. The book moves gradually and steadily from
numbers to vectors to subspaces—each level comes naturally and everyone can get it.

Here are ten points about the organization of this book:

1. Chapter 1 starts with vectors and dot products. If the class has met them before,
focus quickly on linear combinations. The new Section 1.3 provides three indepen-
dent vectors whose combinations fill all of 3-dimensional space, and three depen-
dent vectors in a plane. Those two examples are the beginning of linear algebra.

2. Chapter 2 shows the row picture and the column picture of Ax = b. The heart of
linear algebra is in that connection between the rows of A and the columns: the
same numbers but very different pictures. Then begins the algebra of matrices: an
elimination matrix £ multiplies 4 to produce a zero. The goal here is to capture
the whole process—start with A and end with an upper triangular U .

Elimination is seen in the beautiful form A = LU. The lower triangular L holds
all the forward elimination steps, and U is the matrix for back substitution.

3. Chapter 3 is linear algebra at the best level: subspaces. The column space contains
all linear combinations of the columns. The crucial question is: How many of those
columns are needed? The answer tells us the dimension of the column space, and
the key information about A. We reach the Fundamental Theorem of Linear Algebra.

4. Chapter 4 has m equations and only n unknowns. It is almost sure that Ax = b has
no solution. We cannot throw out equations that are close but not perfectly exact.
When we solve by least squares, the key will be the matrix ATA. This wonderful
matrix ATA appears everywhere in applied mathematics, when A is rectangular.

5. Determinants in Chapter 5 give formulas for all that has come before—inverses,
pivots, volumes in n-dimensional space, and more. We don’t need those formulas to
compute! They slow us down. But det A = 0 tells when a matrix is singular, and
that test is the key to eigenvalues.
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6. Section 6.1 introduces eigenvalues for 2 by 2 matrices. Many courses want to see
eigenvalues early. It is completely reasonable to come here directly from Chapter 3,
because the determinant is easy for a 2 by 2 matrix. The key equation is Ax = Ax.

Eigenvalues and eigenvectors are an astonishing way to understand a square matrix.
They are not for Ax = b, they are for dynamic equations like du/dt = Au.
The idea is always the same: follow the eigenvectors. In those special directions,
A acts like a single number (the eigenvalue A) and the problem is one-dimensional.

Chapter 6 is full of applications. One highlight is diagonalizing a symmetric matrix.
Another highlight—not so well known but more important every day—is the
diagonalization of any matrix. This needs two sets of eigenvectors, not one, and
they come (of course!) from ATA and AAT. This Singular Value Decomposition
often marks the end of the basic course and the start of a second course.

7. Chapter 7 explains the linear transformation approach—it is linear algebra without
coordinates, the ideas without computations. Chapter 9 is the opposite—all about
how Ax = b and Ax = Ax are really solved. Then Chapter 10 moves from real
numbers and vectors to complex vectors and matrices. The Fourier matrix F is the
most important complex matrix we will ever see. And the Fast Fourier Transform
(multiplying quickly by F and F~!) is a revolutionary algorithm.

8. Chapter 8 is full of applications, more than any single course could need:

8.1 Matrices in Engineering—differential equations replaced by matrix equations
8.2 Graphs and Networks—Ileading to the edge-node matrix for Kirchhoff’s Laws
8.3 Markov Matrices—as in Google’s PageRank algorithm

8.4 Linear Programming—a new requirement x > 0 and minimization of the cost
8.5 Fourier Series—Ilinear algebra for functions and digital signal processing

8.6 Matrices in Statistics and Probability—Ax = b is weighted by average errors

8.7 Computer Graphics—matrices move and rotate and compress images.

9. Every section in the basic course ends with a Review of the Key Ideas.

10. How should computing be included in a linear algebra course? It can open a new
understanding of matrices—every class will find a balance. I chose the language of
MATLAB as a direct way to describe linear algebra: eig(ones(4)) will produce the
eigenvalues 4, 0, 0, 0 of the 4 by 4 all-ones matrix. Go fo netlib.org for codes.

You can freely choose a different system. More and more software is open source.
The new website math.mit.edu/linearalgebra provides further ideas about teaching and

learning. Please contribute! Good problems are welcome by email: gs@math.mit.edu.
Send new applications too, linear algebra is an incredibly useful subject.
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The Variety of Linear Algebra

Calculus is mostly about one special operation (the derivative) and its inverse (the integral).
Of course I admit that calculus could be important . . . . But so many applications of math-
ematics are discrete rather than continuous, digital rather than analog. The century of data
has begun! You will find a light-hearted essay called “Too Much Calculus” on my website.
The truth is that vectors and matrices have become the language to know.

Part of that language is the wonderful variety of matrices. Let me give three examples:

Symmetric matrix Orthogonal matrix Triangular matrix
2 -1 0 0 1 1 i 1 1 1 1 1
-1 2 -1 0 1|1 -1 1 -1 0 1 1 1
0 -1 2 -1 211 1 -1 -1 0 011
0 0 -1 2 1 -1 -1 1 0 0 0 1

A key goal is learning to “read” a matrix. You need to see the meaning in the numbers.
This is really the essence of mathematics—patterns and their meaning.

May I end with this thought for professors. You might feel that the direction is right,
and wonder if your students arec ready. Just give them a chance! Literally thousands of
students have written to me, frequently with suggestions and surprisingly often with thanks.
They know this course has a purpose, because the professor and the book are on their side.
Linear algebra is a fantastic subject, enjoy it.

Help With This Book

I can’t even name all the friends who helped me, beyond thanking Brett Coonley at MIT
and Valutone in Mumbai and SIAM in Philadelphia for years of constant and dedicated
support. The greatest encouragement of all is the feeling that you are doing something
worthwhile with your life. Hundreds of generous readers have sent ideas and examples and
corrections (and favorite matrices!) that appear in this book. Thank you all.

Background of the Author

This is my eighth textbook on linear algebra, and I have not written about myself before.
I hesitate to do it now. It is the mathematics that is important, and the reader. The next
paragraphs add something personal as a way to say that textbooks are written by people.

I was born in Chicago and went to school in Washington and Cincinnati and St. Louis.
My college was MIT (and my linear algebra course was extremely abstract). After that
came Oxford and UCLA, then back to MIT for a very long time. I don’t know how many
thousands of students have taken 18.06 (more than a million when you include the videos
on ocw.mit.edu). The time for a fresh approach was right, because this fantastic subject
was only revealed to math majors—we needed to open linear algebra to the world.

Those years of teaching led to the Haimo Prize from the Mathematical Association of
America. For encouraging education worldwide, the International Congress of Industrial
and Applied Mathematics awarded me the first Su Buchin Prize. I am extremely grateful,
more than I could possibly say. What I hope most is that you will like linear algebra.






Chapter 1

Introduction to Vectors

The heart of linear algebra is in two operations—both with vectors. We add vectors to get
v + w. We multiply them by numbers ¢ and 4 to get cv and dw. Combining those two
operations (adding cv to d w) gives the linear combination cv + dw.

T o 2] Te+2d]
.Lmearv-cqrglnylggzqu_v:_k_‘ c'u+dw_c[ ) :|+d[ 3 ] = [ ¢ +3d ] —

Example v+w=[ i ]+[ g il = [ Z ] is the combination withc = d =1

Linear combinations are all-important in this subject! Sometimes we want one partic-
ular combination, the specific choice ¢ = 2 and d = 1 that produces cv + dw = (4,5).
Other times we want all the combinations of v and w (coming from all ¢ and d).

The vectors cv lie along a line. When w is not on that line, the combinations cv +dw
fill the whole two-dimensional plane. (I have to say “two-dimensional” because linear
algebra allows higher-dimensional planes.) Starting from four vectors u, v, w, z in four-
dimensional space, their combinations cu + dv + ew + fz are likely to fill the space—
but not always. The vectors'and their combinations could even lie on one line.

Chapter 1 explains these central ideas, on which everything builds. We start with two-
dimensional vectors and three-dimensional vectors, which are reasonable to draw. Then
we move into higher dimensions. The really impressive feature of linear algebra is how
smoothly it takes that step into #n-dimensional space. Your mental picture stays completely
correct, even if drawing a ten-dimensional vector is impossible.

This is where the book is going (into n-dimensional space). The first steps are the
operations in Sections 1.1 and 1.2. Then Section 1.3 outlines three fundamental ideas.

1.1 Vector addition v + w and linear combinations cv + dw.
1.2 The dot product v - w of two vectors and the length |v|| = /v - v.

1.3 Matrices A, linear equations Ax = b, solutions x = A~ 'b.
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1.1 Vectors and Linear Combinations

“You can’t add apples and oranges.” In a strange way, this is the reason for vectors.
We have two separate numbers v; and v,. That pair produces a two-dimensional vector v:

v v1 = first component
Column vector v = [ 1 ] 1 P

Vs vy = second component

We write v as a column, not as a row. The main point so far is to have a single letter v
(in boldface italic) for this pair of numbers v, and v, (in lightface italic).

Even if we don’t add v, to v, we do add vectors. The first components of v and w stay
separate from the second components:

VECTOR _ Ui _ w1 _ V1 + wy
ADDITION Y= [ Vs ] and w—[ ws ] add to v+w—[ vy + 1wy |

You see the reason. We want to add apples to apples. Subtraction of vectors follows the
same idea: The components of v — w are vy — wy and vy — ws.

The other basic operation is scalar multiplication. Vectors can be multiplied by 2 or by
—1 or by any number c. There are two ways to double a vector. One way is to add v + v.
The other way (the usual way) is to multiply each component by 2:

SCALAR 0y — | 201 PR
MULTIPLICATION U= aw, | M U=y |

The components of cv are cv; and cv;. The number c is called a “scalar”.

Notice that the sum of —v and v is the zero vector. This is 0, which is not the same as
the number zero! The vector 0 has components 0 and 0. Forgive me for hammering away
at the difference between a vector and its components. Linear algebra is built on these
operations v + w and cv—adding vectors and multiplying by scalars.

The order of addition makes no difference: v + w equals w +v. Check that by algebra:
The first component is v; + w; which equals w; + v;. Check also by an example:

RO IS H B
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Linear Combinations

Combining addition with scalar multiplication, we now form “/inear combinations” of v
and w. Multiply v by ¢ and multiply w by d; then add cv + dw.

DEFINIT]ON The sum of cv and dw isa linear bonibination' of vandw.

Four special linear combinations are: sum, difference, zero, and a scalar multiple cv:

lv+ lw = sum of vectors in Figure 1.1a
lv—1w = difference of vectors in Figure 1.1b
Ov+ 0w = zerovector

cv+ 0w = vector cv in the direction of v

The zero vector is always a possible combination (its coefficients are zero). Every time we
see a “‘space” of vectors, that zero vector will be included. This big view, taking all the
combinations of v and w, is linear algebra at work.

The figures show how you can visualize vectors. For algebra, we just need the com-
ponents (like 4 and 2). That vector v is represented by an arrow. The arrow goes vy = 4
units to the right and v, = 2 units up. It ends at the point whose x, y coordinates are 4, 2.
This point is another representation of the vector—so we have three ways to describe v:

¥ R,epli‘.ésél‘,l't-kfeycfdi‘i)  Two numbers - Arrow from (0, 0) ~ Point in the plane SRt

We add using the numbers. We visualize v 4+ w using arrows:
Vector addition (head to tail) At the end of v, place the start of w.

Figure 1.1: Vector addition v + w = (3, 4) produces the diagonal of a parallelogram.
The linear combination on the right is v — w = (5, 0).

We travel along v and then along w. Or we take the diagonal shortcut along v + w. We
could also go along w and then v. In other words, w + v gives the same answer as v + w.
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These are different ways along the parallelogram (in this example it is a rectangle). The
sum is the diagonal vector v + w.

The zero vector 0 = (0,0) is too short to draw a decent arrow, but you know that
v + 0 = v. For 2v we double the length of the arrow. We reverse w to get —w. This
reversing gives the subtraction on the right side of Figure 1.1.

Vectors in Three Dimensions

A vector with two components corresponds to a point in the x y plane. The components of v
are the coordinates of the point: x = vy and y = v,. The arrow ends at this point (v, v2),
when it starts from (0, 0). Now we allow vectors to have three components (v, vz, V3).

The xy plane is replaced by three-dimensional space. Here are typical vectors (still
column vectors but with three components):

1 2 3
v= 1 and w=|[3 and v4+w=14
-1 4 3

The vector v corresponds to an arrow in 3-space. Usually the arrow starts at the “origin”,
where the xyz axes meet and the coordinates are (0,0,0). The arrow ends at the point
with coordinates vy, v, vs. There is a perfect match between the column vector and the
arrow from the origin and the point where the arrow ends.

z
y
2 T+ (3’ 2)
+ o — 3
T2
} I - X
<3
N X
Figure 1.2: Vectors [y] and | y | correspond to points (x, y) and (x, y, z).
z

i also written.as v'=(1,1,~1).
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The reason for the row form (in parentheses) is to save space. Butv = (1,1,—1) is
not a row vector! It is in actuality a column vector, just temporarily lying down. The row
vector [1 1 —1] is absolutely different, even though it has the same three components.
That row vector is the “transpose” of the column v.

In three dimensions, v + w is still found a component at a time. The sum has
components vy + w; and v, + w, and v3 + w3. You see how to add vectors in 4 or 5
or n dimensions. When w starts at the end of v, the third side is v + w. The other way
around the parallelogram is w + v. Question: Do the four sides all lie in the same plane?
Yes. And the sum v + w — v — w goes completely around to produce the vector.

A typical linear combination of three vectors in three dimensions is # 4+ 4v — 2w:

Linear combination 1 1 2 1
Multiply by 1,4, -2 O|+4(21-2]| 3|=1|2
Then add 3 1 -1 9

The Important Questions

For one vector u, the only linear combinations are the multiples cu. For two vectors,
the combinations are cu + dwv. For three vectors, the combinations are cu + dv + ew.
Will you take the big step from one combination to al/ combinations? Every ¢ and d and e
are allowed. Suppose the vectors #, v, w are in three-dimensional space:

1. What is the picture of all combinations cu?
2. What is the picture of all combinations cu + dv?
3. What is the picture of ali combinations cu + dv + ew?

The answers depend on the particular vectors u, v, and w. If they were zero vectors (a very
extreme case), then every combination would be zero. If they are typical nonzero vectors
(components chosen at random), here are the three answers. This is the key to our subject:

1. The combinations cu fill a lire.
2. The combinations cu + dwv fill a plane.
3. The combinations cu + dv + ew fill three-dimensional space.

The zero vector (0, 0, 0) is on the line because ¢ can be zero. It is on the plane because ¢
and d can be zero. The line of vectors cu is infinitely long (forward and backward). It is the
plane of all cu + dv (combining two vectors in three-dimensional space) that I especially
ask you to think about.

Adding all cu on one line to all dv on the other line fills in the plane in Figure 1.3.

When we include a third vector w, the multiples ew give a third line. Suppose that third
line is not in the plane of # and v. Then combining all ew with all cu + dwv fills up the
whole three-dimensional space.
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Plane from
all cu + dv

Line containing all cu

@) S ®
Figure 1.3: (a) Line through «. (b) The plane containing the lines through u# and v.
This is the typical situation! Line, then plane, then space. But other possibilities exist.
When w happens to be cu + dwv, the third vector is in the plane of the first two. The

combinations of u, v, w will not go outside that #v plane. We do not get the full three-
dimensional space. Please think about the special cases in Problem 1.

m REVIEW OF THE KEY IDEAS =

A vector v in two-dimensional space has two components v; and v,.
v+w = (v +wy, v2 +ws) and cv = (cvy, cv,) are found a component at a time.

A linear combination of three vectors # and v and w is cu + dv + ew.

& W b=

Take all linear combinations of u, or # and v, or u,v, w. In three dimensions,
those combinations typically fill a line, then a plane, and the whole space R>.

= WORKED EXAMPLES =

1.1 A The linear combinations of v = (1, 1,0) and w = (0, 1, 1) fill a plane. Describe
that plane. Find a vector that is not a combination of v and w.

Solution  The combinations cv + d w fill a plane in R3. The vectors in that plane allow
any ¢ and d. The plane of Figure 1.3 fills in between the “u-line” and the “v-line”.

1 0 c
Combinations cv+dw=c| | |+d| 1 |=| c+d |fillaplane.
0 1 d

Four particular vectors in that plane are (0,0,0) and (2,3,1) and (5,7,2) and
(7,27, ). The second component ¢ + d is always the sum of the first and third com-
ponents. The vector (1,2, 3) is not in the plane, because 2 # 1 + 3.
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Another description of this plane through (0,0, 0) is to know that n = (1,—1,1) is
perpendicular to the plane. Section 1.2 will confirm that 90° angle by testing dot products:
v.n=0andw-n=0.

1.1B Forv = (1,0) and w = (0, 1), describe all points cv with (1) whole numbers ¢
(2) nonnegative ¢ > 0. Then add all vectors d w and describe all cv + dw.

Solution

(1) The vectors cv = (¢, 0) with whole numbers ¢ are equally spaced points along the
x axis (the direction of v). They include (-2, 0), (—1, 0), (0,0), (1,0), (2,0).

(2) The vectors cv with ¢ > 0 fill a half-line. 1t is the positive x axis. This half-line
starts at (0, 0) where ¢ = 0. It includes (7, 0) but not (-, 0).

(1') Adding all vectors dw = (0, d) puts a vertical line through those points cv. We
have infinitely many parallel lines from (whole number c, any number d).

(2') Adding all vectors dw puts a vertical line through every cv on the half-line. Now
we have a half-plane. 1t is the right half of the xy plane (any x > 0, any height y).

1.1 C Find two equations for the unknowns ¢ and d so that the linear combination
cv + dw equals the vector b:

2 -1 1
SR
Solution  In applying mathematics, many problems have two parts:
1 Modeling part Express the problem by a set of equations.

2 Computational part Solve those equations by a fast and accurate algorithm.

Here we are only asked for the first part (the equations). Chapter 2 is devoted to the second
part (the algorithm). Our example fits into a fundamental model for linear algebra:

Find Cly.oeeCn sothat cjvy + -+ cpvn = b.

For n = 2 we could find a formula for the ¢’s. The “elimination method” in Chapter 2
succeeds far beyond n = 100. For n greater than 1 million, see Chapter 9. Here n = 2:

] 2 -1 {_11
Vector equation C[_1]+d[ 2]“[0]

The required equations for ¢ and d just come from the two components separately:

2c—d =1

Two scalar equations —c+2d =0

2 1
You could think of those as two lines that cross at the solution ¢ = 5, d = 5
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Problem Set 1.1
Problems 1-9 are about addition of vectors and linear combinations.
1 Describe geometrically (line, plane, or all of R3) all linear combinations of
1 3 1 0 2 0 2
(@ |2 |and | 6 (b) Oland | 2 (c) Oland | 2 |and | 2
3 9 0 3 0 2 3

2 Draw v = [ T] and w = [ —g ] and v+w and v—w in a single xy plane.
5 1
3 If'v-{-w:[1]andv—~w=[5],computeanddrawvandw.

4 Fromv = [ % ] and w = l: ; ], find the components of 3v + w and cv + dw.

5 Compute # + v + w and 2u + 2v + w. How do you know #, v, w lie in a plane?

1 -3 2
In a plane u=\2|, v= 1|, w=|-3
3 -2 -1

6 Every combination of v = (1,—2,1) and w = (0, 1, —1) has components that add
to . Find c and d so that cv + dw = (3, 3, —6).

7 In the xy plane mark all nine of these linear combinations:

cl}]-}-d[?] with ¢=90,1,2 and d=0,1,2.

8 The parallelogram in Figure 1.1 has diagonal v + w. What is its other diagonal?
What is the sum of the two diagonals? Draw that vector sum.

9 If three corners of a f)arallelogram are (1, 1), (4,2), and (1, 3), what are all three of
the possible fourth corners? Draw two of them.

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4.

10 Which point of the cube is i + j? Which point is the vector sum of i = (1,0,0)
and j = (0,1,0) and k = (0, 0, 1)? Describe all points (x, y, z) in the cube.

11 Four corners of the cube are (0,0, 0), (1,0,0), (0, 1,0), (0,0, 1). What are the other
four corners? Find the coordinates of the center point of the cube. The center points
of the six faces are

12  How many corners does a cube have in 4 dimensions? How many 3D faces?
How many edges? A typical corner is (0, 0, 1, 0). A typical edge goes to (0, 1,0, 0).
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13

14

k=001 j+k

2:00

J=1(0.1,0)

Notice the illusion
Is (0,0,0) atop or
a bottom corner?

Figure 1.4: Unit cube from i, j, k and twelve clock vectors.

(a) What is the sum V of the twelve vectors that go from the center of a clock to
the hours 1:00, 2:00, ..., 12:00?

(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:007
(c) What are the components of that 2:00 vector v = (cos 8, sin 6)?

Suppose the twelve vectors start from 6:00 at the bottom instead of (0,0) at the
center. The vector to 12:00 is doubled to (0, 2). Add the new twelve vectors.

Problems 15-19 go further with linear combinations of v and w (Figure 1.5a).

15
16

17
18
19

Figure 1.5: Problems 15-19 in a plane

Figure 1.5a shows 2v + 2w. Mark the points 2v + fw and v + Jw and v + w.

Mark the point —v + 2w and any other combination cv + dw withc +d = 1.
Draw the line of all combinations that have ¢ +d = 1.

Locate -_l;'v + %w and %v + %w. The combinations cv + cw fill out what line?
Restricted by 0 < ¢ < 1and 0 < d < 1, shade in all combinations cv + dw.

Restricted only by ¢ > 0 and d > 0 draw the “cone” of all combinations cv + dw.

®
=
I
[
>
+
(M
g
I
> 3

(a) (b)

Problems 20-25 in 3-dimensional space
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Problems 20-25 deal with z, v, w in three-dimensional space (see Figure 1.5b).

20 Locate %u + %fu <+ %w and %u + %w in Figure 1.5b. Challenge problem: Under
what restrictions on ¢, d, e, will the combinations c# + dv + ew fill in the dashed
triangle? To stay in the triangle, one requirementis ¢ > 0,d > 0,e > 0.

21 The three sides of the dashed triangle are v — # and w — v and # — w. Their sum is
. Draw the head-to-tail addition around a plane triangle of (3, 1) plus (-1, 1)
plus (-2, -2).

22  Shade in the pyramid of combinations c# + dv + ew withc > 0,d > 0,e > 0 and
¢ +d + e < 1. Mark the vector 3 (u + v + w) as inside or outside this pyramid.

23  If you look at all combinations of those u, v, and w, is there any vector that can’t be
produced from cu + dv + ew? Different answer if #, v, w are all in

24  Which vectors are combinations of # and v, and also combinations of v and w?

25 Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line.
Find vectors u, v, w so that their combinations cu + dv + ew fill only a plane.

26  What combination ¢ [ ;] +d [i] produces [lg]‘? Express this question as two

equations for the coefficients ¢ and d in the linear combination.

27  Review Question. In xyz space, where is the plane of all linear combinations of
i =(1,0,00and i +j = (1,1,0)?

Challenge Problems

28 Find vectors v and w so that v + w = (4,5,6) and v — w = (2,5,8). Thisisa
question with unknown numbers, and an equal number of equations to find
those numbers.

29 Find two different combinations of the three vectors ¥ = (1,3) and v = (2,7) and
w = (1,5) that produce b = (0, 1). Slightly delicate question: If I take any three
vectors #, v, w in the plane, will there always be two different combinations that
produce b = (0, 1)?

30 The linear combinations of v = (a,b) and w = (c, d) fill the plane unless
Find four vectors u, v, w, z with four components each so that their combinations
cu + dv + ew + fz produce all vectors (b1, b2, b3, b4) in four-dimensional space.

31  Write down three equations for ¢, d, e so that cu +dv+ew = b. Can you somehow
find ¢, d, and e?

—1 0 1
u=| —lI v = 2 w=| —1 b=1| 0
-1 2 0
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1.2 Lengths and Dot Products

The first section backed off from multiplying vectors. Now we go forward to define the
“dot product” of v and w. This multiplication involves the separate products v; w; and
v W2, but it doesn’t stop there. Those two numbers are added to produce the single number
v - w. This is the geometry section (lengths and angles).

DEFINITION The dot product or inner product of v = (v1 v2) and w = (wl, w2)
is the numberv cw: . ‘ . \ o - - e
: v w = v1w1 + UzU)z o -\ ‘ R - (1)

Example 1 The vectors v = (4,2) and w = (—1, 2) have a zero dot product:

Dot product is zero [4] [~1

Perpendicular vectors 9 2] =-4+4=0.

In mathematics, zero is always a special number. For dot products, it means that taese
two vectors are perpendicular. The angle between them is 90°. When we drew them
in Figure 1.1, we saw a rectangle (not just any parallelogram). The clearest example of
perpendicular vectors is i = (1,0) along the x axis and j = (0, 1) up the y axis. Again
the dot productisi - j = 0+ 0 = 0. Those vectors i and j form a right angle.

The dot product of v = (1,2) and w = (3, 1) is 5. Soon v - w will reveal the angle
between v and w (not 90°). Please check that w - v is also 5.

The dot product w - v equals v - w. The order of v and w makes no difference.

Example 2 Puta weight of 4 at the point x = —1 (left of zero) and a weight of 2 at the
point x = 2 (right of zero). The x axis will balance on the center point (like a see-saw).
The weights balance because the dot product is (4)(—1) + (2)(2) = 0.

This example is typical of engineering and science. The vector of weights is (w1, wy) =
(4, 2). The vector of distances from the center is (vy, v2) = (—1, 2). The weights times the
distances, wiv; and w,v,, give the “moments”. The equation for the see-saw to balance is
WV + Waty = 0.

Example 3 Dot products enter in economics and business. We have three goods to buy
and sell. Their prices are (p;, p2, p3) for each unit—this is the “price vector” p. The
quantities we buy or sell are (g, g2, g3)—positive when we sell, negative when we buy.
Selling q units at the price py brings in g1 p1. The total income (quantities g times prices
p) is the dot product q - p in three dimensions:

Income = (q1,492,93) - (p1, P2. P3) = q1p1 + q2p2 + g3 p3 = dot product.

A zero dot product means that “the books balance”. Total sales equal total purchases if
q - p = 0. Then p is perpendicular to g (in three-dimensional space). A supermarket with
thousands of goods goes quickly into high dimensions.
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Small note: Spreadsheets have become essential in management. They compute linear
combinations and dot products. What you see on the screen is a matrix.

Main point  To compute v - w, multiply each v; times w;. Then add X v; w;.

Lengths and Unit Vectors

An important case is the dot product of a vector with itself. In this case v equals w.
When the vector is v = (1, 2, 3), the dot product with itselfis v - v = |[v||? = 14:

Dot product v - v

2 _
Length squared lvll™ =

W N =

1
2| =1+4+9=14.
3

Instead of a 90° angle between vectors we have 0°. The answer is not zero because v is not
perpendicular to itself. The dot product v - v gives the length of v squared.

DE the square rootof vev; . .

0 length = ol=vEw.

In two dimensions the length is v/v? 4+ v2. In three dimensions it is vv? + v2 + v2.
By the calculation above, the length of v = (1,2, 3) is [|[v|| = V14

Here ||v]| = /v - v is just the ordinary length of the arrow that represents the vector.
In two dimensions, the arrow is in a plane. If the components are 1 and 2, the arrow is
the third side of a right triangle (Figure 1.6). The Pythagoras formula a2 + b2 = c¢?,
which connects the three sides, is 12 + 2% = ||v|?.

For the length of v = (1,2, 3), we used the right triangle formula twice. The vector
(1,2,0) in the base has length +/5. This base vector is perpendicular to (0, 0, 3) that goes
straight up. So the diagonal of the box has length [|[v]| = +/5 + 9 = /14

The length of a four-dimensional vector would be v'v? + v2 + v2 + v7. Thus the
vector (1, 1, 1, 1) has length +/12 + 12 + 12 + 12 = 2. This is the diagonal through a unit
cube in four-dimensional space. The diagonal in n dimensions has length /7.

The word “unit” is always indicating that some measurement equals “one”. The unit
price is the price for one item. A unit cube has sides of length one. A unit circle is a circle
with radius one. Now we define the idea of a “unit vector”.

DEFINITION ' A-unit vectoru is a vector whose length equals one. Then u+u = 1.

i i i i =(i 111 epis i+ 141 1
An example in four dimensions is # = (3,3,5,3). Thenw-uis z +;+ 7+ 7 = L

We divided v = (1, 1, 1, 1) by its length ||v]| = 2 to get this unit vector.
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0,03) g~~~ "~ 3
71
// 7!
0,2) A 1,2) 1 (1,2,3) has
J§ vV = v%-}-v%-{-v% | | 1engthv14
1 ) 5 = 12422 : l
1
14 = 12 422 4 32 : .
1 ' !
> ! 0,2,0)
1,0 !
(1.0) / (1,2, 0) has
1,0,0) " -—--—-- length +/5

Figure 1.6: The length ./ « v of two-dimensional and three-dimensional vectors.

Example 4 The standard unit vectors along the x and y axes are written { and j. In the
xy plane, the unit vector that makes an angle “theta” with the x axis is (cos 8, sin 8):

. . |1 . |0 __[cosé
Unit vectors z—-[o] and ]_[1] and a“[sin@]'

When 6 = 0, the horizontal vector & is i. When 6 = 90° (or 7 radians), the vertical
vector is j. At any angle, the components cos & and sin @ produce u - u = 1 because
cos? § + sin”> = 1. These vectors reach out to the unit circle in Figure 1.7. Thus cos 6
and sin 0 are simply the coordinates of that point at angle & on the unit circle.

Since (2,2, 1) has length 3, the vector (%, Z, 1) has length 1. Check that u - u =
% + % + % = 1. For a unit vector, divide any nonzero v by its length ||v|.

Unitvector . u=v/|v| ;-;:is';ja.unitﬁi‘yéctoﬁ in the same fdlireeztifon aswv.. o

J=01) vé(l,l)

!

— (L 1.\_ v
”“(ﬁ’ﬂ)“[[vﬂ
—i = —> i=(1,0)
A

Figure 1.7: The coordinate vectors { and j. The unit vector u at angle 45° (left) divides
v = (1, 1) by its length ||v]| = +/2. The unit vector u = (cos 8, sin 8) is at angle 8.
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The Angle Between Two Vectors

We stated that perpendicular vectors have v + w = 0. The dot product is zero when the
angle is 90°. To explain this, we have to connect angles to dot products. Then we show
how v - w finds the angle between any two nonzero vectors v and w.

"iRiight~ éngléS' | The dot productis v+-w = 0 when v is pelfpendicuiar tow.

Proof When v and w are perpendicular, they form two sides of a right triangle.
The third side is v — w (the hypotenuse going across in Figure 1.8). The Pythagoras Law
for the sides of a right triangle is a® + b? = c?:

Perpendicular vectors ||v||* + |w]? = ||v — w]? 2)
Writing out the formulas for those lengths in two dimensions, this equation is
Pythagoras (v +v2) + (w? + w3) = (11 —w1)? + (v2 — wa)*. 3)

The right side begins with v? — 2v;w; + w?. Then v? and w? are on both sides of the
equation and they cancel, leaving —2viw;. Also v% and w% cancel, leaving —2v,ws.
(In three dimensions there would be —2v3ws.) Now divide by —2:

0 = —2vjw; —2vw, whichleadsto wviwy + vawz =0. 4)

Conclusion Right angles produce v - w = 0. The dot product is zero when the angle is
6 = 90°. Then cos@ = 0. The zero vector v = 0 is perpendicular to every vector w
because 0 - w is always zero.

Now suppose v - w is not zero. It may be positive, it may be negative. The sign of v - w
immediately tells whether we are below or above a right angle. The angle is less than 90°
when v - w is positive. The angle is above 90° when v - w is negative. The right side of
Figure 1.8 shows a typical vector v = (3, 1). The angle with w = (1, 3) is less than 90°
because v - w = 6 is positive.

-1 5 4 vew =0 rvew >0
o= Bl :
V5 V20 vew <0
e -« - — -
vew=>0
5420=25 angle above 90° angle below 90°
in this half-plane in this half-plane

Figure 1.8: Perpendicular vectors have v - w = 0. Then ||v||? + ||w]? = ||jv — w||%.
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The borderline is where vectors are perpendicular to v. On that dividing line between
plus and minus, (1, —3) is perpendicular to (3, 1). The dot product is zero.

The dot product reveals the exact angle 6. This is not necessary for linear algebra—you
could stop here! Once we have matrices, we won’t come back to 6. But while we are on
the subject of angles, this is the place for the formula.

Start with unit vectors # and U. The sign of u - U tells whether 6 < 90° or 8 > 90°.
Because the vectors have length 1, we learn more than that. The dot product u - U is the
cosine of 6. This is true in any number of dimensions.

Unit vectors u and U at angle 8 have u - U = cos 6. Certainly |u-U| < 1.

Remember that cos 0 is never greater than 1. It is never less than —1. The dot product of
unit vectors is between —1 and 1.

Figure 1.9 shows this clearly when the vectors are # = (cos6,sind) and i = (1,0).
The dot product is u - i = cos 8. That is the cosine of the angle between them.

After rotation through any angle ¢, these are still unit vectors. The vectori = (1,0)
rotates to (cosc, sine). The vector u rotates to (cos 8,sin ) with 8 = o + 8. Their
dot product is cos @ cos B + sin« sin 8. From trigonometry this is the same as cos(f — «).
But 8 — « is the angle 0, so the dot product is cos 6.

[cosﬂ]
__ | cosé sin
.= [sin@] cosc
\9 [sina}
(] . 0= [(1)] N
u-i =cosf §=pf—a

Figure 1.9: The dot product of unit vectors is the cosine of the angle 6.

Problem 24 proves |u - U| < 1 directly, without mentioning angles. The inequality and
the cosine formula # - U = cos 8 are always true for unit vectors.

What if v and w are not unit vectors? Divide by their lengths to get # = v/||v|| and
U = w/||w||. Then the dot product of those unit vectors u and U gives cos 6.

COSINE FORMULA va and w are nonzero vectors then ” ” ” ” = cos f.
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Whatever the angle, this dot product of v/||v| with w/||w]|| never exceeds one. That
is the “Schwarz inequality” |v - w| < ||v| |jw]|| for dot products—or more correctly the
Cauchy-Schwarz-Buniakowsky inequality. It was found in France and Germany
and Russia (and maybe elsewhere—it is the most important inequality in mathematics).

Since | cos 8| never exceeds 1, the cosine formula gives two great inequalities:

SCHWARZINEQUALITY v+ w] < flol Ju]

TRIANGLE INEQUALITY  [v+w| < [[ol + |w|

Example 5 Find cosf for v = [ i’ } and w = [ ; :l and check both inequalities.
Solution The dot product is v - w = 4. Both v and w have length +/5. The cosine is 4/5.

vew 4 4
lollllwll /545 5
The angle is below 90° because v« w = 4 is positive. By the Schwarz inequality, v-w = 4

is less than ||v|| [w]|| = 5. Side 3 = ||v + w|| is less than side 1 + side 2, by the triangle
inequality. For v + w = (3, 3) that says /18 < +/5 + /5. Square this to get 18 < 20.

cosf =

Example 6 The dot product of v = (a,b) and w = (b, a) is 2ab. Both lengths are
~/a? + b2. The Schwarz inequality in this case says that 2ab < a® + b2.
This is more famous if we write x = a? and y = b2. The “geometric mean” /Xy

is not larger than the “arithmetic mean” = average %(x + y).

Geometric < Arithmetic a? + b? X+ y
- <
mean mean ab < 5 becomes ,/xy < 7

Example 5hada = 2and b = 1. So x = 4 and y = 1. The geometric mean /Xy = 2
is below the arithmetic mean %(1 +4) =2.5.

)

Notes on Computing

Write the components of » as v(1),. . ., v(N) and similarly for w. In FORTRAN, the sum
v + w requires a loop to add components separately. The dot product also uses a loop to
add the separate v(j)w(j). Here are VPLUSW and VDOTW:

DO10J=1,N bO10J=1,N

FORTRAN 10 VPLUSW() = v(J) + w(J) 10 VDOTW = VDOTW + V(J) % W(J)

MATLAB and also PYTHON work directly with whole vectors, not their components.
No loop is needed. When v and w have been defined, v + w is immediately understood.
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Input v and w as rows—the prime ’ transposes them to columns. 2v + 3w uses * for

multiplication by 2 and 3. The result will be printed unless the line ends in a semicolon.
MATLAB v=[2 3 4 ; w=[1 11 ; u=2+v+3xw

The dot product v - w is usually seen as a row times a column (with no dot):

;;IbnsfeadfOf' . B] . [2] we moréf.often see [12] [i] or v xw

The length of v is known to MATLAB as norm (v). We could define it ourselves as
sqrt (v' * v), using the square root function—also known. The cosine we have to define
ourselves! The angle (in radians) comes from the arc cosine (acos) function:

v % w/(norm () % norm (1))
acos (cosine)

-;C’O"s’ihe.fgrmula T ‘ cosiné
Angle formula - angle

An M-file would create a new function cosine (v, w) for future use. The M-files created
especially for this book are listed at the end. R and PYTHON are open source software.

= REVIEW OF THE KEY IDEAS =

The dot product v - w multiplies each component v; by w; and adds all v; w;.
The length ||v|| of a vector is the square root of v - v.
u = v/||v| is a unit vector. Its length is 1.

The dot product is v - w = 0 when vectors v and w are perpendicular.

U A

The cosine of 6 (the angle between any nonzero v and w) never exceeds 1:
_ vew
lvlijwl

Problem 21 will produce the triangle inequality |v + w| < |v|| + ||w]|.

cos 0 Schwarz inequality |v-w| < |v|| ||w]|.

= WORKED EXAMPLES =

1.2 A For the vectors v = (3,4) and w = (4, 3) test the Schwarz inequality on v + w
and the triangle inequality on |v + w|. Find cos@ for the angle between v and w.
When will we have equality |v » w| = ||v|| ||w]| and ||v + w|| = ||v]| + [Jw]i?
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Solution The dot product is v - w = (3)(4) + (4)(3) = 24. The length of v is
|v]| = /9 + 16 = 5 and also ||w| = 5. The sum v + w = (7, 7) has length 74/2 < 10.

Schwarz inequality lv-w| < |v|lw|| is 24 <25.

Triangle inequality lv +w| < ol + |lw|| is 7v2<5+5.

Cosine of angle cosf = % Thin angle from v = (3,4) tow = (4,3)
Suppose one vector is a multiple of the other as in w = cv. Then the angle is 0° or 180°.
In this case |cos 8| = 1 and |v - w| equals ||v| ||w||. If the angle is 0°, as in w = 2wv, then

lv + w|| = ||v| + ||w||. The triangle is completely flat.

1.2 B Find a unit vector # in the direction of v = (3, 4). Find a unit vector U that is
perpendicular to #. How many possibilities for U?

Solution  For a unit vector &, divide v by its length ||v|| = 5. For a perpendicular vector
V we can choose (—4, 3) since the dot product v - V is (3)(—4) + (4)(3) = 0. For a unit
vector U, divide V by its length ||V ||:

v 3 4) V (43)
U=—=1|\-,—- U=—-= —_—, = uU;:O
o]l (5 5 IV 55

The only other perpendicular unit vector would be —U = ( g, —%).

1.2C Find a vector x = (¢, d) that has dot products x - ¥ = 1 and x . s = 0 with the
given vectors ¥ = (2,—1) and s = (—1,2).
How is this question related to Example 1.1 C, which solved cv + dw = b = (1,0)?

Solution  Those two dot products give linear equations for ¢ and d. Then x = (c, d).
x-r=1 V\ 2e— d =1 The same equations as
x-s=0 —c+2d=0 in Worked Example 1.1 C

The second equation makes x perpendicular to s = (—1,2). So I can see the geometry:
Go in the perpendicular direction (2, 1). When you reach x = %(2, 1), the dot product
with r = (2, —1) has the required value x - r = 1.

Comment on n equations for x = (xy, ..., X,) in n-dimensional space
Section 1.1 would start with column vectors vy,...,v,. The goal is to combine them to
produce a required vector x1vy + - + X, v, = b. This section would start from vectors
ri,...,r,. Now the goal is to find x with the required dot products x - r; = b;.

Soon the v’s will be the columns of a matrix A, and the r’s will be the rows of A.
Then the (one and only) problem will be to solve Ax = b.
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Problem Set 1.2

1 Calculate the dot products #u -vandu-wandu - (v + w) and w - v:

_|-6 13 18
*=1 8 Y= 14 ~ el
2 Compute the lengths [[#| and |v| and {w] of those vectors. Check the Schwarz

inequalities |# « v| < ||| ||v] and |v - w] < ||v] ||w]].

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the
angle 6. Choose vectors a, b, ¢ that make 0°, 90°, and 180° angles with w.

4 For any unit vectors v and w, find the dot products (actual numbers) of
(a) v and —v (b) v+wandv—w (¢) v—2wandv+ 2w

5 Find unit vectors #; and u, in the directions of v = (3,1) and w = (2,1,2).
Find unit vectors U ; and U 5 that are perpendicular to u; and u5.
6 (a) Describe every vector w = (w, wy) that is perpendicular to v = (2, —1).
(b) The vectors that are perpendicularto ¥V = (1,1,1) lieona .
(c) The vectors that are perpendicular to (1,1, 1) and (1,2,3) licona .

7 Find the angle 6 (from its cosine) between these pairs of vectors:

2
(@) v = \}5 and w = L(l):l b)) v= 2 and w= -1
S -1

© v= \}§ and w= :/15] (d) 'v=l:?:| and wz[:;]

8 True or false (give a reason if true or a counterexample if false):
(a) If u is perpendicular (in three dimensions) to v and w, those vectors v and w
are parallel. '
(b) If u is perpendicular to v and w, then # is perpendicular to v 4 2w.
(c) If # and v are perpendicular unit vectors then |l — v| = /2.
9 The slopes of the arrows from (0, 0) to (vy, v2) and (w1, wy) are v2/v; and wy/ws.

Suppose the product vow;/v;w; of those slopes is —1. Show that v - w = 0 and
the vectors are perpendicular.

10  Draw arrows from (0, 0) to the points v = (1,2) and w = (-2, 1). Multiply their
slopes. That answer is a signal that v - w = 0 and the arrows are

11 If v - w is negative, what does this say about the angle between v and w? Draw a
3-dimensional vector v (an arrow), and show where to find all w’s withv - w < 0.
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Withv = (1,1) and w = (1,5) choose a number ¢ so that w — cv is perpendicular
to v. Then find the formula that gives this number ¢ for any nonzero v and w.
(Note: cwv is the “projection” of w onto v.)

Find two vectors v and w that are perpendicular to (1, 0, 1) and to each other.
Find nonzero vectors u, v, w that are perpendicular to (1, 1, 1, 1) and to each other.

The geometricmean of x = 2and y = 8is ,/xy = 4. The arithmetic mean is larger:
%(x +y) = . This would come in Example 6 from the Schwarz inequality
for v = (+/2, v/8) and w = (+/8, +/2). Find cos @ for this v and w.

How long is the vector v = (1,1,...,1) in 9 dimensions? Find a unit vector u# in
the same direction as v and a unit vector w that is perpendicular to v.

What are the cosines of the angles «, 8, 6 between the vector (1,0, —1) and the unit
vectors i, j, k along the axes? Check the formula cos? & + cos? 8 + cos? § = 1.

Problems 18-31 lead to the main facts about lengths and angles in triangles.

18

19

20

21

22

The parallelogram with sides v = (4,2) and w = (-1, 2) is a rectangle. Check the
Pythagoras formula a® 4+ b2 = ¢? which is for right triangles only:

(Rules for dot products) These equations are simple but useful:
Mvw=wv Qu-wW+w=u-v+u-w B)(cv)-w=c(v.-w)

Use(2)withu =v + w toprove v + w|? =v-v + 2v-w + w-w.

The “Law of Cosines” comes from (v~ w)- (v —w) =v-v—2v-w + w - w:
Cosine Law v —w|? = ||v|[* = 2||v| |w] cos & + |w]>.

If @ < 90° show that ||v||? + ||w||? is larger than ||v — w||? (the third side).

The triangle inequaiity says: (length of v + w) < (length of v) + (length of w).

Problem 19 found ||v + w]|?> = ||v||? + 2v - w + ||w||2. Use the Schwarz inequality
v-w < |v| ||w|l to show that ||side 3|| can not exceed ||side 1| + |[side 2|

Triangle

2 2
inequality lv + wl® < ([v]l + [lw])” or

The Schwarz inequality |v - w| < ||v|| ||w| by algebra instead of trigonometry:

(a) Multiply out both sides of (viwy + vawz)? < (v2 + v3)(w? + w3).

(b) Show that the difference between those two sides equals (viwz — vowy)?.
This cannot be negative since it is a square—so the inequality is true.
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v = (v1,v2)
vl

v )

The figure shows that cosa = v /||v| and sine = vy/||v||. Similarly cos g is
—_andsinfis _____. The angle 0 is § — «. Substitute into the trigonometry
formula cos 8 cos @ + sin § sin o for cos(B — &) to find cos 8 = v - w/||v| || w].

One-line proof of the Schwarz inequality |u - U| < 1 for unit vectors:

u%+U12+u§+U22_1+1_
2 2 2

Put (11, u2) = (.6, .8) and (U;, Uz) = (.8, .6) in that whole line and find cos 6.

e« U| < |ur | |Ur] + |uz| [Uz] < 1.

Why is | cos 8] never greater than 1 in the first place?

If v = (1,2) draw all vectors w = (x, y) inthe xy plane withv . w = x + 2y = 5.
Which is the shortest w?

(Recommended) If ||v|| = 5 and ||w]||] = 3, what are the smallest and largest values
of ||v — w||? What are the smallest and largest values of v - w?

Challenge Problems

Can three vectors in the xy plane havew - v < Oandv-w < OQandu - w < 0?
I don’t know how many vectors in xyz space can have all negative dot products.
(Four of those vectors in the plane would certainly be impossible .. .).

Pick any numbers that add to x + y + z = 0. Find the angle between your vector
v = (x,y,z) and the vector w = (z,x,y). Challenge question: Explain why
v - w/||v|||w] is always —%.

How could you prove 3/xyz < -.i.—(x +y+z) (geometric mean < arithmetic mean )?

. . . . . 1 1
Find four perpendicular unit vectors with all components equal to 5 or —5.

Using v = randn(3, 1) in MATLAB, create a random unit vector # = v/||v||. Using
V = randn(3, 30) create 30 more random unit vectors U;. What is the average size
of the dot products |u « U;|? In calculus, the average f(f |cos@|db/n =2/m.
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1.3 Matrices

This section is based on two carefully chosen examples. They both start with three vectors.
I will take their combinations using matrices. The three vectors in the first example are
u,v,and w:

| 0 0
First example u=| -1 v = 1 w=| 0
0 -1 1

Their linear combinations in three-dimensional space are cu + dv + ew:

0 0 c
Combinations cl| —1 +d 1 +e| 0 | = d—c |. €Y
0 -1 1 e—d

Now something important: Rewrite that combination using a matrix. The vectors u, v, w
go into the columns of the matrix A. That matrix “multiplies™ a vector:

Same combinati 00 ) c ¢
Same comhination 1 1 0 d |=| d-c |. Q)
is now 4 times x

0 -1 1 e e—d

The numbers ¢, d, e are the components of a vector x. The matrix A times the vector x
is the same as the combination cu + dv + ew of the three columns:

S R R e s

This is more than a definition of Ax, because the rewriting brings a crucial change in
viewpoint. At first, the numbers ¢, d, e were multiplying the vectors. Now the matrix
is multiplying those numbers. The matrix A acts on the vector x. The result Ax is a
combination b of the columns of A.

To see that action, I will write xy, x5, x3 instead of ¢,d,e. 1 will write by, b, b3
for the components of Ax. With new letters we see

i 0 0O X1 X1 bl
Ax = -1 1 0 X2 = X2 — X1 = bz =b. (4)
0 -1 1 X3 X3 — X3 b3

The mmput is x and the output is » = Ax. This A4 is a “difference matrix” because b
contains differences of the input vector x. The top difference is x; — xo = x1 — 0.
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Here is an example to show differences of numbers (squares in x, odd numbers in b):

1 1-0 1
x = | 4 | = squares Ax =|4-1|=|3]=0b. (5)
9 9—4 5

That pattern would continue for a 4 by 4 difference matrix. The next square would be
x4 = 16. The next difference would be x4 — x3 = 16 — 9 = 7 (this is the next odd
number). The matrix finds all the differences at once.

Important Note. You may already have learned about multiplying Ax, a matrix times a
vector. Probably it was explained differently, using the rows instead of the columns. The
usual way takes the dot product of each row with x:

Dot products I 00 X1 (1,0,0) -« (x1,x2,x3)
with rows Ax=| -1 10 x2 | = (=1,1,0)+(x1,x2,x3)
0 -1 1 J|[ xs (0,—1,1) - (x1, x2, x3)

Those dot products are the same x; and x» — x; and x3 — x5 that we wrote in equation (4).
The new way is to work with Ax a column at a time. Linear combinations are the key to
linear algebra, and the output Ax is a linear combination of the columns of A.

With numbers, you can multiply Ax either way (I admit to using rows). With letters,
columns are the good way. Chapter 2 will repeat these rules of matrix multiplication, and
explain the underlying ideas. There we will multiply matrices both ways.

Linear Equations

One more change in viewpoint is crucial. Up to now, the numbers x;, x3, x3 were known
(called ¢, d, e at first). The right hand side & was not known. We found that vector of
differences by multiplying Ax. Now we think of  as known and we look for x.

0ld question: Compute the linear combination x1# + x2v + x3w to find b.
New question: Which combination of u, v, w produces a particular vector b?

This is the inverse problem—to find the input x that gives the desired output » = Ax. You
have seen this before, as a system of linear equations for x;, x2, x3. The right hand sides
of the equations are by, by, b3. We can solve that system to find xy, x2, x3:

- X1 = by o x1=b1 S
| Ax=b =X+ = b, Solution x, = by + b, - (6)
L — Xz 4+X3= b3 x3=by+by+bs.

Let me admit right away—most linear systems are not so easy to solve. In this example,
the first equation decided x; = b;. Then the second equation produced x, = b1 + b,.
The equations could be solved in order (top to bottom) because the matrix A was selected
to be lower triangular.
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Look at two specific choices 0,0,0 and 1, 3, 5 of the right sides by, b5, b3:

0 0 1 1 1
b=|0| gives x =10 b=|3] gives x=|1+3 =14
0 0 5 1+3+5 9

The first solution (all zeros) is more important than it looks. In words: If the output is
b = 0, then the input must be x = 0. That statement is true for this matrix A. It is not true
for all matrices. Our second example will show (for a different matrix C) how we can have

Cx=0whenC # 0Oand x # 0.
This matrix A4 is “invertible”. From b we can recover x.

The Inverse Matrix

Let me repeat the solution x in equation (6). A sum matrix will appear!

X1 bl 1 0 O bl
Ax = bissolvedby | xo | = | by + b2 =1 1 0 b |. (D
X3 b1 + bz + b3 1 1 1 b3

If the differences of the x’s are the b’s, the sums of the b’s are the x’s. That was true for
the odd numbers & = (1,3, 5) and the squares x = (1,4,9). It is true for all vectors.
The sum matrix S in equation (7) is the inverse of the difference matrix A.

Example: The differences of x = (1,2,3) are b = (1,1,1). Sob = Ax and x = Sb:

1 0 0 1 1 1 00 1 1
Ax=| -1 1 0 2 (=1 and Sb=| 1 1 O 1 |=] 2
0 -1 1 3 1 1 1 1 1 3

Equation (7) for the solution vector x = (x, x5, x3) tells us two important facts:
1. For every b there is one solutionto Ax = b. 2. A matrix S produces x = Sb4.

The next chapters ask about other equations Ax = b. Is there a solution? How is it
computed? In linear algebra, the notation for the “inverse matrix™ is A™!:

Ax =b issolvedby x = A"'b = Sb.

Note on calculus. Let me connect these special matrices 4 and S to calculus. The vector
x changes to a function x (¢). The differences Ax become the derivative dx/dt = b(t). In
the inverse direction, the sum S& becomes the integral of b(t). The Fundamental Theorem
of Calculus says that integration S is the inverse of differentiation A.

dx t
Ax =b and x = Sb Z=bandx(t)=f b. (8)
0
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The derivative of distance traveled (x) is the velocity (b). The integral of b() is the
distance x (7). Instead of adding +C, I measured the distance from x(0) = 0. In the
same way, the differences started at xo = 0. This zero start makes the pattern complete,
when we write x; — xp for the first component of Ax (we just wrote x1).

Notice another analogy with calculus. The differences of squares 0.1, 4,9 are odd
numbers 1, 3, 5. The derivative of x (t) = £ is 2¢. A perfect analogy would have produced
the even numbers b = 2,4,6 at times ¢t = 1,2,3. But differences are not the same
as derivatives, and our matrix A produces not 2f but 2f — 1 (these one-sided “backward
differences” are centered at t — %_):

xO)—x@t-D=2-@¢-1)>=>~@*>-2t+1)=2¢-1. )

The Problem Set will follow up to show that “forward differences” produce 2t + 1.
A better choice (not always seen in calculus courses) is a centered difference that uses
x(t + 1) — x(¢t — 1). Divide Ax by the distance Af from¢ — 1 to t + 1, which is 2:

(12— (=1 _

Centered difference of x(¢) = t? 5

2t exactly. (10)

Difference matrices are great. Centered is best. Our second example is not invertible.

Cyclic Differences

This example keeps the same columns # and v but changes w to a new vector w*:

1 0 -1
Second example u=\| —1 v= 1 w* = 0
— 1

Now the linear combinations of #, v, w* lead to a cyclic difference matrix C:

o 1 | 0 _—1' X1 X1 — X3 o
 Cyelie = Cx=|-1 1 0 X2 | =] x2—x; | =b. (A1)

0 -1 1 X3 X3 — X2

This matrix C is not triangular. It is not so simple to solve for x when we are given b.
Actually it is impossible to find the solution to Cx = b, because the three equations either
have infinitely many solutions or else no solution:

Cx=90 X1 — X3 0 X1 c
Infinitely xo—x3 | =| 0 | issolvedbyallvectors | xo | =| ¢ |. (12)
many x X3 — Xg 0 X3 ¢
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Every constant vector (c, ¢, ¢) has zero differences when we go cyclically. This undeter-
mined constant ¢ is like the + C that we add to integrals. The cyclic differences have
x1 — x3 in the first component, instead of starting from xo = 0.

The other very likely possibility for Cx = b is no solution at all:

X1 — X3 1 | o Left sides’add to 0

. Cx=b | x-x |=|3| Rightsidsaddto® (3

X3 — X2 5 |  Nosolution x1,x2,x3

Look at this example geometrically. No combination of u, v, and w* will produce the
vector b = (1,3,5). The combinations don’t fill the whole three-dimensional space.
The right sides must have by + b, 4+ b3 = 0 to allow a solution to Cx = b, because
the left sides x; — x3, xo — X1, and x3 — x, always add to zero.

Put that in different words. All linear combinations x;u + x,v + x3w™ = b lie on
the plane given by b; + b, + b3 = 0. This subject is suddenly connecting algebra with
geometry. Linear combinations can fill all of space, or only a plane. We need a picture to
show the crucial difference between u, v, w (the first example) and u, v, w*.

3
0
w=]| 0
1
2
1 0
w=| -1 v = 1

Figure 1.10: Independent vectors u, v, w. Dependent vectors #, v, w* in a plane.

Independence and Dependence

Figure 1.10 shows those column vectors, first of the matrix 4 and then of C. The first two
columns u and v are the same in both pictures. If we only look at the combinations of those
two vectors, we will get a two-dimensional plane. The key question is whether the third
vector is in that plane:

Independence w is not in the plane of # and v.
Dependence  w* is in the plane of # and v.

The important point is that the new vector w* is a linear combination of # and v:

-1
u+v+w =0 w* = 0 | =-u—w. (14)
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All three vectors u, v, w* have components adding to zero. Then all their combinations
will have by + b, + b3 = 0 (as we saw above, by adding the three equations). This is
the equation for the plane containing all combinations of # and v. By including w* we get
no new vectors because w* is already on that plane.

The original w = (0,0, 1) is not on the plane: 0 + 0 4 1 # 0. The combinations of
u,v, w fill the whole three-dimensional space. We know this already, because the solution
x = Sb in equation (6) gave the right combination to produce any 5.

The two matrices A and C, with third columns w and w*, allowed me to mention two
key words of linear algebra: independence and dependence. The first half of the course will
develop these ideas much further—I am happy if you see them early in the two examples:

u, v, w are independent. No combination except Ou + Ov + Ow = 0 gives b = 0.
u, v, w* are dependent. Other combinations (specifically ¥ + v + w*) give b = 0.

You can picture this in three dimensions. The three vectors lie in a plane or they don’t.
Chapter 2 has n vectors in n-dimensional space. /ndependence or dependence is the key
point. The vectors go into the columns of an # by n matrix:

Independent columns: Ax = 0 has one solution. A is an invertible matrix.

Dependent columns: Ax = 0 has many solutions. A is a singular matrix.

Eventually we will have n vectors in m-dimensional space. The matrix A with those n
columns is now rectangular (m by n). Understanding Ax = b is the problem of Chapter 3.

= REVIEW OF THE KEY IDEAS =

Matrix times vector: Ax = combination of the columns of A.
The solution to Ax = bis x = A~ !b, when A is an invertible matrix.

The difference matrix A is inverted by the sum matrix S = A~1.

Lol A

The cyclic matrix C has no inverse. Its three columns lie in the same plane.
Those dependent columps add to the zero vector. Cx = 0 has many solutions.

5. This section is looking ahead to key ideas, not fully explained yet.

m WORKED EXAMPLES =

1.3 A Change the southwest entry as; of 4 (row 3, column 1) to az; = 1:

1 0 0 X X by
Ax =b —1 1 0 X2 = —X) + X3 = b2
1 -1 1 X3 X1 — Xy + X3 b3

Find the solution x for any b. From x = A1) read off the inverse matrix A~1.
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Solution Solve the (linear triangular) system Ax =fb from top to bottom:

first x; = by 1 00 by
then x, = by + by Thissaysthatx = A6 =| 1 1 0 by
then x3 = by + bs 0 1 1 bs

This is good practice to see the columns of the inverse matrix multiplying by, b2, and b3.
The first column of A~ is the solution for & = (1, 0, 0). The second column is the solution
for b = (0, 1,0). The third column x of A~! is the solution for Ax = b = (0,0, 1).

The three columns of A are still independent. They don’t lie in a plane. The combi-
nations of those three columns, using the right weights x, x5, x3, can produce any three-
dimensional vector b = (by, b3, b3). Those weights come from x = A~ 1h.

1.3 B This E is an elimination matrix. £ has a subtraction, £~ has an addition.

e=s [ ][5 ][0 ] e= 1]

The first equation is x; = b;. The second equation is x3 — £x; = b,. The inverse will add
€x1 = £b,, because the elimination matrix subtracted £x :

-1 X1 _ bl _ 1 0 b] -1 __ 1 0
i E A E RN R Y R kY

1.3 C Change C from a cyclic difference to a centered difference producing x3 — x;:

0 1 0 X1 x2— 0 b
Cx=b —1 01 X2 = X3 — X = bz . (15)
0 -1 O X3 0 —x» b3

Show that Cx = b can only be solved when b; + b3 = 0. That is a plane of vectors b
in three-dimensional space. Each column of C is in the plane, the matrix has no inverse.
So this plane contains all combinations of those columns (which are all the vectors Cx).

Solution The first component of » = Cx is x;, and the last component of b is —x;.
So we always have b; + b3 = 0, for every choice of x.

If you draw the column vectors in C, the first and third columns fall on the same line.
In fact (column 1) = —(column 3). So the three columns will lie in a plane, and C is not
an invertible matrix. We cannot solve Cx = b unless by + b3 = 0.

I included the zeros so you could see that this matrix produces “centered differences”.
Row i of Cx is x;4; (right of center) minus x;_; (left of center). Here is the 4 by 4
centered difference matrix:

0 1 00 X1 Xp2— 0 by

_ -1 0 1 0 X2 _ X3 — X1 _ bz
Cx - b 0 -1 0 1 X3 - X4 — X2 o b3 (16)

0 0 -1 0 X4 0 - X3 b4

Surprisingly this matrix is now invertible! The first and last rows give x and x3. Then
the middle rows give x; and x4. It is possible to write down the inverse matrix C —1 But
5 by 5 will be singular (not invertible) again . . .
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Problem Set 1.3

1

Find the linear combination 2s; + 3s, + 4s3 = b. Then write b as a matrix-vector
multiplication S x. Compute the dot products (row of S) - x:

1 0 0
s1=1|1 sp=1| 1 s3 = | O | gointo the columns of S.
1 1 1

Solve these equations Sy = b with sy, §2, 53 in the columns of S

1 00 y1 1 1 0 0 Y1 1
1 10 yo |=111and| 1 1 0 yo | = 4
I 1 1 ¥3 1 1 1 1 V3 9

The sum of the first n odd numbers is

Solve these three equations for yy, y,, y3 in terms of By, By, Bj:

1 0 0 y1 Bl
Sy =B 1 1 0 y2 = Bg
1 1 1 y3 B3

Write the solution y as a matrix A = S~! times the vector B. Are the columns of §
independent or dependent?

Find a combination x;w; + x,w, + x3w; that gives the zero vector:

1 4 7
wy=1| 2 wy=1|5 wy = | 8
3 6 9
Those vectors are (independent) (dependent). The three vectors lie in a . The

matrix W with those columns is not invertible.

The rows of that matrix ,\W produce three vectors (I write them as columns):

1 2 3
ri=| 4 ro=1|5 r3=1| 6
7 8 9

Linear algebra says that these vectors must also lie in a plane. There must be many
combinations with y;r; + yara + y3rs = 0. Find two sets of y’s.

Which values of ¢ give dependent columns (combination equals zero)?

1 3 5 1 0 ¢
1 2 4 1 1 0
1 1 ¢ 01 1

W NO
QO et O
N O
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If the columns combine into Ax = 0 then eachrow hasr - x = O:

X1 0 F1+-X 0
a, a> aj x2 | =10 Byrows| ro-x [ =10
X3 0 r3+x 0

The three rows also lie in a plane. Why is that plane perpendicular to x?

Moving to a 4 by 4 difference equation Ax = b, find the four components xp, x3,
X3, X4. Then write this solution as x = S5 to find the inverse matrix S = A~ !:

1 0 0 07[x 2
| -1 1 0O Xp | _ | b2 | _
Ax=10 1 1 o||x|T |6 |TY
0 0 —1 1 || xg bs

What is the cyclic 4 by 4 difference matrix C? It will have 1 and —1 in each row.
Find all solutions x = (x;, X2, X3, x4) to Cx = 0. The four columns of C lie in a
“three-dimensional hyperplane” inside four-dimensional space.

A forward difference matrix A is upper triangular:

-1 1 0 Z1 Zy — 2y b
Az = 0 -1 1 ) = 23 —Ip = bz = b.
0 0 —1 73 0—1z;3 b3

Find z1, 22, z3 from by, bs, b3. What is the inverse matrix in z = A™15?

Show that the forward differences (¢t + 1) — 2 are 2t+1 = odd numbers.
As in calculus, the difference (¢t + 1)* — t* will begin with the derivative of ¢",
which is

The last lines of the Worked Example say that the 4 by 4 centered difference matrix
in (16) is invertible. Solve Cx = (b1, ba, b3, bs) to find its inverse in x = C 5.

Challenge Problems

The very last words say that the 5 by 5 centered difference matrix is not invertible.
Write down the 5 equations Cx = b. Find a combination of left sides that gives
zero. What combination of by, b,, b3, bs, bs must be zero? (The 5 columns lie on a
“4-dimensional hyperplane” in 5-dimensional space.)

If (a,b) is a multiple of (¢,d) with abcd # 0, show that (a,c) is a multiple of
(b,d). This is surprisingly important; two columns are falling on one line. You
could use numbers first to see how a, b, ¢, d are related. The question will lead to:

The matrix A = |: ? Z ] has dependent columns when it has dependent rows.



Chapter 2

Solving Linear Equations

2.1 Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations. Those equations
are linear, which means that the unknowns are only multiplied by numbers—we never see
x times y. Our first linear system is certainly not big. But you will see how far it leads:

Two equations x — 2y 1
Two unknowns 3x 4+ 2y = 11

li

(D

We begin a row at a time. The first equation x — 2y = 1 produces a straight line in the xy
plane. The point x = 1,y = 0 is on the line because it solves that equation. The point
x =3,y = 11is also on the line because 3 —2 = 1. If we choose x = 101 we find y = 50.

The slope of this particular line is -:12- because y increases by 1 when x changes by 2.
But slopes are important in calculus and this is linear algebra!

y
b 3x+2y=11

< =
il
i ]

7

Figure 2.1: Row picture: The point (3, 1) where the lines meet is the solution.

Figure 2.1 shows that line x — 2y = 1. The second line in this “row picture” comes
from the second equation 3x + 2y = 11. You can’t miss the intersection point where the

31
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two lines meet. The point x = 3,y = 1 lies on both lines. That point solves both equations
at once. This is the solution to our system of linear equations.

'ROWS. The row picture shows two lines meeting at a single point (the solution).

Turn now to the column picture. I want to recognize the same linear system as a “vector
equation”. Instead of numbers we need to see vectors. If you separate the original system
into its columns instead of its rows, you get a vector equation:

Combination equals b x[ ; ] + y[ _g ] = |: 1; :| = b. (2)

This has two column vectors on the left side. The problem is to find the combination of
those vectors that equals the vector on the right. We are multiplying the first column by x
and the second column by y, and adding. With the right choices x = 3 and y = 1 (the
same numbers as before), this produces 3(column 1) + 1(column 2) = b.

T [3] 3(column 1)

4 3(column 1) + 1(column 2) = b

column 2
T {§:|,column 1

Figure 2.2: Column picture: A combination of columns produces the right side (1,11).

Figure 2.2 is the “column picture” of two equations in two unknowns. The first part
shows the two separate columns, and that first column multiplied by 3. This multiplication
by a scalar (a number) is one of the two basic operations in linear algebra:

Scalar multiplication 3[ :]5" ] = [ 3 :|
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If the components of a vector v are v; and v,, then cv has components cv; and cvs.
The other basic operation is vector addition. We add the first components and the
second components separately. The vector sum is (1, 11) as desired:

o 3 -2 1
Vector addition [ 9]+[ 2]—[ 11 ]

The right side of Figure 2.2 shows this addition. The sum along the diagonal is the vector
b = (1, 11) on the right side of the linear equations.

To repeat: The left side of the vector equation is a linear combination of the columns.
The problem is to find the right coefficients x = 3 and y = 1. We are combining scalar
multiplication and vector addition into one step. That step is crucially important, because
it contains both of the basic operations:

Of course the solution x = 3,y = 1 is the same as in the row picture. I don’t know
which picture you prefer! I suspect that the two intersecting lines are more familiar at first.
You may like the row picture better, but only for one day. My own preference is to combine
column vectors. It is a lot easier to see a combination of four vectors in four-dimensional
space, than to visualize how four hyperplanes might possibly meet at a point. (Even one
hyperplane is hard enough. . .)

The coefficient matrix on the left side of the equations is the 2 by 2 matrix A:

. . 1 -2
Coefficient matrix A= { 3 9 ] .
This is very typical of linear algebra, to look at a matrix by rows and by columns. Its rows
give the row picture and its columns give the column picture. Same numbers, different
pictures, same equations. We write those equations as a matrix problem Ax = b:

sramxequation |3 o |y [Tl ]

%

The row picture deals with the two rows of A. The column picture combines the columns.
The numbers x = 3 and y = 1 go into x. Here is matrix-vector multiplication:

Looking ahead This chapter is going to solve n equations in n unknowns (for any n).
I am not going at top speed, because smaller systems allow examples and pictures and a
complete understanding. You are free to go faster, as long as matrix multiplication and
inversion become clear. Those two ideas will be the keys to invertible matrices.

I can list four steps to understanding elimination using matrices.
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1. Elimination goes from A to a triangular U by a sequence of matrix steps E;;.

2. The inverse matrices E;; ! in reverse order bring U back to the original A.

3. In matrix language that reverse orderis A = LU = (lower triangle) (upper triangle).
4. Elimination succeeds if A is invertible. (It may need row exchanges.).

The most-used algorithm in computational science takes those steps (MATLAB calls it lu).
But linear algebra goes beyond square invertible matrices! For m by n matrices, Ax = 0
may have many solutions. Those solutions will go into a vector space. The rank of A
leads to the dimension of that vector space.

All this comes in Chapter 3, and I don’t want to hurry. But [ must get there.

Three Equations in Three Unknowns

The three unknowns are x, y, z. We have three linear equations:

x + 2y 4+ 3z = 6
Ax = b 2x 4+ 5y + 2z = 4 3)
6x — 3y + z = 2

We look for numbers x, y, z that solve all three equations at once. Those desired numbers
might or might not exist. For this system, they do exist. When the number of unknowns
matches the number of equations, there is usually one solution. Before solving the problem,
we visualize it both ways:

ROW The row picture shows three planes meeting at a single point.

COLUMN The column picture combines three columns to produce (6.4, 2).

In the row picture, each equation produces a plane in three-dimensional space. The first
plane in Figure 2.3 comes from the first equation x 4+ 2y 4+ 3z = 6. That plane crosses
the x and y and z axes at the points (6, 0, 0) and (0, 3, 0) and (0, 0, 2). Those three points
solve the equation and they determine the whole plane.

The vector (x, y,z) = (0,0, 0) does not solve x + 2y + 3z = 6. Therefore that plane
does not contain the origin. The plane x + 2y + 3z = 0 does pass through the origin, and
it is parallel to x 4+ 2y + 3z = 6. When the right side increases to 6, the parallel plane
moves away from the origin.

The second plane is given by the second equation 2x + 5y + 2z = 4. It intersects the
first plane in a line L. The usual result of two equations in three unknowns is a line L of
solutions. (Not if the equations were x + 2y 4+ 3z = 6and x 4+ 2y 4+ 3z = 0.)

The third equation gives a third plane. It cuts the line L at a single point. That point
lies on all three planes and it solves all three equations. It is harder to draw this triple
intersection point than to imagine it. The three planes meet at the solution (which we
haven’t found yet). The column form will now show immediately why z = 2.
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z Z

2x +85y+2z=4 line L

0
Solution | 0
2

J

plane x +2y +32=6 3rd plane 6x —3y +z =2

(0,0, 0) is not on these planes

X X

Figure 2.3: Row picture: Two planes meet at a line, three planes at a point.

The column picture starts with the vector form of the equations Ax = b:

1 2 3 6
Combine columns x| 2 |+ 5 4z 2 |={4]|. 4)
6 -3 1 2

The unknowns are the coefficients x, y, z. We want to multiply the three column vectors
by the correct numbers x, y, z to produce b = (6, 4, 2).

1
2 | = column 1
6

2
5 | = column 2
-3

— N W

7N

2 times column 3is b = [

[ I N

Figure 2.4: Column picture: (x,y,z) = (0,0, 2) because 2(3,2,1) = (6,4,2) = b.

Figure 2.4 shows this column picture. Linear combinations of those columns can pro-
duce any vector b! The combination that produces b = (6,4, 2) is just 2 times the third
column. The coefficients we needare x =0,y = 0,and z = 2.
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The three planes in the row picture meet at that same solution point (0, 0, 2):

Correct combination 1 2 3 6
0| 2 |+0 5 (421 2 | =] 4
(x,y.2) = (0,0,2) 6 —3 1 2

The Matrix Form of the Equations

We have three rows in the row picture and three columns in the column picture (plus the

right side). The three rows and three columns contain nine numbers. These nine numbers
fill a 3 by 3 matrix A:

The “coefficient matrix” in Ax = bis A=

O\ DN =
(SSIR VI )
— N W

The capital letter A stands for all nine coefficients (in this square array). The letter
b denotes the column vector with components 6,4,2. The unknown x is also a column
vector, with components x, y, z. (We use boldface because it is a vector, x because it is
unknown.) By rows the equations were (3), by columns they were (4), and by matrices they
are (5):

1 2 3 x 6
Matrix equation Ax = b 2 5 2 y |=1| 4 |. )]
6 -3 1 z 2

Basic question: What does it mean to “multiply 4 times x”°? We can multiply by rows or
by columns. Either way, Ax = b must be a correct representation of the three equations.
You do the same nine multiplications either way.

Multiplication by rows  Ax comes from dot products, each row times the column x:

(6)
Multiplication by columns Ax is a combination of column vectors:

When we substitute the solution x = (0, 0, 2), the multiplication Ax produces b:

1 2 3 0 6
2 5 2 0 | =2timescolumn3 =} 4
6 =3 1 2 2

The dot product from the first row is (1,2,3) - (0,0,2) = 6. The other rows give dot
products 4 and 2. This book sees Ax as a combination of the columns of A.
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Example 1 Here are 3 by 3 matrices 4 and I = identity, with three 1’s and six 0’s:

0 0 4 4 1 0 O 4 4
Ax=]11 0 0 5 |=1| 4 Ix=] 01 0 5 | =1} 5
0 0 6 4 0 0 1 6 6

If you are a row person, the dot product of (1, 0, 0) with (4,5, 6) is 4. If you are a column
person, the linear combination Ax is 4 times the first column (1, 1, 1). In that matrix A, the
second and third columns are zero vectors.

The other matrix 7 is special. It has ones on the “main diagonal”. Whatever vector
this matrix multiplies, that vector is not changed. This is like multiplication by 1, but for
matrices and vectors. The exceptional matrix in this example is the 3 by 3 idertity matrix:

always yields the multiplication 7x = x

e~
Il

OO -

-_ o O

Matrix Notation

The first row of a 2 by 2 matrix contains a;; and ay,. The second row contains a;; and
azy. The first index gives the row number, so that a;; is an entry in row i. The second index
J gives the column number. But those subscripts are not very convenient on a keyboard!
Instead of a;; we type A(i, j). The entry as; = A(5,7) would be in row 5, column 7.

A= [ an @ ] _[ A1) A(1,2) ]
o dz1 a2 - A(2, 1) A(2,2) )

For an m by n matrix, the row index i goes from 1 to m. The column index j stops at 7.
There are mn entries a;; = A(, j). A square matrix of order n has n? entries.

Multiplication in MATLAB

I want to express A and x and their product Ax using MATLAB commands. This is a first
step in learning that language. I begin by defining the matrix A and the vector x. This
vector is a 3 by 1 matrix, with three rows and one column. Enter matrices a row at a time,
and use a semicolon to signal the end of a row:

A=[1 2 3; 2 5 2; 6 -3 1]
x=1[0;0;2]

Here are three ways to multiply Ax in MATLAB. In reality, A * x is the good way to do it.
MATLAB is a high level language, and it works with matrices:
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We can also pick out the first row of A (as a smaller matrix!). The notation for that 1
by 3 submatrix is A(L,:). Here the colon symbol keeps all columns of row 1:

Rowatatime b=[A(1,)xx; AQ2,))*x; A3,)) *x]

Each entry is a dot product, row times column, 1 by 3 matrix times 3 by 1 matrix.

The other way to multiply uses the columns of 4. The first column is the 3 by 1 sub-
matrix A(:,1). Now the colon symbol : is keeping all rows of column 1. This column
multiplies x (1) and the other columns multiply x(2) and x(3):

Columnatatime b= A(:,1)xx(1)+ A(:,2) *x(2)+ A(:,3) *x(3)

I think that matrices are stored by columns. Then multiplying a column at a time will be a
little faster. So A * x is actually executed by columns.

You can see the same choice in a FORTRAN-type structure, which operates on single
entries of A and x. This lower level language needs an outer and inner “DO loop”. When
the outer loop uses the row number /, multiplication is a row at a time. The inner loop
J = 1,3 goes along each row I.

When the outer loop uses J, multiplication is a column at a time. I will do that in
MATLAB (which really needs two more lines “end” and “end” to close “for i and “for j”).

FORTRAN by rows MATLAB by columns

DO10 I =1,3 forj=1:3

DO10 J=1,3 fori=1:3

10 B(I)= B(I)+ A(1,J) = X(J) b(i) = b(i) + AG, j) *x(J)

Notice that MATLAB is sensitive to upper case versus lower case (capital letters and small
letters). If the matrix is A4 then its entries are not a (i, j): not recognized.

I think you will prefer the higher level 4 * x. FORTRAN won’t appear again in this
book. Maple and Mathematica and graphing calculators also operate at the higher level.
Multiplication is A. x in Mathematica. It is multiply(A4, x); or equally evalm(A& * x);
in Maple. Those languages allow symbolic entries @, b, x, . .. and not only real numbers.
Like MATLAB’s Symbolic Toolbox, they give the symbolic answer.

= REVIEW OF THE KEY IDEAS =

1. The basic operations on vectors are multiplication cv and vector addition v + w.
2. Together those operations give linear combinations cv + d w.

3. Matrix-vector multiplication Ax can be computed by dot products, a row at a time.
But Ax should be understood as a combination of the columns of A.

4. Column picture: Ax = b asks for a combination of columns to produce b.

5. Row picture: Each equation in Ax = b givesaline (n = 2)oraplane (n = 3) ora
“hyperplane” (n > 3). They intersect at the solution or solutions, if any.
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= WORKED EXAMPLES =

2.1 A Describe the column picture of these three equations Ax = b. Solve by careful
inspection of the columns (instead of elimination):

x+3y+2z=-3 1 3 2 X -3
2x + 2y +2z =-2  whichis 2 2 2 y|l=1-2
3x +5y+6z=-5 3 5 6 z -5

Solution  The column picture asks for a linear combination that produces b from the
three columns of A. In this example b is minus the second column. So the solution is
x =0,y = —1,z = 0. To show that (0, —1, 0) is the only solution we have to know that
“A is invertible” and “the columns are independent” and “the determinant isn’t zero.”

Those words are not yet defined but the test comes from elimination: We need
(and for this matrix we find) a full set of three nonzero pivots.

Suppose the right side changes to & = (4,4, 8) = sum of the first two columns. Then
the good combination has x = 1, y = 1,z = 0. The solution becomes x = (1, 1,0).

2.1 B  This system has no solution. The planes in the row picture don’t meet at a point.
No combination of the three columns produces b. How to show this?

xX+3y+5z=4 1 3 5 X 4
x+2y—-3z=5 1 2 -3 y |=1|5|=b
2x +5y +2z=38 2 5 2 z 8

(1) Multiply the equations by 1, 1, —1 and add to get 0 = 1. No solution. Are any two of
the planes parallel? What are the equations of planes parallel to x 4+ 3y + 5z = 4?

(2) Take the dot product of each column of A (and also b) with y = (1,1,-1).
How do those dot products show that the system Ax = & has no solution?

(3) Find three right side vectors b* and b** and »*** that do allow solutions.

Solution
(1) Multiplying the equations by 1, 1, —1 and adding gives 0 = 1:

X+3y+5z2=4
x+2y—-3z=5

—[2x + 5y + 2z = §]
Ox+0y+0z=1 No Solution

The planes don’t meet at a point, even though no two planes are parallel. For a plane
parallel to x + 3y + 5z = 4, change the “4”. The parallel plane x + 3y + 5z = 0
goes through the origin (0, 0,0). And the equation muitiplied by any nonzero con-
stant still gives the same plane, as in 2x + 6y + 10z = 8.
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(2) The dot product of each column of A with y = (1, 1, —1) is zero. On the right side,
y-b=(,1,-1)-(4,5,8) = 1is not zero. So a solution is impossible.

(3) There is a solution when & is a combination of the columns. These three choices of
b have solutions x* = (1,0,0) and x** = (1,1, 1) and x*** = (0,0, 0):

1 9 0
b*=|1| = firstcolumn & = |0 | = sumofcolumns »***=|0
2 9 0
Problem Set 2.1

Problems 1-8 are about the row and column pictures of Ax = b.

1 With A = I (the identity matrix) draw the planes in the row picture. Three sides of
a box meet at the solutionx = (x,y,z) = (2,3,4):

Ix4+0y+0z=2 1 0 0 b 2
Ox+1y+0z=3 or 010 y|=|3
Ox+0y+1z=4 0 0 1 z 4

Draw the vectors in the column picture. Two times column 1 plus three times column
2 plus four times column 3 equals the right side b.

2 If the equations in Problem 1 are multiplied by 2, 3, 4 they become DX = B:

2x+0y+0z=4 2 00 X 4
Ox+3y+0z=9 or DX=10 3 0]|y|=]| 9|=8B
Ox +0y +4z =16 0 0 4]z 16

Why is the row picture the same? Is the solution X the same as x? What is changed
in the column picture—the columns or the right combination to give B?

3 If equation 1 is added to equation 2, which of these are changed: the planes in the
row picture, the vectors in the column picture, the coefficient matrix, the solution?
The new equations in Problem 1 wouldbe x =2, x + y = 5,z = 4.

4 Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and
x — ¥y + z = 4. Find the point with z = 0. Find a third point halfway between.

5 The first of these equations plus the second equals the third:
X+ y+ z=2
x+2y+ z=3

2x+ 3y +2z =5.

The first two planes meet along a line. The third plane contains that line, because
if x, y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions on L.
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6 Move the third plane in Problem 5 to a parallel plane 2x + 3y 4+ 2z = 9. Now the
three equations have no solution—why not? The first two planes meet along the line
L, but the third plane doesn’t that line.

7 In Problem 5 the columns are (1, 1,2) and (1, 2, 3) and (1, 1, 2). This is a “singular
case” because the third column is . Find two combinations of the columns that
give b = (2, 3,5). This is only possible for b = (4,6,¢) if c =

8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4 col-
umn vectors in 4-dimensional space can combine to produce b. What combination
of (1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1) produces b = (3,3,3,2)? What 4
equations for x, y, z, ¢ are you solving?

Problems 9-14 are about multiplying matrices and vectors.

9 Compute each Ax by dot products of the rows with the column vector:

@ -2 3 1|{2]
e B 012 1|1
001 2]|2

10  Compute each Ax in Problem 9 as a combination of the columns:

1 2 4
9(a) becomes Ax =2 |-2|+2|3[+3[|1]=
—4 1 2

How many separate multiplications for Ax, when the matrix is “3 by 377

11 Find the two components of Ax by rows or by columns:

BHHEER IS R A

12 Multiply A times x to find three components of Ax:

0 0 1 X 21 3 1 2 1 1
01 0]y and 1 2 3 1 and 1 2 [1] .
1 0 0}|:= 3 3 61 3 3
13 (a) A matrix with m rows and n columns multiplies a vector with compo-
nents to produce a vector with components.

(b) The planes from the m equations Ax = b are in -dimensional space.
The combination of the columns of A is in -dimensional space.
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14  Write 2x + 3y 4z +5¢ = 8 as a matrix A (how many rows?) multiplying the column
vector x = (x,),z,t) to produce b. The solutions x fill a plane or “hyperplane”
in 4-dimensional space. The plane is 3-dimensional with no 4D volume.

Problems 15-22 ask for matrices that act in special ways on vectors.

15 (a) What is the 2 by 2 identity matrix? I times [} ] equals [} ].
(b) What is the 2 by 2 exchange matrix? P times [;‘,] equals [,V‘]

16 (a) What 2 by 2 matrix R rotates every vector by 90°? R times [y ] is [} ].
(b) What 2 by 2 matrix R? rotates every vector by 180°?

17  Find the matrix P that multiplies (x, y, z) to give (y, z, x). Find the matrix Q that
multiplies (y, z, x) to bring back (x, y, 2).

18 What 2 by 2 matrix E subtracts the first component from the second component?
What 3 by 3 matrix does the same?

3 3
E [2] = [;] and El5]=]2
7 7

19  What 3 by 3 matrix E multiplies (x, y, z) to give (x, y,z + x)? What matrix E~!
multiplies (x, y, z) to give (x,y,z — x)? If you multiply (3,4,5) by E and then
multiply by E~!, the two results are ( ) and ( ).

20 What 2 by 2 matrix P; projects the vector (x, y) onto the x axis to produce (x, 0)?
What matrix P, projects onto the y axis to produce (0, y)? If you multiply (5, 7)
by P; and then multiply by P>, youget (____ ) and ( ).

21  What 2 by 2 matrix R rotates every vector through 45°? The vector (1,0) goes to
(v/2/2,~/2/2). The vector (0, 1) goes to (—+/2/2, 4/2/2). Those determine the
matrix. Draw these particular vectors in the xy plane and find R.

22  Write the dot product of (1, 4,5) and (x, y,z) as a matrix multiplication Ax. The
matrix A has one row. The solutions to Ax = 0 lieona perpendicular to the
vector . The columns of A4 are only in -dimensional space.

23 In MATLAB notation, write the commands that define this matrix 4 and the column
vectors x and &. What command would test whether or not Ax = b?

SIS RS

24  The MATLAB commands A = eye(3) and v = [3:5]’ produce the 3 by 3 identity
matrix and the column vector (3,4, 5). What are the outputs from A%v and v’*v?
(Computer not needed!) If you ask for vkA, what happens?



2.1. Vectors and Linear Equations 43

25 If you multiply the 4 by 4 all-ones matrix A = ones(4) and the column v = ones(4,1),
what is A*v? (Computer not needed.) If you multiply B = eye(4) + ones(4) times
w = zeros(4,1) + 2xones(4,1), what is Bxw?

Questions 26-28 review the row and column pictures in 2, 3, and 4 dimensions.

26  Draw the row and column pictures for the equations x -2y = 0,x 4+ y = 6.

27  Fortwo linear equations in three unknowns x, y, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lie on a

28  For four linear equations in two unknowns x and y, the row picture shows four
. The column picture is in -dimensional space. The equations have no
solution unless the vector on the right side is a combination of

29  Start with the vector #p = (1,0). Multiply again and again by the same “Markov
matrix” A = [.8 .3; .2 .7]. The next three vectors are u;, u3, u3:

e | R e - e e —
What property do you notice for all four vectors ug, #1, u2, u3?
Challenge Problems
30 Continue Problem 29 from uo = (1,0) to u7, and also from v = (0, 1) to v7.

What do you notice about #7 and v;? Here are two MATLAB codes, with while and
for. They plot ug to u7 and v to v7. You can use other languages:

u=[1;0;A=[8.3;.2.7] v=[0;1];A=[8.3;.2.7];
x=u;k=[0:7] X=V;Kk=[0:7];
while size(x,2) <=7 forj=1:7
u=Axu; X =[x u]; V= Axv; X =[x Vv];
end end
plot{k, x) plot(k, x)

The u’s and v’s are approaching a steady state vector s. Guess that vector and check
that As = s. If you start with s, you stay with s.

31 Invent a 3 by 3 magic matrix M3 with entries 1,2,...,9. All rows and columns
and diagonals add to 15. The first row could be 8, 3, 4. What is M3 times (1,1, 1)?
What is My times (1, 1, 1, 1) if a 4 by 4 magic matrix has entries 1, ..., 16?

32  Suppose # and v are the first two columns of a 3 by 3 matrix A. Which third columns
w would make this matrix singular? Describe a typical column picture of Ax = b
in that singular case, and a typical row picture (for a random b).



44

33

34

35

Chapter 2. Solving Linear Equations

Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination of # and v, then Aw is the same combination of Au and Awv.

It is this “linearity” Aw = cAu + d Av that gives us the name linear algebra.

Problem: If u = [ (1) ] and v = [ (1) ] then Au and Av are the columns of A.

Combinew =cu +dv.If w = [ ; ] how is Aw connected to Au and Av?

Start from the four equations —x; 4+, + 2x; — xj—; = { (fori = 1,2,3,4 with
X0 = x5 = 0). Write those equations in their matrix form Ax = b. Can you solve
them for xq, X3, x3, X437

A9by 9 Sudoku matrix S hasthe numbers 1,..., 9 in every row and column, and
in every 3 by 3 block. For the all-ones vector x = (1,..., 1), whatis Sx?

A better question is: Which row exchanges will produce another Sudoku matrix?
Also, which exchanges of block rows give another Sudoku matrix?

Section 2.7 will look at all possible permutations (reorderings) of the rows. I can see
6 orders for the first 3 rows, all giving Sudoku matrices. Also 6 permutations of the
next 3 rows, and of the last 3 rows. And 6 block permutations of the block rows?
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2.2 The Idea of Elimination

This chapter explains a systematic way to solve linear equations. The method is called
“elimination”, and you can see it immediately in our 2 by 2 example. Before elimination,
x and y appear in both equations. After elimination, the first unknown x has disappeared
from the second equation 8y = 8§:

x—2y=1 =1 (multiply equation 1 by 3)
Before 3x +2y =11 After =38 (subtract to eliminate 3x)

The new equation 8y = § instantly gives y = 1. Substituting y = 1 back into the first
equation leaves x — 2 = 1. Therefore x = 3 and the solution (x, y) = (3, 1) is complete.

Elimination produces an upper triangular system—this is the goal. The nonzero
coefficients 1, —2, 8 form a triangle. That system is solved from the bottom upwards—
first y = 1 and then x = 3. This quick process is called back substitution. It is used for
upper triangular systems of any size, after elimination gives a triangle.

Important point: The original equations have the same solution x = 3 and y = 1.
Figure 2.5 shows each system as a pair of lines, intersecting at the solution point (3, 1).
After elimination, the lines still meet at the same point. Every step worked with correct
equations.

How did we get from the first pair of lines to the second pair? We subtracted 3 times
the first equation from the second equation. The step that eliminates x from equation 2 is
the fundamental operation in this chapter. We use it so often that we look at it closely:

To eliminate x: Subtract a multiple of equation 1 from equation 2.

Three times x — 2y = 1 gives 3x — 6y = 3. When this is subtracted from 3x + 2y = 11,
the right side becomes 8. The main point is that 3x cancels 3x. What remains on the left
side is 2y — (—6y) or 8y, and x is eliminated. The system became triangular.

Ask yourself how that multiplier £ = 3 was found. The first equation contains 1x.
So the first pivot was 1 (the coefficient of x). The second equation contains 3x, so the
multiplier was 3. Then subtrdction 3x — 3x produced the zero and the triangle.

y
A 3x+2y=11

y
* After elimination

Before elimination 8y =28

x—=2=1 x—2y=1

~ 7

Figure 2.5: Eliminating x makes the second line horizontal. Then 8y = 8 gives y = 1.
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You will see the multiplier rule if I change the first equation to 4x — 8y = 4. (Same
straight line but the first pivot becomes 4.) The correct multiplier is now £ = %. To find the
multiplier, divide the coefficient “3” to be eliminated by the pivot “ 4"

4x—8y =4 Multiply equation 1 by % 4x —8y|=4
3Ix+2y =11 Subtract from equation 2 8y|= 8.

The final system is triangular and the last equation still gives y = 1. Back substitution
produces 4x — 8 = 4 and 4x = 12 and x = 3. We changed the numbers but not the lines
or the solution. Divide by the ptvot to ﬁnd that multiplier { = —-:

Ptvot : = ﬁrst nonzero in the row that does. the ellmmatzon
Multzplzer ; (entry to. elzmmate) dzvtded by (pivot). —-~ e

The new second equation starts with the second pivot, which is 8. We would use it to
eliminate y from the third equation if there were one. To solve n equations we want n
pivots. The pivots are on the diagonal of the triangle after elimination.

You could have solved those equations for x and y without reading this book. It is an
extremely humble problem, but we stay with it a little longer. Even for a 2 by 2 system,
elimination might break down. By understanding the possible breakdown (when we can’t
find a full set of pivots), you will understand the whole process of elimination.

Breakdown of Elimination

Normally, elimination produces the pivots that take us to the solution. But failure is possi-
ble. At some point, the method might ask us to divide by zero. We can’t do it. The process
has to stop. There might be a way to adjust and continue—or failure may be unavoidable.

Example 1 fails with no solution to Oy = 8. Example 2 fails with too many solutions to
0y = 0. Example 3 succeeds by exchanging the equations.

Example 1  Permanent failure with no solution. Elimination makes this clear:

x—2y=1 Subtract 3 times
3x—6y =11 eqn.1 fromeqn.2

There is no solution to 0y = 8. Normally we divide the nght side 8 by the second pivot,
but this system has no second pivot. (Zero is never allowed as a pivot!) The row and
column pictures in Figure 2.6 show why failure was unavoidable. If there is no solution,
elimination will discover that fact by reaching an equation like Oy = 8.

The row picture of failure shows parallel lines—which never meet. A solution must lie
on both lines. With no meeting point, the equations have no solution.

The column picture shows the two columns (1, 3) and (-2, —6) in the same direction.
All combinations of the columns lie along a line. But the column from the right side is in
a different direction (1, 11). No combination of the columns can produce this right side—
therefore no solution.

When we change the right side to (1, 3), failure shows as a whole line of solution points.
Instead of no solution, next comes Example 2 with infinitely many.
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first 1]
column | 3

Columns don’t combine to give b = [11]

second (-2
column |—g

Figure 2.6: Row picture and column picture for Example 1: no solution.

Example 2  Failure with infinitely many solutions. Change b = (1, 11) to (1, 3).

x—2y =1 Subtract 3 times
3x —6y =3 eqn. lfromeqn. 2

Still only
one pivot.

Every y satisfies Oy = 0. There is really only one equation x — 2y = 1. The unknown y
is “free”. After y is freely chosen, x is determined as x = 1 4 2y.

In the row picture, the parallel lines have become the same line. Every point on that
line satisfies both equations. We have a whole line of solutions in Figure 2.7.

In the column picture, & = (1, 3) is now the same as column 1. So we can choose
x = land y = 0. We can also choose x = Q0 and y = —%; column 2 times —% equals b.
Every (x, y) that solves the row problem also solves the column problem.

Failure For »n equations we do not get n pivots
Elimination leads to an equation 0 # 0 (no solution) or 0 = 0 (many solutions)

Success comes with n pivots. But we may have to exchange the n equations.

Elimination can go wrong'in a third way—but this time it can be fixed. Suppose the first
pivot position contains zero. We refuse to allow zero as a pivot. When the first equation
has no term involving x, we can exchange it with an equation below:

Example 3 Temporary failure (zero in pivot). A row exchange produces two pivots:

Ox +2y =4  Exchange the

Permutation i
3x —2y =5 twoequations

The new system is already triangular. This small example is ready for back substitution.
The last equation gives y = 2, and then the first equation gives x = 3. The row picture is
normal (two intersecting lines). The column picture is also normal (column vectors not in
the same direction). The pivots 3 and 2 are normal—but a roew exchange was required.
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L

1
right hand side [ 3]

lies on the line of columns

Same line from both equations
- Solutions all along this line

1 |1
E(second column) = — [ 3]

Figure 2.7: Row and column pictures for Example 2: infinitely many solutions.

Examples 1 and 2 are singular—there is no second pivot. Example 3 is nonsingular—
there is a full set of pivots and exactly one solution. Singular equations have no solution or
infinitely many solutions. Pivots must be nonzero because we have to divide by them.

Three Equations in Three Unknowns

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three
is enough to see the pattern. For now the matrices are square—an equal number of rows
and columns. Here is a 3 by 3 system, specially constructed so that all steps lead to whole
numbers and not fractions:

2x +4y —2z=2
4x +9y -3z =28 (D
—2x—-3y+7z=10
What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want

to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by
£51 = 2 and subtract. Subtraction removes the 4x from the second equation:

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4.

We also eliminate —2x from equation 3—still using the first pivot. The quick way is to add
equation 1 to equation 3. Then 2x cancels —2x. We do exactly that, but the rule in this book
is to subtract rather than add. The systematic pattern has multiplier £3; = —2/2 = —1.
Subtracting —1 times an equation is the same as adding:

Step 2 Subtract —1 times equation 1 from equation 3. This leaves y + 5z = 12.
The two new equations involve only y and z. The second pivot (in boldface) is 1:
T 1y +1z =4
x is eliminated 1y 45z = 12

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1:
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Step 3 Subtract equation 2pnew from 3pew. The multiplieris 1/1 = 1. Then 4z = 8.

The original Ax = b has been converted into an upper triangular Ux = ¢:

s 2x +4y —2z =2

1y +1z =4 ¥))
4z = 8.

The goal is achieved—forward elimination is complete from A to U. Notice the pivots
2,1,4 along the diagonal of U. The pivots 1 and 4 were hidden in the original system.
Elimination brought them out. Ux = c is ready for back substitution, which is quick:

h Zx +4y-2z=2 .I
C 4x4+9y-3z=8 "k
2 -3y+7z=10"

(4z=8 gives z=2) (y+z=4 gives y=12) (equationl gives x = —1)

The solution is (x,y,z) = (—1,2,2). The row picture has three planes from three equa-
tions. All the planes go through this solution. The original planes are sloping, but the last
plane 4z = 8 after elimination is horizontal.

The column picture shows a combination Ax of column vectors producing the right
side b. The coefficients in that combination are —1, 2, 2 (the solution):

2 4 -2 2
Ax =(-1)| 4| +2]| 9(+2|—-3|equals|{ 8| =5 3)
-2 -3 7 10

The numbers x, y, z multiply columns 1, 2, 3 in Ax = b and also in the triangular Ux = c.
For a 4 by 4 problem, or an n by »n problem, elimination proceeds the same way. Here
is the whole idea, column by column from A to U, when elimination succeeds.

Column 1. Use the first equation to create zeros below the first pivot.
Column 2. Use the new equation 2 to create zeros below the second pivot.

Columns 3 to n. Keep going to find all n pivots and the triangular U .

X X x x X X x x
After column 2 we have roxx We want rox X €Y

0 0 x x x x

0 0 x x X

The result of forward elimination is an upper triangular system. It is nonsingular if there
is a full set of n pivots (never zero!). Question: Which x on the left could be changed
to boldface x because the pivot is known? Here is a final example to show the original
Ax = b, the triangular system Ux = ¢, and the solution (x, y, z) from back substitution:

X+ y+ z=6 xX+y+z=26 X 3 Back
x+2y+2z=9 Forward y+z=3 yl{=12 Back
x+2y+3z=10 Forward z=1 z 1

All multipliers are 1. All pivots are 1. All planes meet at the solution (3, 2, 1). The columns
of A combine with 3,2, 1 to give b = (6,9, 10). The triangle shows Ux = ¢ = (6,3, 1).
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= REVIEW OF THE KEY IDEAS =

1. A linear system (Ax = b) becomes upper triangular (Ux = ¢) after elimination.

2. We subtract £;; times equation j from equation i, to make the (i, j) entry zero.

entry to eliminate in row I

- - - . Pivots can not be zero!
pivot in row j

3. The multiplier is £;; =

4. A zero in the pivot position can be repaired if there is a nonzero below it.
5. The upper triangular system is solved by back substitution (starting at the bottom).

6. When breakdown is permanent, the system has no solution or infinitely many.

= WORKED EXAMPLES =

2.2 A When elimination is applied to this matrix A, what are the first and second pivots?
What is the multiplier £,; in the first step (£2; times row 1 is subtracted from row 2)?

A has a first difference in row 1 and a second difference —1,2,—1 in row 2.

1 -1 0 1 -1 0O 1 -1 0
A= -1 2 -1|[—] 0 1 -1 ]|—U=|0 1 -1
0 -1 2 0 -1 2 0 0 1

What entry in the 2, 2 position (instead of 2) would force an exchange of rows 2 and 3?
Why is the lower left multiplier £3; = 0, subtracting zero times row 1 from row 3?
If you change the corner entry from as3 = 2 to azs = 1, why does elimination fail?

Solution  The first pivot is 1. The multiplier £5; is —1/1 = —1. When —1 times row 1
is subtracted (so row 1 is added to row 2), the second pivot is revealed as 1.

If we reduce the middle entry “2” to “1”, that would force a row exchange. (Zero will
appear in the second pivot position.) The muitiplier £3; is zero because a3; = 0. A zero at
the start of a row needs no elimination. This A is a “band matrix™.

The last pivot is 1. So if the original corner entry as; is reduced by 1 (to az3 = 1),
elimination would produce 0. No third pivot, elimination fails.

2.2B Suppose 4 is already a triangular matrix (upper triangular or lower triangular).
Where do you see its pivots? When does Ax = b have exactly one solution for every b7

Solution  The pivots of a triangular matrix are already set along the main diagonal. Elim-
ination succeeds when all those numbers are nonzero. Use back substitution when A is
upper triangular, go forward when A is lower triangular.



2.2. The Idea of Elimination 51

2.2 C  Use elimination to reach upper triangular matrices U. Solve by back substitution
or explain why this is impossible. What are the pivots (never zero)? Exchange equations
when necessary. The only difference is the —x in the last equation.

Success x+y+z=17 x+y+z=7
then X+y—z=>5 x+y—z=5
Failure xX—y+z=3 —xX—y+z=3

Solution  For the first system, subtract equation 1 from equations 2 and 3 (the multipliers
are £5; = 1 and £3; = 1). The 2, 2 entry becomes zero, so exchange equations:

x+y+z= 1 x+y+z= 7
Success 0y —2z = -2 exchangesinto -2y +0z=—4
-2y +0z=-4 —2z=-2

Then back substitution gives z = 1 and y = 2 and x = 4. The pivots are 1, =2, —2.
For the second system, subtract equation 1 from equation 2 as before. Add equation 1
to equation 3. This leaves zero in the 2, 2 entry and also below:

x+y+z= 17 There is no pivot in column 2 (it was — column 1)
Failure 0y —2z=-2 A further elimination step gives 0z = 8
0y +2z= 10 The three planes don’t meet

Plane 1 meets plane 2 in a line. Plane 1 meets plane 3 in a parallel line. No solution.
If we change the “3” in the original third equation to “—5” then elimination would lead
to 0 = (. There are infinitely many solutions! The three planes now meet along a whole line.
Changing 3 to —5 moved the third plane to meet the other two. The second equation
gives z = 1, Then the first equation leaves x + y = 6. No pivet in column 2 makes y
free (it can have any value). Then x = 6 — y.

Problem Set 2.2

Problems 1-10 are about elimination on 2 by 2 systems.
1 What multiple £,; of equation 1 should be subtracted from equation 2?

2x+3y =1
10x + 9y = 11.

After this elimination step, write down the upper triangular system and circle the two
pivots. The numbers 1 and 11 have no influence on those pivots.

2 Solve the triangular system of Problem 1 by back substitution, y before x. Verify
that x times (2, 10) plus y times (3, 9) equals (1, 11). If the right side changes to
(4, 44), what is the new solution?
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What multiple of equation 1 should be subtracted from equation 2?7
2x—4y =6
—x 4+ 5y =0.

After this elimination step, solve the triangular system. If the right side changes to
(—6,0), what is the new solution?

What multiple £ of equation 1 should be subtracted from equation 2 to remove ¢?
ax+by = f
cx+dy = g.

The first pivot is @ (assumed nonzero). Elimination produces what formula for the
second pivot? What is y? The second pivot is missing when ad = bc: singular.

Choose a right side which gives no solution and another right side which gives in-
finitely many solutions. What are two of those solutions?

3x+2y =10

Singular system 6x + 4y =

Choose a coefficient b that makes this system singular. Then choose a right side g
that makes it solvable. Find two solutions in that singular case.

2x + by =16
4x + 8y = g.
For which numbers a does elimination break down (1) permanently (2) temporarily?
ax + 3y =-3
4x + 6y = 6.
Solve for x and y after fixing the temporary breakdown by a row exchange.

For which three numbers k does elimination break down? Which is fixed by a row
exchange? In each case, is the number of solutions 0 or 1 or co?

kx+3y= 6

3x + ky = —6.

What test on by and b, decides whether these two equations allow a solution? How
many solutions will they have? Draw the column picture for b = (1, 2) and (1, 0).

3x -2y =by
6x — 4y = b,.
In the xy plane, draw the lines x + y = 5 and x 4+ 2y = 6 and the equation

y = that comes from elimination. The line 5x — 4y = ¢ will go through the
solution of these equations if ¢ =
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Problems 11-20 study elimination on 3 by 3 systems (and possible failure).

11

12

13

14

15

16

17

(Recommended) A system of linear equations can’t have exactly two solutions. Why?

(a) If (x,y,2) and (X, Y, Z) are two solutions, what is another solution?
(b) If 25 planes meet at two points, where else do they meet?

Reduce this system to upper triangular form by two row operations:
2x+3y+z = 8

4x + Ty + 5z =20
-2y +2z= 0.

Circle the pivots. Solve by back substitution for z, y, x.

Apply elimination (circle the pivots) and back substitution to solve
2x — 3y =3
dx -5y + z =17
2x— y—3z =5.

List the three row operations: Subtract times row from row

Which number d forces a row exchange, and what is the triangular system (not sin-
gular) for that 7 Which d makes this system singular (no third pivot)?
2x+5y4+2z=0
4x+dy+z=2
y—z=23.

Which number b leads later to a row exchange? Which b leads to a missing pivot?
In that singular case find a nonzero solution x, y, z.

x + by =0
x—2y—z =0
y+z=0.

(a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks
down later.

If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange)? If columns 1 and 2 are the same, which pivot is missing?

Equal 2x—y+2z=0 2x +2y +z =0 Equal
rows 2x—y+z=0 4x +4y+2z=0 columns
dx+y+z=2 6x +6y+2z=2.
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18

19

20

21

22

23
24
25

26

27
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Construct a 3 by 3 example that has 9 different coefficients on the left side, but
rows 2 and 3 become zero in elimination. How many solutions to your system with
b = (1, 10, 100) and how many with b = (0,0, 0)?

Which number ¢ makes this system singular and which right side ¢ gives it infinitely
many solutions? Find the solution that has z = 1.

x+4y -2z =1
x+7Ty—6z=06
3y +qz =1t.

Three planes can fail to have an intersection point, even if no planes are parallel. The
system is singularifrow 3of Aisa of the first two rows. Find a third equation
that can’t be solved together withx +y 4+ z =0and x -2y —z = 1.

Find the pivots and the solution for both systems (4x = b and Kx = b):

2x+ y =0 2x =y =0
xX+2y+ z =0 ~-x+2y— z =0
y+2z4+ t=0 - y+2z—t=0
z+2t=5 — z4+2t=5.

If you extend Problem 21 following the 1, 2, 1 pattern or the —1, 2, —1 pattern, what
is the fifth pivot? What is the nth pivot? K is my favorite matrix.

If elimination leads to x + y = 1 and 2y = 3, find three possible original problems.
For which two numbers a will elimination fail on 4 = [g 3]‘7

For which three numbers a will elimination fail to give three pivots?

a 2 3
A= |a a 4| issingular for three values of a.
a a a

Look for a matrix that has row sums 4 and 8, and column sums 2 and s:

Matrix — | @ b . a+b=4 a+c=2
“lc d c+d=8 b+d=s
The four equations are solvable only if s = . Then find two different matrices

that have the correct row and column sums. Extra credit: Write down the 4 by 4
system Ax = b with x = (a, b, ¢, d) and make A triangular by elimination.

Elimination in the usual order gives what matrix U and what solution to this “lower
triangular” system? We are really solving by forward substitution:

3x =3

6x + 2y =38
Ox =2y +z =09.
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28

29

30

31

32

Create a MATLAB command A(2, : ) = ... for the new row 2, to subtract 3 times row
1 from the existing row 2 if the matrix A is already known.

Challenge Problems

Find experimentally the average 1st and 2nd and 3rd pivot sizes from MATLAB ’s
[L,U] = lu(rand(3)). The average size abs(U(1, 1)) is above 1 because lu picks
the largest available pivot in column 1. Here A = rand(3) has random entries
between 0 and 1.

If the last comner entry is A(5,5) = 11 and the last pivot of A4 is U(5,5) = 4, what
different entry A(5, 5) would have made A singular?

Suppose elimination takes A to U without row exchanges. Then row j of U is a
combination of whichrows of A7 If Ax = 0,isUx =0?If Ax =b,isUx = b?
If A starts out lower triangular, what is the upper triangular U?

Start with 100 equations Ax = 0 for 100 unknowns x = (xy,...,X100). Suppose
elimination reduces the 100th equation to 0 = 0, so the system is “singular”.

(a) Elimination takes linear combinations of the rows. So this singular system has
the singular property: Some linear combination of the 100 rows is

(b) Singular systems Ax = 0 have infinitely many solutions. This means that some
linear combination of the 100 columuns is

(c) Invent a 100 by 100 singular matrix with no zero entries.

(d) For your matrix, describe in words the row picture and the column picture of
Ax = 0. Not necessary to draw 100-dimensional space.
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2.3 Elimination Using Matrices

We now combine two ideas—elimination and matrices. The goal is to express all the steps
of elimination (and the final result) in the clearest possible way. In a 3 by 3 example,
elimination could be described in words. For larger systems, a long list of steps would be
hopeless. You will see how to subtract a multiple of row j from row i—using a matrix E.

The 3 by 3 example in the previous section has the beautifully short form Ax = b:

2x1 +4x2 —2x3 = 2 2 4 =2 X1 2
4x1 +9x, —3x3 = 8 isthe same as 4 9 -3 Xy | = 8]. (1
—-2x1 — 3%y +7Tx3 = 10 -2 =3 7 X3 10

The nine numbers on the left go into the matrix A. That matrix not only sits beside x, it
multiplies x. The rule for “A times x” is exactly chosen to yield the three equations.

Review of A times x. A matrix times a vector gives a vector. The matrix is square when
the number of equations (three) matches the number of unknowns (three). Our matrix is
3 by 3. A general square matrix is # by n. Then the vector x is in n-dimensional space.

X1 -1
The unknowninR3is x = | x, and the solutionis x = | 2
X3 2

Key point: Ax = b represents the row form and also the column form of the equations.

2 4 ~2 2
Column form Ax =D} 41+2] 9|+2]-3| =] 8| =hb.
-2 -3 7 10

Thls rule for Ax is used so often that we express 1t once more for emphasus

Ax zs a com "on'of the columns of A, C mponents of x mu1t1p qtho‘

¢ Ax = x1 tlmes (column 1) +> + xn tlmes (column n)

When we compute the components of Ax, we use the Tow form of matrix multiplica-
tion. The ith component is a dot product with row i of A, which is [a;; a;2 ... aial].
The short formula for that dot product with x uses “sigma notation”.

Components of Ax are dot products with rows of A.

'.x;'IS atlxl+a12x2+ +amxn Thlsils Zauxj o

The sigma symbol )  is an instruction to add.! Start with j = 1 and stop with j = n.
Start the sum with a;;x1 and stop with a;,x,. That produces (row i) - x.

!Einstein shortened this even more by omitting the ). The repeated j ina;; X ; automatically meant addition.

He also wrote the sum as a{ X ;. Not being Einstein, we include the 3.
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One point to repeat about matrix notation: The entry in row 1, column 1 (the top left
corner) is a;. The entry in row 1, column 3 is a;3. The entry in row 3, column 1 is aa.
(Row number comes before column number.) The word “entry” for a matrix corresponds
to “component” for a vector. General rule: a;; = A(i, j) isinrow i, column j.

Example 1  This matrix has a;; = 2i + j. Thenaj; = 3. Also a2 = 4 and az; = 5.
Here is Ax with numbers and letters:

3 4|2 _ 3.244-1 air aiz X1t _|anxi +apx:
5 6 11 |5:2+6-1 azy a4z X2 - a1 X1 +axypxy |’
The first component of Ax is 6 + 4 = 10. A row times a column gives a dot product.

The Matrix Form of One Elimination Step

Ax = b is a convenient form for the original equation. What about the elimination steps?
The first step in this example subtracts 2 times the first equation from the second equation.
On the right side, 2 times the first component of b is subtracted from the second component:

2 2
First step b= 8 changesto bpew = | 4
10 10

We want to do that subtraction with a matrix! The same result bpew = Eb is achieved
when we multiply an “elimination matrix” E times b. It subtracts 2b; from b;:

-2 1 0
1

Multiplication by E subtracts 2 times row 1 from row 2. Rows 1 and 3 stay the same:

1 0 o[ 2 2 1 0 0][5 by
2 1 o] 8= 4 2 1 0||by|=|br—28
o 0 1]]|10 10 0 0 1]]b; bs

The first and third rows of E are rows from the identity matrix /. The new second compo-
nent is the number 4 that appeared after the elimination step. This is b — 25;.

It is easy to describe the “elementary matrices” or “elimination matrices” like this E.
Start with the identity matrix I. Change one of its zeros to the multiplier —(:
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Example 2 The matrix E3; has —¢ in the 3, 1 position:

1 0 0 1 0 O
Identity 7 =0 1 O Elimination E3;=| 0 1 O
0 0 1 —£ 0 1

When you multiply / times b, you get b. But E3; subtracts £ times the first component
from the third component. With £ = 4 this example gives 9 — 4 = 5:

1 0 0 1 1 1 0 0|1 1
Ib=(0 1 0|3 ]|=|3 and Eb=| 0 1 O|]|3[=]3
0 0 1 9 9 —-4 0 1 9 5

What about the left side of Ax = b? Both sides are multiplied by E3;. The purpose of
E3) is to produce a zero in the (3, 1) position of the matrix.

The notation fits this purpose. Start with A. Apply E’s to produce zeros below the
pivots (the first £ is E3;). End with a triangular U. We now look in detail at those steps.

First a small point. The vector x stays the same. The solution is not changed by
elimination. (That may be more than a small point.) It is the coefficient matrix that is
changed. When we start with Ax = b and multiply by E, the result is EAx = Eb.
The new matrix E A is the result of multiplying E times A.

Confession The elimination matrices E;; are great examples, but you won’t see them
later. They show how a matrix acts on rows. By taking several elimination steps, we will
see how to multiply matrices (and the order of the E’s becomes important). Products and
inverses are especially clear for E’s. It is those two ideas that the book will now use.

Matrix Multiplication

The big question is: How do we multiply two matrices? When the first matrix is E,
we already know what to expect for EA. This particular E subtracts 2 times row 1 from
row 2 of this matrix A and any matrix. The multiplier is £ = 2:

1 0 0 2 4 =2 2 4 =2
EA=1-2 1 0 4 9 =3(=10 1 1 (with the zero).  (2)
o o 1]|1-2 -3 7 -2 =3 7

This step does not change rows 1 and 3 of A. Those rows are unchanged in £ A—only
row 2 is different. Twice the first row has been subtracted from the second row. Matrix
multiplication agrees with elimination—and the new system of equations is EAx = Eb.

EAx is simple but it involves a subtle idea. Start with Ax = b. Multiplying both
sides by E gives E(Ax) = Eb. With matrix multiplication, this is also (EA)x = Eb.
The first was E times Ax, the second is £A times x. They are the same. Parentheses
are not needed. We just write EAx.

That rule extends to a matrix C with several column vectors like C = [¢ ¢3 ¢3]. When
multiplying EAC, you can do AC first or EA first. This is the point of an “associative
law” like 3 x (4 x 5) = (3 x 4) x 5. Multiply 3 times 20, or multiply 12 times 5. Both
answers are 60. That law seems so clear that it is hard to imagine it could be false.
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The “commutative law” 3 x 4 = 4 x 3 looks even more obvious. But E A is usually
different from A E. When E multiplies on the right, it acts on the columns of A.

_ ABC)=@UBC
~ Often AB # BA

There is another requirement on matrix multiplication. Suppose B has only one column
(this column is »). The matrix-matrix law for EB should agree with the matrix-vector
law for Eb. Even more, we should be able to multiply matrices EB a column at a time:

If B has several columns by, b2, b3, then the columns of EB are Eby, Eb2, Ebj3.

. AB=A[b1 by bs) = [4by Aby Abs).. ()

This holds true for the matrix multiplication in (2). If you multiply column 3 of A by
E, you correctly get column 3 of EA:

1 0 O0]]-2 -2
-2 1 0}][|-3[=1]1 E(column j of A) = column j of EA.
0 0 1 7 7

This requirement deals with columns, while elimination is applied to rows. The next
section describes each entry of every product AB. The beauty of matrix multiplication
is that all three approaches (rows, columns, whole matrices) come out right.

The Matrix P;; for a Row Exchange

To subtract row j from row i we use E;;. To exchange or “permute” those rows we use
another matrix P;; (a permutation matrix). A row exchange is needed when zero is in the
pivot position. Lower down, that pivot column may contain a nonzero. By exchanging the
two rows, we have a pivot and elimination goes forward.

What matrix P,3 exchanges row 2 with row 3?7 We can find it by exchanging rows of
the identity matrix [: '

-0 O
O = O

1
Permutation matrix Py =10
0

This is a row exchange matrix. Multiplying by P,3 exchanges components 2 and 3 of any
column vector. Therefore it also exchanges rows 2 and 3 of any matrix:

1 0 0 1 1 1 0 0112 41 2 4 1
0 0 1 3|=1|5 and 0 0 1 0 0 3{=|026 5
01 0f]5 3 01 0[]0 6 5 0 0 3

On the right, P,3 is doing what it was created for. With zero in the second pivot position
and “6” below it, the exchange puts 6 into the pivot.



60 Chapter 2. Solving Linear Equations

Matrices act. They don’t just sit there. We will soon meet other permutation matrices,
which can change the order of several rows. Rows 1, 2, 3 can be moved to 3, 1, 2. Our Psy3
is one particular permutation matrix—it exchanges rows 2 and 3.

To exchange equations 1 and 3 multiply by P53 = [§ :1: ((1;].

Usually row exchanges are not required. The odds are good that elimination uses only
the £;;. But the P;; are ready if needed, to move a pivot up to the diagonal.

The Augmented Matrix

This book eventually goes far beyond elimination. Matrices have all kinds of practical
applications, in which they are multiplied. Our best starting point was a square E times a
square A, because we met this in elimination—and we know what answer to expect for EA.
The next step is to allow a rectangular matrix. It still comes from our original equations,
but now it includes the right side b.

Key idea: Elimination does the same row operations to A and to b. We can include
b as an extra column and follow it through elimination. The matrix A is enlarged or
“augmented” by the extra column b:

Augmented matrix

Elimination acts on whole rows of this matrix. The left side and right side are both mul-
tiplied by E, to subtract 2 times equation 1 from equation 2. With [A b] those steps
happen together:

1 0 0 2 4 -2 2 2 4 =2 2
-2 1 0 4 9 -3 8|=10 1 1 4
0 0 1]|-2 -3 7 10 -2 =3 7 10

The new second row contains 0, 1, 1, 4. The new second equation is x» + x3 = 4. Matrix
multiplication works by rows and at the same time by columns:

ROWS Eachrowof Factson[A b]togivearowof [EA Eb].
COLUMNS E acts oneach columnof [A b]togiveacolumnof [EA Eb].

Notice again that word “acts.” This is essential. Matrices do something! The matrix A
acts on x to produce b. The matrix E operates on A to give EA. The whole process of
elimination is a sequence of row operations, alias matrix multiplications. A goes to E»; 4
which goes to E3; E»1 A. Finally E3; E31 Eop A is a triangular matrix.
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The right side is included in the augmented matrix. The end result is a triangular system
of equations. We stop for exercises on multiplication by E, before writing down the rules
for all matrix multiplications (including block multiplication).

m REVIEW OF THE KEY IDEAS =

n

1. Ax = x; times column 1 + -+ 4 X, times column #. And (4x); = 3 7_,

aijX;.
2. Identity matrix = I, elimination matrix = E;; using £;;, exchange matrix = P;;.

3. Multiplying Ax = b by E,; subtracts a multiple £,; of equation 1 from equation 2.
The number —€»; is the (2, 1) entry of the elimination matrix E,;.

4. For the augmented matrix [ A b ], that elimination step gives [ E214 E21b |.

5. When A multiplies any matrix B, it multiplies each column of B separately.

m WORKED EXAMPLES =

23 A What 3 by 3 matrix E»; subtracts 4 times row 1 from row 2?7 What matrix Ps;
exchanges row 2 and row 3? If you multiply A on the right instead of the left, describe the
results A E5; and A Ps,.

Solution By doing those operations on the identity matrix 7, we find

1 00 1 00
E21 = —4 1 0 and P32 = 0 0 1
0 01 010

Multiplying by E,; on the right side will subtract 4 times column 2 from column 1.
Multiplying by Ps; on the right will exchange columns 2 and 3.

2.3B  Write down the augmented matrix [4 5] with an extra column:

x+2y+2z=1
4x +8y +9z =3
3y+2z=1

Apply E5; and then Psj to reach a triangular system. Solve by back substitution. What
combined matrix P3, £5; will do both steps at once?



62 Chapter 2. Solving Linear Equations

Solution  E;; removes the 4 in column 1. But zero appears in column 2:

1 2 2 1 1 2 2
A b= 4 8 9 3 and  Eynf4 bl=|0 0 1 -
03 2 1 03 2

Now Pz, exchanges rows 2 and 3. Back substitution produces z then y and x.

1 2 2 1 X 1
P33 Ex[A b= 0 3 2 and y | =
0 01 - z —1
For the matrix P3; E5; that does both steps at once, apply Ps; to Ej;.
One matrix 100
Both steps P3; E;; = exchange the rows of Ep; = _2 (1) (1)

23 C  Multiply these matrices in two ways. First, rows of A times columns of B.
Second, columns of A times rows of B. That unusual way produces two matrices that
add to A B. How many separate ordinary multiplications are needed?

I 1}

3 4
Both ways AB=1|1 5 I:
2 0 4 8

Solution  Rows of 4 times columns of B are dot products of vectors:

(row 1) - (column 1) = [3 4] % =10 isthe (1, 1) entry of AB
(row 2) - (column 1) = [1 5] % = 7 isthe (2,1) entry of AB

We need 6 dot products, 2 multiplications each, 12 in all (32 - 2). The same 4B comes
from columns of A times rows of B. A column times a row is a matrix.

3 [2 4] 41 [1 1] 6 12 4 4
AB =11 + 1|5 =2 4|+]|5 5
0 4 8 0 0
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Problem Set 2.3

Problems 1-15 are about elimination matrices.

1

Write down the 3 by 3 matrices that produce these elimination steps:

(a) E» subtracts 5 times row 1 from row 2.
(b) E3, subtracts —7 times row 2 from row 3.
(c) P exchangesrows I and 2, then rows 2 and 3.
In Problem 1, applying E5; and then E3; to b = (1,0,0) gives E32Ez18 =

Applying E3; before Ey; gives Ejj Ezbh = . When E3, comes first,
row feels no effect from row

Which three matrices E5q, E31, E32 put A into triangular form U?

1 1 0
A= 4 6 1 and E32E31E21A = U.
-2 2 0

Multiply those E’s to get one matrix M that does elimination: MA = U.

Include b = (1,0, 0) as a fourth column in Problem 3 to produce [A b ]. Carry out
the elimination steps on this augmented matrix to solve Ax = b.

Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot 1s
. If you change a3 to , there is no third pivot.

If every column of A is a multiple of (1,1, 1), then Ax is always a multiple of
(1,1, 1). Do a 3 by 3 example. How many pivots are produced by elimination?

Suppose E subtracts 7 times row 1 from row 3.

(a) To invert that step you should 7 times row to row
(b) What “inverse matrix” E~! takes that reverse step (so E~'E = I)?
(¢) If the reverse step is applied first (and then E) show that EE™! = I.
The determinant of M = [25]is det M = ad — bc. Subtract { times row 1

from row 2 to produce a new M*. Show that det M* = det M for every £. When
£ = c/a, the product of pivots equals the determinant: (a)(d — £b) equals ad — bc.

(a) E,; subtracts row 1 from row 2 and then P,3 exchanges rows 2 and 3. What
matrix M = P,3E,; does both steps at once?

(b) P,3 exchanges rows 2 and 3 and then E3; subtracts row 1 from row 3. What
matrix M = E3y P»3 does both steps at once? Explain why the M ’s are the
same but the E’s are different.



64

10

11

12

13

14

15

Chapter 2. Solving Linear Equations

(a) What 3 by 3 matrix £;3 will add row 3 to row 1?
(b) What matrix adds row 1 to row 3 and at the same time row 3 to row 1?
(¢) What matrix adds row 1 to row 3 and then adds row 3 to row 1?

Create a matrix thathas a;; = a3 = a33 = 1 but elimination produces two negative
pivots without row exchanges. (The first pivot is 1.)

Multiply these matrices:
0 0 1 1 2 3((0 0 1 1 0 O 1 23
01 04 5 6|0 1 0 -1 1 0 1 3 1
1 0 017 8 9 1 00 -1 0 1 1 40

Explain these facts. If the third column of B is all zero, the third column of EB is
all zero (for any E). If the third row of B is all zero, the third row of EB might not
be zero.

This 4 by 4 matrix will need elimination matrices £,; and E3; and E43. What are
those matrices?

2 -1 0 0
1 2 -1 0
4=10 -1 2 1
0 0 -1 2

Write down the 3 by 3 matrix that has g;; = 2i — 3j. This matrix has a3z = 0, but
elimination still needs E3, to produce a zero in the 3,2 position. Which previous
step destroys the original zero and what is E35?

Problems 16-23 are about creating and multiplying matrices.

16

17

18

Write these ancient problems in a 2 by 2 matrix form Ax = b and solve them:

(@) X is twice as'old as ¥ and their ages add to 33.
(b) (x,y) = (2,5) and (3,7) lie on the line y = mx + ¢. Find m and c.

The parabola y = a + bx + c¢x? goes through the points (x, y) = (1,4) and (2, 8)
and (3, 14). Find and solve a matrix equation for the unknowns (a, b, ¢).

Multiply these matrices in the orders EF and FE:

1 00 1 00
E=}a 1 0 F=|0120
b 0 1 0 ¢ 1

Also compute E2 = EF and F3 = FFF. You can guess F 190,
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19

20

21
22

23

Multiply these row exchange matrices in the orders PQ and QP and P2:

010 0 0 1
P=11 0 0 and 9=10 1 0
0 0 1 1 0 0

Find another non-diagonal matrix whose square is M2 = I.
(a) Suppose all columns of B are the same. Then all columns of EB are the same,
because each one is E times
(b) Suppose all rows of Bare [1 2 4]. Show by example that all rows of EB are
not [1 2 4]. It is true that those rows are .
If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE?

The entries of A and x are a;; and x;. So the first component of Ax is }_ay;x; =
a11x1 4+ + aipxy. If Eoq subtracts row 1 from row 2, write a formula for

(a) the third component of Ax

(b) the (2, 1) entry of E51 A

(c) the (2, 1) entry of Eo;(E21A4)

(d) the first component of E5; Ax.
The elimination matrix £ = [_% ‘1’] subtracts 2 times row 1 of 4 from row 2 of A.

The result is £A. What is the effect of E(£A4)? In the opposite order AE, we are
subtracting 2 times of A from . (Do examples.)

Problems 24-27 include the column b in the augmented matrix [A 5].

24

25

26

Apply elimination to the 2 by 3 augmented matrix [A b]. What is the triangular
system Ux = ¢?7 What is the solution x?

_ 2 3 X1 _ 1
= AR]= )
Apply elimination to the 3 by 4 augmented matrix [A b]. How do you know this
system has no solution? Change the last number 6 so there is a solution.

1 2 3 X 1
Ax =12 3 4 yl=12
3 5 7 4 6

The equations Ax = b and Ax* = b™ have the same matrix A. What double
augmented matrix should you use in elimination to solve both equations at once?

Solve both of these equations by working on a 2 by 4 matrix:

2 oll)=lo) = 2 5J0]-1)
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27

28

29

30

31
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Choose the numbers a, b, ¢, d in this augmented matrix so that there is (a) no solution
(b) infinitely many solutions.

1
[4 b]=]0
0

S AN
QW W
o o9

Which of the numbers a, b, c, or d have no effect on the solvability?

If AB = I and BC = I use the associative law to prove A = C.
Challenge Problems

Find the triangular matrix E that reduces “Pascal’s matrix” to a smaller Pascal:

1 0 00 1 000
. 1 100[_|0100
Eliminate column 1 Ely 5 10l5101 1 0
1 3 3 1 01 2 1

Which matrix M (multiplying several E’s) reduces Pascal all the way to I?
Pascal’s triangular matrix is exceptional, all of its multipliers are £;; = 1.

Write M = [$4] as a product of many factors 4 = [19] and B = [} 1].

(a) What matrix F subtracts row 1 from row 2 to make row 2 of EM smaller?
(b) What matrix F subtracts row 2 of EM from row ! to reduce row 1 of FEM?
(c) Continue E’s and F’s until (many E’s and F’s) times (M) is (A or B).

(d) E and F are the inverses of 4 and B! Moving all E’s and F’s to the right side
will give you the desired result M = product of A’s and B’s.

This is possible for integer matrices M = [22] > 0 that have ad — be = 1.

Find elimination matrices E; then E3, then E43 to change K into U

2 -1 0 0 2 -1 0 0
-1 2 -1 0]|_|032 -1 o0

E43 Esp Eo 0 -1 2 —=11"1o 0 4/3 -1
0 0 -1 2 0 0 0 5/4

Apply those three steps to the identity matrix I, to multiply E 43 E 35 E 5.
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2.4 Rules for Matrix Operations

[ will start with basic facts. A matrix is a rectangular array of numbers or “entries”. When
A has m rows and n columns, it is an “m by n” matrix. Matrices can be added if their
shapes are the same. They can be multiplied by any constant ¢c. Here are examples of
A + B and 24, for 3 by 2 matrices:

1 2 2 2 3 4 I 2 2 4
3 4)4+14 4]=17 8 and 2|3 4| =(6 8
0 0 9 9 9 9 0 0 0 0

Matrices are added exactly as vectors are—one entry at a time. We could even regard a
column vector as a matrix with only one column (so # = 1). The matrix —A comes from
multiplication by ¢ = —1 (reversing all the signs). Adding A to —A leaves the zero matrix,
with all entries zero. All this is only common sense.

The entry in row i and column j is called a;; or A(i, j). The n entries along the first
row are dii1,d12.. - ., d1n. The lower left entry in the matrix is a,,; and the lower right is
@mn- The row number i goes from 1 to m. The column number j goes from 1 to n.

Matrix addition is easy. The serious question is matrix multiplication. When can we
multiply A times B, and what is the product AB? We cannot multiply when A and B are
3 by 2. They don’t pass the following test:

To multiply AB: If A has n columns, B must have r rows.

When A is 3 by 2, the matrix B can be 2 by 1 (a vector) or 2 by 2 (square) or 2 by 20.
Every column of B is multiplied by A. 1 will begin matrix multiplication the dot product
way, and then return to this column way: A times columns of B. The most important rule
is that A B times C equals A times BC. A Challenge Problem will prove this.

Suppose A is m by n and B is n by p. We can multiply. The product AB is m by p.

(m x ) m rows nrows | _ [ mrows
mxn)(nxp)=(mx p) n columns | | p columns { — | p columns |

A row times a column is an extreme case. Then 1 by n multiplies n by 1. The result is 1
by 1. That single number is the “dot product”.

In every case A B is filled with dot products. For the top corner, the (1, 1) entry of AB
is (row 1 of A) - (column 1 of B). To multiply matrices, take the dot product of each row
of A with each column of B.

i of AB is (row i of A) - (column j of B).

Figure 2.8 picks out the second row (i = 2) of a 4 by 5 matrix A. It picks out the third
column (j = 3) of a 5 by 6 matrix B, Their dot product goes into row 2 and column 3
of AB. The matrix AB has as many rows as A (4 rows), and as many columns as B.
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x % x K
*
* *x (AB);j * * =
*
* *
L T -
Ais4byS BisS5byb6 ABis4by6

Figure 2.8: Here i = 2 and j = 3. Then (AB)o3 is (row 2) » (column 3) = Ta,bys.

Example 1  Square matrices can be multiplied if and only if they have the same size:

1 1112 2|_|5 6
2 1113 4| {1 O}
The first dot productis 1 -2 4+ 13 = 5. Three more dot products give 6, 1, and 0. Each
dot product requires two multiplications—thus eight in all.
If A and B are n by 1, so is AB. It contains n? dot products, row of A4 times column of

B. Each dot product needs »n multiplications, so the computation of AB uses n> separate
maultiplications. For n = 100 we multiply a million times. For n = 2 we have n> = 8,

Mathematicians thought until recently that A B absolutely needed 2° = 8 multiplica-
tions. Then somebody found a way to do it with 7 (and extra additions). By breaking » by
n matrices into 2 by 2 blocks, this idea also reduced the count for large matrices. Instead of
n> it went below n28, and the exponent keeps falling.! The best at this moment is n2-376,
But the algorithm is so awkward that scientific computing is done the regular way: n? dot
products in A B, and n multiplications for each one.

Example 2 Suppose A is a row vector (1 by 3) and B is a column vector (3 by 1). Then
AB is 1 by 1 (only one entry, the dot product). On the other hand B times A (a column
times a row) is a full 3 by 3 matrix. This multiplication is allowed!

. ' 0 0 00
Column times row

1|[123]=(1 2 3

(nx1D(1xn) = (nxn) ’ 2 4 6

A row times a column is an “inner”’ product—that is another name for dot product. A col-
umn times a row is an “outfer” product. These are extreme cases of matrix multiplication.

Rows and Columns of AB

In the big picture, A multiplies each column of B. The result is a column of AB. In that
column, we are combining the columns of A. Each column of AB is a combination of

'Maybe 2.376 will drop to 2. No other number looks special, but no change for 10 years.
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the columns of A. That is the column picture of matrix multiplication:
Matrix A4 times columnof B A[by---b, | = [ Aby---Ab, |

The row picture is reversed. Each row of A multiplies the whole matrix B. The result is a
row of AB. It is a combination of the rows of B:

1 2 3
Row times matrix [rowiof A]|4 5 6| =][rowiof AB].
7 8 9

We see row operations in elimination (E times A). We see columns in A4 times x. The
“row-column picture” has the dot products of rows with columns. Believe it or not,
there is also a column-row picture. Not everybody knows that columns 1,...,n of 4
multiply rows 1,...,n of B and add up to the same answer A B. Worked Example 2.3 C
had numbers for » = 2. Example 3 will show how to multiply AB using columns times
rows.

The Laws for Matrix Operations

May I put on record six laws that matrices do obey, while emphasizing an equation they
don’t obey? The matrices can be square or rectangular, and the laws involving A + B are
all simple and all obeyed. Here are three addition laws:

A+B=B+ A4 (commutative law)
¢c(A+B)=cA+cB (distributive law)
A+ (B+C)=(A+ B)+ C (associative law).

Three more laws hold for multiplication, but AB = BA is not one of them:
AB & 34 (the commutative “law” is usually broken)
C(A + B) CA + CB (distributive law from the left)
(A + B)C = AC + BC (distributive law from the right)
. - j168 (associative law for ABC) (parentheses not needed).

When A and B are not square, AB is a different size from BA. These matrices can’t be

equal—even if both multiplications are allowed. For square matrices, almost any example
shows that A B is different from BA:

N R R R o O

It is true that Al = I A. All square matrices commute with / and also with ¢/. Only these
matrices ¢/ commute with all other matrices.

The law A(B + C) = AB + AC is proved a column at a time. Start with A(b + ¢) =
Ab + Ac for the first column. That is the key to everything—l/inearity. Say no more.

The law A(BC) = (AB)C means that you can multiply BC first or else AB first.
The direct proof is sort of awkward (Problem 37) but this law is extremely useful.
We highlighted it above; it is the key to the way we multiply matrices.



70 Chapter 2. Solving Linear Equations

Look at the special case when A = B = C = square matrix. Then (4 times A2?) is
equal to (A? times A). The product in either order is 43. The matrix powers A? follow the
same rules as numbers:

AP = AAA A (p faéters)j,f. (AP (A = AP+4 £ Afé)(i = AP,

Those are the ordinary laws for exponents. A3 times A% is A7 (seven factors). A3 to
the fourth power is A2 (twelve A’s). When p and ¢ are zero or negative these rules still
hold, provided A has a “—1 power”—which is the inverse matrix A~!. Then A® = I is the
identity matrix (no factors).

For a number, a~! is 1/a. For a matrix, the inverse is written A~1. (It is never 1 /A,
except this is allowed in MATLAB.) Every number has an inverse except a = 0. To decide
when A has an inverse is a central problem in linear algebra. Section 2.5 will start on the
answer. This section is a Bill of Rights for matrices, to say when A and B can be multiplied
and how.

Block Matrices and Block Multiplication

We have to say one more thing about matrices. They can be cut into blocks (which are
smaller matrices). This often happens naturally. Here is a 4 by 6 matrix broken into blocks
of size 2 by 2—in this example each block is just 7:

1 01 0|1 0
4 by 6 matrix A= 0 0 1[0 1 [ [71 I I
2by2bl0cks - 10 ' 1 0 ' 1 0 I IV A B §
0 110 110 1

If B is also 4 by 6 and the block sizes match, you can add A + B a block at a time.

We have seen block matrices before. The right side vector b was placed next to 4 in
the “augmented matrix”. Then [A b ] has two blocks of different sizes. Multiplying by
an elimination matrix gave [ EA Eb]. No problem to multiply blocks times blocks, when
their shapes permit.

Block: multlpll tion If the cuts between' columns of A match the cuts between TOWS
f catlon of AB is -owed : ' ‘

Ay A12 311 A11311+A12321 j;:(;l:);
| A21 Az || B2 - A21B11 + A2 By -

This equation is the same as if the blocks were numbers (which are 1 by 1 blocks). We are
careful to keep A’s in front of B’s, because BA can be different.

Main point 'When matrices split into blocks, it is often simpler to see how they act. The
block matrix of /’s above is much clearer than the original 4 by 6 matrix A.
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Example 3 (Important special case) Let the blocks of A be its n columns. Lef the
blocks of B be its n rows. Then block multiplication A B adds up columns times rows:

Columns | | — b —
times al te. an E = albl +"'+anbn . (2)
rows [ [ — b, —

This is another way to multiply matrices. Compare it with the usual rows times columns.
Row 1 of A times column 1 of B gave the (1, 1) entry in AB. Now column 1 of A times
row 1 of B gives a full matrix—not just a single number. Look at this example:

HE I H R R[]

Column 1 times row 1 3 2 4 0
= [3 2]+[5 0]' 3)

+ Column 2 times row 2

We stop there so you can see columns multiplying rows. If a 2 by 1 matrix (a column)
multiplies a 1 by 2 matrix (a row), the result is 2 by 2. That is what we found. Dot
products are inner products and these are outer products. In the top left corner the answer
is 3 + 4 = 7. This agrees with the row-column dot product of (1,4) with (3, 1).

Summary The usual way, rows times columns, gives four dot products (8 multiplications).
The new way, columns times rows, gives two full matrices (the same 8 multiplications).
The 8 multiplications, and the 4 additions, are just executed in a different order.

Example 4 (Elimination by blocks) Suppose the first column of A contains 1, 3, 4.
To change 3 and 4 to 0 and 0, muitiply the pivot row by 3 and 4 and subtract. Those
row operations are really multiplications by elimination matrices E5; and E3;:

1 0 O 1 0 O
One at a time Exyy=1-3 1 0 and FEj3; = 0 1 0
0 0 1 —4 0 1

The “block idea” is to do both eliminations with one matrix £. That matrix clears out the
whole first column of A below the pivota = 1:

1 0 O 1 x x 1 x x
E=|-3 1 0 multiplies 3 x x togive EA=]|0 x x
-4 0 1 4 x x 0 x x

Using inverses from 2.5, a block matrix E can do elimination on a whole (block) column
of A. Suppose A has four blocks 4, B, C, D. Watch how E multiplies 4 by blocks:

Block 1 | 0 Al B - AI B (4)
elimination —CA™l | I Cl D B 0 | D-CA'B |’

Elimination multiplies the first row [A4 B] by CA™! (previously c/a). It subtracts from
C to get a zero block in the first column. It subtracts from D to get S = D — CA™!B.
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This is ordinary elimination, a column at a time—written in blocks. That final block S is
D — CA™' B, just like d — cb/a. This is called the Schur complement.

= REVIEW OF THE KEY IDEAS =

The (i, j) entry of AB is (row i of A) - (column j of B).

An m by n matrix times an 7 by p matrix uses mnp separate multiplications.
A times BC equals AB times C (surprisingly important).

AB is also the sum of these matrices: (column j of A) times (row j of B).

Block multiplication is allowed when the block shapes match correctly.

AN LN o M

Block elimination produces the Schur complement D — CA™! B.

= WORKED EXAMPLES =

2.4 A  Put yourself in the position of the author! I want to show you matrix multiplica-
tions that are special, but mostly I am stuck with small matrices. There is one terrific fam-
ily of Pascal matrices, and they come in all sizes, and above all they have real meaning.
I think 4 by 4 is a good size to show some of their amazing patterns.

Here is the lower triangular Pascal matrix L. Its entries come from “Pascal’s triangle”.
I will multiply L times the ones vector, and the powers vector:

1 1 1 1 1 1
Pascal 1 1 1 |2 11 x| _ | 1+x
matrix (1 2 1 . |{1] |4 121 x2 | 7| A+x)?

1 3 3 1|1 8 1 3 3 1| 1+ x)°

Each row of L leads to the next row: Add an entry to the one on its left to get the entry
below. Insymbols £; j+¥¢; 1 = £;1+1 ;. The numbers after 1,3, 3,1 wouldbe 1, 4,6, 4, 1.
Pascal lived in the 1600’s, long before matrices, but his triangle fits perfectly into L.

Multiplying by ones is the same as adding up each row, to get powers of 2. By writing
out L times powers of x, you see the entries of L as the “binomial coefficients” that are so
essential to gamblers:

1+ 2x +1x% = (1 + x)? 14+3x+3x7+1x3 = (1 +x)°

The number “3” counts the ways to get Heads once and Tails twice in three coin flips:
HTT and THT and TTH. The other “3” counts the ways to get Heads twice: HHT and
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HTH and THH. Those are examples of “i choose j” = the number of ways to get j heads
in i coin flips. That number is exactly £;;, if we start counting rows and columns of L at
i =0and j = 0 (and remember 0! = 1):

Y (A T | @ m
VNG T 0T = T T 2] T T o T

There are six ways to choose two aces out of four aces. We will see Pascal’s triangle and
these matrices again. Here are the questions I want to ask now:

1. Whatis H = L?? This is the “hypercube matrix”.
2. Multiply H times ones and powers.

3. The last row of H is 8,12,6,1. A cube has 8 corners, 12 edges, 6 faces, 1 box.
What would the next row of H tell about a hypercube in 4D?

Solution  Multiply L times L to get the hypercube matrix H = L2:

1 1 1
1 1 11 2 1
1 21 1 2 1 14 4 1 = H.
1 3 3 1 1 3 3 1 8 12 6 1
Now multiply H times the vectors of ones and powers:
1 1 1 i 1 1
2 1 1{ |3 2 1 x| _| 2+x
4 4 1 11719 4 4 1 x| 7| 2+x)?
8 12 6 1 1 27 8 12 6 1 x3 2 +x)°

If x = 1 we get the powers of 3. If x = 0 we get powers of 2. When L produces powers
of 1 + x, applying L again produces powers of 2 + x.

How do the rows of H count corners and edges and faces of a cube? A square in
2D has 4 corners, 4 edges, 1 face. Add one dimension at a time:

Connect two squares to get a 3D cube. Connect two cubes to get a 4D hypercube.

The cube has 8 comers and 12 edges: 4 edges in each square and 4 between the squares.
The cube has 6 faces: 1 in each square and 4 faces between the squares. This row §,12,6, 1
will lead to the next row 16, 32,24, 8, 1. The rule is 2h; ; + h; j—1 = ki1 -

Can you see this in four dimensions? The hypercube has 16 corners, no problem. It
has 12 edges from one cube, 12 from the other cube, 8 that connect corners of those cubes:
total 32 edges. It has 6 faces from each separate cube and 12 more from connecting pairs
of edges: total 2 x 6 + 12 = 24 faces. It has one box from each cube and 6 more from
connecting pairs of faces: total 8 boxes. And finally 1 hypercube.
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2.4 B For these matrices, when does AB = BA? When does BC = CB? When does
A times BC equal AB times C? Give the conditions on their entries p, g, r, z:

_|Ip O 11 10 =z
e VI LI B
If p,g,r, 1,z are 4 by 4 blocks instead of numbers, do the answers change?

Solution  First of all, A times BC always equals AB times C. Parentheses are not
needed in A(BC) = (AB)C = ABC. But we must keep the matrices in this order:

P2 p _|ptq T
Usually AB # BA AB = [q 7 +r] BA = [ g r]'
0 z 0 z
Bychance BC = CB BC(C = [0 0] CB = [0 0].

B and C happen to commute. Part of the explanation is that the diagonal of B is I, which
commutes with all 2 by 2 matrices. When p, g, r, z are 4 by 4 blocks and 1 changes to /,
all these products remain correct. So the answers are the same.

24C A directed graph starts with n nodes. The n by n adjacency matrix has a;; = 1
when an edge leaves node i and enters node j; if no edge thena;; = 0.

node 1 to node 2

1

node 1 to node 1 2 A= [1 0

] = adjacency matrix
node 2 to node 1

Thei,j entry of A% is Zaikakj. This is aj @i+ -} Ainlyj - Why does that sum
count the two-step paths from i to any node to j? The i, j entry of A counts k-step paths:

1 17> _[2 1] Countpaths 1to2t0o1,1to1to]l 1tolto2
1 o |1 1 with two edges 2to1tol 2tolto2

List all of the 3-step paths between each pair of nodes and compare with 43.

Solution  The number a;zay; will be “1” if there is an edge from node i to k£ and an
edge from k to j. This is a 2-step path. The number a;iax; will be “0” if either of those
edges (i to k, k to j) is missing. So the sum of a;;ax; is the number of 2-step paths leaving
i and entering j. Matrix multiplication is just right for this count.
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The 3-step paths are counted by 43; we look at paths to node 2:

A3 = 3 2 counts the paths -+ 1toltolto2,1to2to1lto2
{21 with three steps 2tolto1to2

These A* contain the Fibonacci numbers 0,1,1,2,3,5,8,13,... coming in Section 6.2.
Multiplying A by A¥ involves Fibonacci’s rule Fyyo = Frvq + Fy (asin 13 = 8 + 5):

I 1| Fr Fi Fryo  Frta k+1
A Ak — +1 — + = AX+ .
(A [1 0] [Fk Fier| = [ Fen Fe
There are 13 six-step paths from node 1 to node 1, but I can’t find them all.
A¥ also counts words. A path like 1 to 1 to 2 to 1 corresponds to the word aaba. The

letter b can’t repeat because there is no edge from 2 to 2. The i, j entry of A¥ counts the
words of length k + 1 that start with the i th letter and end with the jth.

Problem Set 2.4

Problems 1-16 are about the laws of matrix multiplication.

1 Ais3by5 Bis5Sby3,Cis5byl,and D is 3 by 1. All entries are 1. Which of
these matrix operations are allowed, and what are the results?

BA AB ABD DBA A(B + C).
2 What rows or columns or matrices do you multiply to find

(a) the third column Qf AB?
(b) the first row of AB?
(c) the entry in row 3, column 4 of AB?

(d) the entry in row 1, column 1 of CDE?

3 Add AB to AC and compare with A(B + C):

1 5 0 2 3 1
A—[z 3} and B—[O 1] and C-[O 0].

4 In Problem 3, multiply A times BC. Then multiply A B times C.
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Compute A% and 43. Make a prediction for A% and A”:

1 b 2 2
A=[0 1] and A—|:0 O]'

Show that (A + B)? is different from A2 + 24 B + B2, when

1 2 1 0
A=[0 O] and B—[3 O:l.

Write down the correct rule for (A 4+ B)(A + B) = A2 + + B2,

True or false. Give a specific example when false:

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.
(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.

(¢) If rows 1 and 3 of A are the same, so are rows 1 and 3 of ABC.

(d) (AB)*> = A*B2.

How is each row of DA and E A related to the rows of A, when

3 0 0 1 a b
== —_— —_— ?
D [0 5] and FE [O 1] and A [c d]’

How is each column of AD and AE related to the columns of A?

Row 1 of A is added to row 2. This gives EA below. Then column 1 of EA is added
to column 2 to produce (EA)F:

1 0)la b a b
EA—[1 1][c d:l—[a+c b+d]
11 b
and (EA)Fz(EA)[o l]z[aic a+?ib+d]'

(a) Do those steps in the opposite order. First add column 1 of 4 to column 2
by AF, thenaddrow 1 of AF torow 2 by E(AF).

(b) Compare with (EA)F. What law is obeyed by matrix multiplication?

Row 1 of A is again added to row 2 to produce EA. Then F adds row 2 of EA to
row 1. The result is F(EA):

{11 a b | _(2a+c¢c 2b+d
F(EA)—[O 1”a+c b+d]_[a+c b+d]'

(a) Do those steps in the opposite order: first add row 2 to row 1 by FA, then add
row 1 of FA torow 2.

(b) What law is or is not obeyed by matrix multiplication?
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11

12

13

14

15

16

(3 by 3 matrices) Choose the only B so that for every matrix A

(a) BA=14A

(b) BA =4B

(¢) BA hasrows 1 and 3 of A reversed and row 2 unchanged
(d) All rows of BA are the same as row 1 of A.

Suppose AB = BA and AC = CA for these two particular matrices B and C':

a b ) 1 0 0 1
A—[C d] commutes with B—[O O} and C—[O O:I.

Prove thata = d and b = ¢ = 0. Then A is a multiple of /. The only matrices that
commute with B and C and all other 2 by 2 matrices are A = multiple of /.

Which of the following matrices are guaranteed to equal (A — B)?: A? — B?,
(B — A)?, A2~2AB + B?, A(A—B)— B(A—B), A2—- AB —~ BA+ B*?

True or false:

(a) If A2 is defined then A is necessarily square.

(b) If AB and BA are defined then A and B are square.
(c) If AB and BA are defined then AB and BA are square.
(d) f AB =BthenA = 1.

If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector x with » components?
(b) A multiplies an n by p matrix B?

(c) A multiplies itself to produce A% ? Here m = n.
For A =[3Z3]and B = [19¢], compute these answers and nothing more:

(a) column2 of AB
(b) row20f AB

(c) row2of AA = A?
(d) row 2 of AAA = A3,

Problems 17-19 use ¢;; for the entry in row i, column j of A.

17

Write down the 3 by 3 matrix A whose entries are

(a) a;; = minimum of { and j
() a; = (-1t
©) aij =ifj.
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18  What words would you use to describe each of these classes of matrices? Give a 3
by 3 example in each class. Which matrix belongs to all four classes?

(@) aiy = 0ifi # j
(b) a;j =0ifi < j
©) a;j = aj;
(d) aij = ayj.

19  The entries of A are a;;. Assuming that zeros don’t appear, what is
(a) the first pivot?
(b) the multiplier £3; of row 1 to be subtracted from row 3?

(c) the new entry that replaces a3, after that subtraction?

(d) the second pivot?
Problems 20-24 involve powers of A.
20 Compute A2, A3, A* and also Av, A%v, A3v, A*v for

0

and v =

OO OO
O OO N
S O NO
~ N =

2
0
21  Find all the powers A%, A3,...and AB, (4B)?,. .. for
S5 1 O
4= [.5 .5] and B = [0 —1}
22 By trial and error find real nonzero 2 by 2 matrices such that
A>=—-1I BC=0  DE =—ED (notallowing DE = 0).

23 (a) Find a nonzero matrix A for which 42 = 0.
(b) Find a matrix that has 4% # 0 but 4> = 0.

24 By experiment with n = 2 and n = 3 predict A" for these matrices:

A1=[(2) }] and Agz[} i] and A3=[g 8].
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Problems 25-31 use column-row multiplication and block multiplication.

25
26

27

28

29

30

31

Multiply A times I using columns of A (3 by 3) times rows of 7.

Multiply A B using columns times rows:

10 1
AB=24[330.]=2[330]+ =
1 2 1

2 1 2

Show that the product of upper triangular matrices is always upper triangular:

X X X X X x
AB=10 x x 0 x x]=10
0 0 x 0 0 x 00

Proof using dot products (Row times column) (Row 2 of A)-(column 1 of B)= 0.
Which other dot products give zeros?

Proof using full matrices (Column times row) Draw x’s and 0’s in (column 2 of A)
times (row 2 of B). Also show (column 3 of A) times (row 3 of B).

Draw the cuts in A (2 by 3) and B (3 by 4) and AB to show how each of the four
multiplication rules is really a block multiplication:

(1) Matrix A times columns of B. Columns of AB

(2) Rows of A times the matrix B. Rows of AB

(3) Rows of A times columns of B. Inner products (numbers in AB)

(4) Columns of A times rows of B. Outer products (matrices add to A B)

Which matrices E,; and E3, produce zeros in the (2, 1) and (3, 1) positions of E;; A
and E3; A?

2 1 0
A=1-2 0 1
g 5 3

Find the single matrix E= E3) E5; that produces both zeros at once. Multiply EA.

Block multiplication says that column 1 is eliminated by

EA:[—c;a (I)}[g g]z[g D—-bcb/a]'

In Problem 29, what are ¢ and D and whatis D —cb/a?

With i2 = —1, the product of (A +iB) and (x +iy)is Ax +iBx +iAy—By. Use
blocks to separate the real part without i/ from the imaginary part that multiplies i:

A —B|lx]|] |Ax— By realpart
? 2ty ? imaginary part
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32

33

34
35

36

37
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(Very important) Suppose you solve Ax = b for three special right sides b:

1 0 0
Ax1 =10 and Ax, = |1 and Ax3;= |0
0 0 1

If the three solutions x, X5, x 3 are the columns of a matrix X, what is 4 times X?

If the three solutions in Question 32 are x; = (1,1,1) and x» = (0,1,1) and
x3 = (0,0,1), solve Ax = b when b = (3, 5, 8). Challenge problem: What is A?

Find all matrices 4 = [ 28] that satisfy A[11] =[11]A.

Suppose a “circle graph” has 4 nodes connected (in both directions) by edges around
a circle. What is its adjacency matrix from Worked Example 2.4 C? What is 4%?
Find all the 2-step paths (or 3-letter words) predicted by A2.

Challenge Problems

Practical question Suppose 4 is m by n, B is n by p, and C is p by q. Then
the multiplication count for (AB)C is mnp + mpq. The same answer comes from
A times BC with mngq + npq separate multiplications. Notice npq for BC.

(a) If Ais2by 4, Bis4 by 7,and C is 7 by 10, do you prefer (AB)C or A(BC)?

(b) With N -component vectors, would you choose (zTv)wT or uT (vwT)?

(c) Divide by mnpgq to show that (AB)C is faster whenn™! +¢~! <m™1 4 p~1,

To prove that (AB)C = A(BC), use the column vectors b;,...,b, of B. First
suppose that C has only one column ¢ with entries c;,...,cy:

AB has columns Aby,..., Ab, and then (AB)c equals c; Aby + -+ + ¢, Ab,,.
Bc has one column ¢1by +-+++ ¢, by, and then A(Bc) equals A(c1by +---+cnby).

Linearity gives e:quality of those two sums. This proves (AB)c = A(Bc). The same
is true for all other of C. Therefore (AB)C = A(BC). Apply to inverses:

If BA = I and AC = I, prove that the left-inverse B equals the right-inverse C.
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2.5 Inverse Matrices

Suppose A is a square matrix. We look for an “inverse matrix” A~! of the same size, such
that A~ rimes A equals I. Whatever A does, A~! undoes. Their product is the identity
matrix—which does nothing to a vector, so A~ Ax = x. But A™" might not exist.

What a matrix mostly does is to multiply a vector x. Multiplying Ax = b by 4™!
gives A”YAx = A7'b. Thisis x = A~'b. The product A1 4 is like multiplying by
a number and then dividing by that number. A number has an inverse if it is not zero—
matrices are more complicated and more interesting. The matrix A~ ! is called “A inverse.”

ATM=1 ad AaT=1.

Not all matrices have inverses. This is the first question we ask about a square matrix:
Is A invertible? We don’t mean that we immediately calculate A~!. In most problems
we never compute it! Here are six “notes” about A™1,

Note 1 The inverse exists if and only if elimination produces n pivots (row exchanges
are allowed). Elimination solves Ax = b without explicitly using the matrix 41,

Note 2 The matrix A cannot have two different inverses. Suppose BA = I and also
AC = I.Then B = C, according to this “proof by parentheses”:

B(AC) = (BA)C gives BI =IC or B=C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-
plying 4 from the right to give AC = I') must be the same matrix.

Note 3 If A is invertible, the one and only solutionto Ax = bisx = A™1b:

\

Note 4 (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A
cannot have an inverse. No matrix can bring 0 back to x.

If A is invertible, then Ax = 0 can only have the zero solution x = A~10 = 0.

Note 5 A 2 by 2 matrix is invertible if and only if ad — bc is not zero:

-1
a b 1 d —b
2 by 2 Inverse: [C d:l = m [—C a:l . (3)

This number ad — bc is the determinant of A. A matrix is invertible if its determinant is not
zero (Chapter 5). The test for # pivots is usually decided before the determinant appears.
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Note 6 A diagonal matrix has an inverse provided no diagonal entries are zero:

a4 1/d,
If A= then A_I = .,
dn l/dn

Example 1 The 2 by 2 matrix A = [}2] is not invertible. It fails the test in Note 5,
because ad — bc equals 2 — 2 = 0. It fails the test in Note 3, because Ax = 0 when
x = (2,—1). It fails to have two pivots as required by Note 1.

Elimination turns the second row of this matrix A4 into a zero row.

The Inverse of a Product AB

For two nonzero numbers a and b, the sum @ + b might or might not be invertible. The
numbers a = 3 and b = —3 have inverses -;— and —-%. Their sum a + b = 0 has no inverse.
But the product ab = —9 does have an inverse, which is -;— times —%—.

For two matrices 4 and B, the situation is similar. It is hard to say much about the
invertibility of A + B. But the product AB has an inverse, if and only if the two factors
A and B are separately invertible (and the same size). The important point is that A~! and
B~! come in reverse order:

To see why the order is reversed, multiply AB times B~ A1, Inside that is BB~! = I
Inverse of AB (AB)(B™'A™ W)Y = AIA ' =447 = 1.

We moved parentheses to multiply BB~ first. Similarly B~! A~! times AB equals I. This
illustrates a basic rule of mathematics: Inverses come in reverse order. It is also common
sense: If you put on socks and then shoes, the first to be taken off are the . The same
reverse order applies to three or more matrices:

Reverse order (5)

Example 2 Inverse of an elimination matrix. If E subtracts 5 times row 1 from row 2,
then £~ adds 5 times row 1 to row 2:

1 0 0 1 0 0
E=|-5 1 0| and E'=1(15 1 0
0 0 1 0 0 1

Multiply EE~! to get the identity matrix /. Also multiply E~'E to get . We are adding
and subtracting the same 5 times row 1. Whether we add and then subtract (this is EE™1)
or subtract and then add (this is E~! E), we are back at the start.
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For square matrices, an inverse on one side is automatically an inverse on the other side.
If AB = I then automatically BA = I. In that case B is A~!. This is very useful to know
but we are not ready to prove it.

Example 3 Suppose F subtracts 4 times row 2 from row 3, and F~! adds it back:

1 0 0 1 00
F=|0 1 0| and F!'={0 1 0
0 —4 1 0 4 1

Now multiply F by the matrix £ in Example 2 to find FE. Also multiply E ! times F~!
to find (FE)™!. Notice the orders FE and E~' F~1!

1 0 0 1 00
FE=| =5 1 0| isinvertedby E'F'=|5 1 0|. (6

The result is beautiful and correct. The product FE contains “20” but its inverse doesn’t.
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order FE, row 3 feels an effect from row 1.

In the order E~!F~!, that effect does not happen. First F~! adds 4 times row 2 to
row 3. After that, E~! adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t
change again. In this order E-'F~1, row 3 feels no effect from row 1.

This special multiplication E~! F~! and E~' F~1G~! will be useful in the next sec-
tion. We will explain it again, more completely. In this section our job is A™!, and we
expect some serious work to compute it. Here is a way to organize that computation.

Calculating A~! by Gauss-Jordan Elimination

I hinted that A~ might not be\explicitly needed. The equation Ax = b is solved by
x = A~ 'b. But it is not necessary or efficient to compute A~! and multiply it times b.
Elimination goes directly to x. Elimination is also the way to calculate A~!, as we now
show. The Gauss-Jordan idea is to solve AA™! = I, finding each column of A™!.

A multiplies the first column of A~! (call that x) to give the first column of I (call
that e1). This is our equation Ax; = e; = (1,0,0). There will be two more equations.
Each of the columns x 1, x2, X3 of A~} is multiplied by A to produce a column of I:

A[x1 w2 xa]—[er e2 ea] =10

3 columns of A~!

(7

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax; = e; and
Ax; = e, = (0,1,0) and Ax3 = e3 = (0,0, 1). Gauss-Jordan finds A~! this way.



84 Chapter 2. Solving Linear Equations

The Gauss-Jordan method computes A~ by solving all n equations together.
Usually the “augmented matrix” [A &] has one extra column b. Now we have three
right sides e, e»,e3 (when A is 3 by 3). They are the columns of 7, so the augmented
matrix is really the block matrix [ A [ ]. I take this chance to invert my favorite matrix K,
with 2’s on the main diagonal and —1’s next to the 2’s:

0 0| Start Gauss-Jordanon K
[K e1 €2 e3]=

1
I
<
1

0 (% row 1 + row 2)

L 17N
QO W= =

!

W - O N e O

W = O O O
fa—

SoON oo w
I
o O

SO -
L N P

(% row 2 + row 3)

e -

We are halfway to K~!. The matrix in the first three columns is U (upper triangular). The
pivots 2, %, % are on its diagonal. Gauss would finish by back substitution. The contribution
of Jordan is to continue with elimination! He goes all the way to the “reduced echelon
form”. Rows are added to rows above them, to produce zeros above the pivots:

Z b -2 -1 0 1 0 07
ero above 3 3 3 3
( third pivot ) 0 3 0 3 3 3 (3 row 3 + row 2)
o o & 1 2 1
~ 3 3 03 i
2 0 o0 2 1 17 2
Zero above 0o 3 o 3 5 3 (5 row2 + row 1)
second pivot 2 411 % 4
00 3 3 5 1]

The last Gauss-Jordan step is to divide each row by its pivot. The new pivots are 1. We
have reached I in the first half of the matrix, because K is invertible. The three columns
of K~! are in the second half of [I K~ ]:

(divide by 2) 10
« 3

(divide by 3) 0 1

(divide by %)

Starting from the 3 by 6 matrix [K I], we ended with [/ K~']. Here is the whole
Gauss-Jordan process on one line for any invertible matrix 4:

Gauss-Jordan
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The elimination steps create the inverse matrix while changing A to 7. For large matrices,
we probably don’t want A™! at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations about this particular K~! because it is an
important example. We introduce the words symmetric, tridiagonal, and determinant:

1. K is symmetric across its main diagonal. So is K.

2. K is tridiagonal (only three nonzero diagonals). But K~! is a dense matrix with
no zeros. That is another reason we don’t often compute inverse matrices. The
inverse of a band matrix is generally a dense matrix.

3. The product of pivots is 2(%)(%) = 4. This number 4 is the determinant of K.

3 2 1
1
K1 involves division by the determinant K™= ! 2 4 2 8)
1 2 3

This is why an invertible matrix cannot have a zero determinant.

Example 4 Find A~! by Gauss-Jordan elimination starting from 4 = [23]. There are
two row operations and then a division to put 1’s in the pivots:

2 3 1 0 2 3 1 0 . . _

[A I]=l:4 7 0 1:|—>[0 1 -2 1] (thlSlS[U L 1])
2 0 7 -3 1 o I -3 .. _

—»[0 | o 1]—->|i0 X _5 i] (thisis[7 A71]).

That A~! involves division by the determinant ad — b¢ = 2-7 — 3 - 4 = 2. The code for
X = inverse(A) can use rref, the “row reduced echelon form” from Chapter 3:

I = eye (n); % Define the n by n identity matrix
R = rref ([A I)); % Eliminate on the augmented matrix [A 1]
X=R(G,n+1l:n+n) % Pick A~! from the last n columns of R

A must be invertible, or elimination cannot reduce it to I (in the left half of R).
Gauss-Jordan shows why A1 is expensive. We must solve n equations for its n columns.

To solve Ax = b without A~1, we deal with one column 4 to find one column x.

In defense of A™!, we want to say that its cost is not # times the cost of one system
Ax = b. Surprisingly, the cost for n columns is only multiplied by 3. This saving is
because the n equations Ax; = e; all involve the same matrix A. Working with the right
sides is relatively cheap, because elimination only has to be done once on A.

The complete A~! needs > elimination steps, where a single x needs n/3. The next
section calculates these costs.
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Singular versus Invertible

We come back to the central question. Which matrices have inverses? The start of this
section proposed the pivot test: A~ exists exactly when A has a full set of n pivots.
(Row exchanges are allowed.) Now we can prove that by Gauss-Jordan elimination:

1. With » pivots, elimination solves all the equations Ax; = e;. The columns x; go
into A™!. Then AA™! = I and A~ is at least a right-inverse.

2. Elimination is really a sequence of multiplications by E’s and P’s and D~ !:

Left-inverse (D'...E--.P...EdA=1. 9)

D~ divides by the pivots. The matrices E produce zeros below and above the pivots.
P will exchange rows if needed (see Section 2.7). The product matrix in equation (9) is
evidently a left-inverse. With n pivots we have reached A™1A4 = 1.

The right-inverse equals the left-inverse. That was Note 2 at the start of in this section.
So a square matrix with a full set of pivots will always have a two-sided inverse.

Reasoning in reverse will now show that A must have n pivots if AC = I. (Then we
deduce that C is also a left-inverse and CA = I.) Here is one route to those conclusions:

1. If A doesn’t have n pivots, elimination will lead to a zero row.
2. Those elimination steps are taken by an invertible M. So a row of M A is zero.

3. If AC = I had been possible, then MAC = M. The zero row of M A, times C,
gives a zero row of M itself.

4. An invertible matrix M can’t have a zero row! A must have n pivots if AC = 1.

That argument took four steps, but the outcome is short and important.

Example 5 If L is lower triangular with 1’s on the diagonal, so is L™!.

A triangular matrix is invertible if and only if no diagonal entries are zero.

Here L has 1’s so L™! also has 1’s. Use the Gauss-Jordan method to construct L~!. Start
by subtracting multiples of pivot rows from rows below. Normally this gets us halfway to
the inverse, but for L it gets us all the way. L™! appears on the right when I appears on
the left. Notice how L~1 contains 11, from 3 times 5 minus 4.
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1 0 0 1 0 O
ontronguarz |3 10 0 1 ol=[11]
8 4 5 1 0 0 1]
1 0 0 1 0 0 (3 times row 1 from row 2)
-0 1 0 -3 1 0 (4 times row 1 from row 3)
=0 5 1 -4 0 1] (then 5 times row 2 from row 3)
1 0 0 1 0 0]
o 1 0-3 1 o0|=[1 L]
-0 0o 1 11 -5 1

L goes to I by a product of elimination matrices E33E31 E2;. So that product is L1,
All pivots are 1°s (a full set). L~ is lower triangular, with the strange entry “11”.
That 11 does not appear to spoil 3, 4, 5 in the good order E;' E;'EZ)! = L.

= REVIEW OF THE KEY IDEAS =

The inverse matrix gives AA™' =T and A™'4 = 1.
A is invertible if and only if it has n pivots (row exchanges allowed).
If Ax = 0 for a nonzero vector x, then A has no inverse.

The inverse of AB is the reverse product B~14A~1. And (ABC)™! = C~1B1471

I S L

The Gauss-Jordan method solves AA~! = [ to find the n columns of A~!. The
augmented matrix [ 4 7 ] is row-reducedto [/ A7'].

" WORKED EXAMPLES =

25 A The inverse of a triangular difference matrix A is a triangular sum matrix S

1 0 0|1 00 1 00|1 00
[4 I]=| -1 1 0/0 10 |->|0 101 10
0 -1 1[0 0 1 0 -1 1(0 0 1
1 0 0|/1 00
=101 0|1 1 0 |=[1 A']=[1 sunmatrix].
00 1|1 11

If I change a3 to —1, then all rows of 4 add to zero. The equation Ax = 0 will now
have the nonzero solution x = (1, 1, 1). A clear signal: This new A can’t be inverted.
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25 B Three of these matrices are invertible, and three are singular. Find the inverse
when it exists. Give reasons for noninvertibility (zero determinant, too few pivots, nonzero
solution to Ax = 0) for the other three. The matrices are in the order A, B,C, D, S, E:

[43][43][66][66] i?g i}(l)
8 6 8 7 6 0 6 6 11 1 111
Solution
1 0 0
_ 1 7 =3 110 6 _
1 _ 2 -1 _ = 1| _
5 ‘4[—8 4] ¢ ‘36[6 -6] > 0 11

A 1s not invertible because its determinantis 4 -6 — 3.8 = 24 — 24 = 0. D is not

invertible because there is only one pivot; the second row becomes zero when the first row

is subtracted. E is not invertible because a combination of the columns (the second column

minus the first column) is zero—in other words Ex = 0 has the solution x = (—1,1,0).
Of course all three reasons for noninvertibility would apply to each of 4, D, E.

25 C Apply the Gauss-Jordan method to invert this triangular “Pascal matrix™ L.
You see Pascal’s triangle—adding each entry to the entry on its left gives the entry below.
The entries of L are “binomial coefficients”. The next row would be 1,4,6,4, 1.

1 0 0 O

. . 1100
Triangular Pascal matrix L = 121017 abs(pascal (4,1))

1 3 3 1

Solution  Gauss-Jordan starts with [ L 7 ]| and produces zeros by subtracting row 1:

1 0 0 0f1 0 0 O 1 0 0 0f 1 0 0O
(L 1]= 1 10 0({0 1 00 N 010 0/-110¢6
12100010 0 21 0|-1 010
1 33 1({0 0 01 0 33 1(-1 001

The next stage creates zeros below the second pivot, using multipliers 2 and 3. Then the
last stage subtracts 3 times the new row 3 from the new row 4:

1 000f 1 0O0O 1 00 0f 1T 0 OO

N 01 0 0]-1 1 00 _ 01001 1 00O = L]
001 0] 1 -2120 0 0101 -2 120 |
0 0 3 1} 2 -3 01 000 1(-1 3 -3 1

All the pivots were 1! So we didn’t need to divide rows by pivots to get /. The inverse
matrix L' looks like L itself, except odd-numbered diagonals have minus signs.
The same pattern continues to # by n Pascal matrices, L1 has “alternating diagonals”.
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Problem Set 2.5

1

10

Find the inverses (directly or from the 2 by 2 formula) of A4, B, C:
0 3 2 0 3 4
A—[4 O] and B—[4 2] and C—[S 7].

For these “permutation matrices” find P! by trial and error (with 1’s and 0’s):

0 01 010
P=|0 120 and P=|0 0 1
1 00 1 00

Solve for the first column (x, y) and second column (¢, z) of A™!:

0 5o]l]=lo) = L0 S]1:1=)

Show that [ 2] is not invertible by trying to solve A4~ = I for column 1 of A™":

[1 2 [x] _ [1] (For a different A, could column 1 of A‘l)

3 61|y 0 be possible to find but not column 2?

Find an upper triangular U (not diagonal) with U? = I which gives U = U1

(a) If A is invertible and AB = AC, prove quickly that B = C.
(b) If A = [}1], find two different matrices such that AB = AC.

(Important) If 4 has row 1 + row 2 = row 3, show that A is not invertible:

(a) Explain why Ax = (1,0, 0) cannot have a solution.
(b) Which right sides (by, b2, b3) might allow a solution to Ax = b?
(c) What happens to row 3 in elimination?

If A has column I + column 2 = column 3, show that A4 is not invertible:

(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps column | + column 2 = column 3. Explain why there is no
third pivot.

Suppose 4 is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible and how would you find B™! from A™1?

Find the inverses (in any legal way) of

000 2 320 0
00 3 430 0
A=145 40 0of @™ B=|4 o9 6 5
500 0 00 7 6
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11 (a) Find invertible matrices A and B such that 4 4+ B is not invertible.
(b) Find singular matrices A and B such that A + B is invertible,

12  If the product C = AB is invertible (A and B are square), then A itself is invertible.
Find a formula for A™! that involves C ™! and B.

13  If the product M = ABC of three square matrices is invertible, then B is invertible.
(So are A and C.) Find a formula for B! that involves M~1 and A and C.

14  If you add row 1 of A to row 2 to get B, how do you find B~* from 47172

Notice the order. The inverseof B = [i (1)] |: A ] is .

15  Prove that a matrix with a column of zeros cannot have an inverse.
16 Multiply [2 5] times [_¢ ~2]. What is the inverse of each matrix if ad # be?

17 (a) What 3 by 3 matrix E has the same effect as these three steps? Subtract row 1
from row 2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 torow 3, add row 1 to row 3, then add row 1 to row 2.

18  If B is the inverse of A%, show that AB is the inverse of A.

19  Find the numbers a and b that give the inverse of 5 x eye(4) — ones(4,4):
4 =1 -1 =17 [a b b b
-1 4 -1 -1 _|b a b b
-1 -1 4 -1 ~|b b a b
-1 -1 -1 4 b b b a
What are a and b in the inverse of 6 x eye(5) — ones(5,5)?

20 Show that A = 4 * eye(4) — ones(4,4) is not invertible: Multiply A x ones(4,1).

21  There are sixteen 2 by 2 matrices whose entries are 1’s and 0’s. How many of them
are invertible?

Questions 22-28 are about the Gauss-Jordan method for calculating A ~1.

22 Change / into A~! as you reduce A to I (by row operations):

n=[E 28] we e n=[i 8 )]

23  Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below
the pivots toreduce [A []to[I A7!}:

210100
[4 I]=|1 2 1 0 10
012001
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Use Gauss-Jordan elimination on [U ] to find the upper triangular U ~!:

1 a b 1 00
U l'=1 01 ¢l|llxy x2 x5{=]0 1 0
0 0 1 0 0 1

Find A~! and B! (if they exist) by eliminationon [A I]and[B I]:

2 1 1 2 -1 -1
A=1|1 2 1 and B=|-1 2 -1
1 1 2 -1 -1 2

What three matrices E>; and E1; and D™! reduce A = [} 2] to the identity matrix?
Multiply D~ E|5 E5; to find A™1.

Invert these matrices A by the Gauss-Jordan method starting with [A [ ]:

1 00 1 1 1
A=12 1 3 and A=|1 2 2
0 0 1 2 3

Exchange rows and continue with Gauss-Jordan to find 4™!:
0 210
(4 11=[3 5 6 1)
True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.
(b) Every matrix with 1’s down the main diagonal is invertible.

(¢) If A is invertible then A~ and A? are invertible.

For which three numbers c is this matrix not invertible, and why not?

A=

o N
~N o0
[ T o T ]

Prove that A is invertible if @ # 0 and @ # b (find the pivots or A™1):

b b
a b
a a

A=

Q& Q 8
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This matrix has a remarkable inverse. Find A~! by eliminationon [A I]. Extend
to a 5 by 5 “alternating matrix” and guess its inverse; then multiply to confirm.

1 -1 1 -1
0O 1 -1 1

Invert A = 0 0 1 -1 and solve Ax = (1,1,1,1).
o 0 0 1

Suppose the matrices P and Q have the same rows as / but in any order. They are
“permutation matrices”. Show that P — Q is singular by solving (P — Q)x = 0.

Find and check the inverses (assuming they exist) of these block matrices:

I 0 A O 0 I

C I C D I DY’
Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1,2, 3 in
some order? What if every row of B contains 0, 1,2, —3 in some order?

In the Worked Example 2.5 C, the triangular Pascal matrix L has an inverse with
“alternating diagonals”. Check that this L™! is DL D, where the diagonal matrix
D has alternating entries 1, —1,1,—1. Then LDLD = I, so what is the inverse of
LD = pascal (4,1)?

The Hilbert matrices have H;; = 1/(i + j — 1). Ask MATLAB for the exact 6 by
6 inverse invhilb(6). Then ask it to compute inv(hilb(6)). How can these be different,
when the computer never makes mistakes?

(a) Use inv(P) to invert MATLAB’s 4 by 4 symmetric matrix P = pascal(4).

(b) Create Pascal’s lower triangular L = abs(pascal(4,1)) and test P = LLT.

If A = ones(4) and b = rand(4,1), how does MATLAB tell you that Ax = b has no
solution? For the special & = ones(4,1), which solution to Ax = is found by A\5?

Challenge Problems

(Recommended) A is a 4 by 4 matrix with 1’s on the diagonal and —a, —b, —c on the
diagonal above. Find A~ for this bidiagonal matrix.

Suppose E;, E,, E3 are 4 by 4 identity matrices, except E; has a, b, ¢ in column 1
and E; has d, ¢ in column 2 and E3 has f in column 3 (below the 1’s). Multiply
L = E E5 FE5 to show that all these nonzeros are copied into L.

E1E> E3 is in the opposite order from elimination (because E3 is acting first). But
E,E,E3 = L is in the correct order to invert elimination and recover A.
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42

43

44

Direct multiplications 1-4 give MM ™! = I, and I would recommend doing #3.
M~ shows the change in A~} (useful to know) when a matrix is subtracted from A:

1 M=1-uv" and M~!=1+uv"/(1-v"u) (rank 1 changein I)
2 M=A-ud" and M™'=A"14+ A uvT4™1 /(1 —vT4 1u)
3 M=I-UV and M~ = I, + UL, — VU)~1V

4 M=A-UWW and M™'=A"14+A"1UW - VATIU)"1VA™!

The Woodbury-Morrison formula 4 is the “matrix inversion lemma” in engineering.
The Kalman filter for solving block tridiagonal systems uses formula 4 at each step.
The four matrices M ~! are in diagonal blocks when inverting these block matrices
(@Tislbyn,uisnbyl,Vismbyn, U isn by m).

I u A u L, U A U
vl 1 vl 1 V In vV W
Second difference matrices have beautiful inverses if they start with 7;; = 1
(instead of K, = 2). Here is the 3 by 3 tridiagonal matrix 7" and its inverse:
1 -1 0 3 2 1
Ty=1 T=[|-1 2 -1 T-!=12 2 1
0 -1 2 1 1

One approach is Gauss-Jordan elimination on [T I ]. That seems too mechanical.
I would rather write T as the product of first differences L times U. The inverses of
L and U in Worked Example 2.5 A are sum matrices, so here are 7 and T !:

1 1 -1 0 1 1 1]]1
LU=|-1 1 | U-lL! = 1 1|1 1

0 -1 1 1 1{]1 1 1

difference difference sum sum

Question. (4 by 4) What are the pivots of T7? What is its 4 by 4 inverse?
The reverse order UL gives what matrix 7 *? What is the inverse of T*?

Here are two more difference matrices, both important. But are they invertible?

2 -1 0 -1 1 -1 0 O

. -1 2 -1 0 |-t 2 -1 0
CyclicC = 0 —1 5 —1 Freeends F = 0 —1 7 —1
-1 0 -1 2 0 0 -1 1

One test is elimination—the fourth pivot fails. Another test is the determinant,
we don’t want that. The best way is much faster, and independent of matrix size:

Produce x # 0 so that Cx = 0. Do the same for Fx = 0. Not invertible.

Show how both equations Cx = band Fx = bleadto0 = by + by + -+ + b,.
There is no solution for other b.



94

45

46

Chapter 2. Solving Linear Equations

Elimination for a 2 by 2 block matrix: When you multiply the first block row by
CA~! and subtract from the second row, the “Schur complement” S appears:

l 0flA4 B| |4 B A and D are square
—CA™! 1|[C D| |0 S§ S=D—CA™B.

Multiply on the right to subtract A~ B times block column 1 from block column 2.

2 3 3
A Bl[I —-A"lB A B
=9 i =
[0 S][O ] ] ? Find S for [C [] j(l)(l)

The block pivots are A and S. If they are invertible,sois[A B; C D].

How does the identity A(/ + BA) = (I + AB)A connect the inverses of / + BA
and I + AB? Those are both invertible or both singular: not obvious.
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2.6 Elimination = Factorization: A = LU

Students often say that mathematics courses are too theoretical. Well, not this section.
It is almost purely practical. The goal is to describe Gaussian elimination in the most
useful way. Many key ideas of linear algebra, when you look at them closely, are really
factorizations of a matrix. The original matrix A becomes the product of two or three
special matrices. The first factorization—also the most important in practice—comes now
from elimination. The factors L and U are triangular matrices. The factorization that
comes from eliminationis A = LU.

We already know U, the upper triangular matrix with the pivots on its diagonal. The
elimination steps take A to U. We will show how reversing those steps (taking U back
to A) is achieved by a lower triangular L. The entries of L are exactly the multipliers
£;;—which multiplied the pivot row j when it was subtracted from row i.

Start with a 2 by 2 example. The matrix A contains 2, 1, 6, 8. The number to eliminate
is 6. Subtract 3 times row 1 from row 2. That step is E3; in the forward direction with
multiplier £57 = 3. The return step from U to Ais L = Ez_ll (an addition using +3):

Forward from A to U : E21A=[_1 0][2 1]:[2 1:|=U

3 1116 8 0 5
) 1 _ (L0120 (2 1] _
BackfromUito A: E;;jU = [3 1][0 5] = [6 8} = A.

The second line is our factorization LU = A. Instead of E3;' we write L. Move now to
larger matrices with many E’s. Then L will include all their inverses.

Each step from A to U multiplies by a matrix E;; to produce zero in the (i, j) position.
To keep this clear, we stay with the most frequent case—when no row exchanges are
involved. If A is 3 by 3, we multiply by E>; and E3; and E3,. The multipliers £;; produce
zeros in the (2, 1) and (3, 1) and (3, 2) positions—all below the diagonal. Elimination ends
with the upper triangular U.

Now move those E’s onto the other side, where their inverses multiply U

(EnEsiEa)A=U - a:be,c;q:;gesé'— A= (E5)E51EHU whichis A4 = LU. e

The inverses go in opposite order, as they must. That product of three inverses is L.
We have reached A = LU. Now we stop to understand it.

Explanation and Examples

First point: BEvery inverse matrix E~! is lower triangular. Its off-diagonal entry is £;;,
to undo the subtraction produced by —¢;;. The main diagonals of £ and E —1 contain 1’s.
Our example above had €51 =3and E = [_}%]and L = E7' = [}9].

Second point: Equation (1) shows a lower triangular matrix (the product of the E;;)
multiplying A. It also shows all the Ei; ! multiplying U to bring back A. This lower
triangular product of inverses is L.
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One reason for working with the inverses is that we want to factor A, not U. The
“inverse form” gives A = LU. Another reason is that we get something extra, almost
more than we deserve. This is the third point, showing that L is exactly right.

Third point: Each multiplier £;; goes directly into its i, j position—unchanged—in the
product of inverses which is L. Usually matrix multiplication will mix up all the num-
bers. Here that doesn’t happen. The order is right for the inverse matrices, to keep the £’s
unchanged. The reason is given below in equation (3).

Since each E~! has 1’s down its diagonal, the final good point is that L does too.

Example 1  Elimination subtracts 3 times row 1 from row 2. The last step subtracts %

times row 2 from row 3. The lower triangular L has £5; = 1 and £3; = Z. Multiplying
LU produces A:

210 1 0 021 0
A=|1 2 1|=|2 1 of|l0 2 1|=LU
01 2 0 2 1]{0 0 %

The (3, 1) multiplier is zero because the (3, 1) entry in A is zero. No operation needed.

Example 2 Change the top left entry from 2 to 1. The pivots all become 1. The multi-
pliers are all 1. That pattern continues when A is 4 by 4:

1 1 00 1 1 1 00
Special 1 21 0 _|11 1 10
pattern 01 2 1| [0 11 1 1
0 01 2 0 0 1 1 1

These LU examples are showing something extra, which is very important in practice.
Assume no row exchanges. When can we predict zeros in L and U?

When a row of A starts with zeros, so does that row of L.
When a column of A starts with zeros, so does that column of U.

If a row starts with zero, we don’t need an elimination step. L has a zero, which saves
computer time. Similarly, zeros at the start of a column survive into U. But please realize:
Zeros in the middle of a matrix are likely to be filled in, while elimination sweeps forward.
We now explain why L has the multipliers £;; in position, with no mix-up.

The key reason why A equals LU : Ask yourself about the pivot rows that are subtracted
from lower rows. Are they the original rows of A? No, elimination probably changed them.
Are they rows of U? Yes, the pivot rows never change again. When computing the third
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row of U, we subtract multiples of earlier rows of U (not rows of A!):
Row 3 of U = (Row 3 of A) — £31;(Row 1 of U) — £32(Row 2 of U). (2)

Rewrite this equation to see that the row [£3; £32 1] is multiplying U:

3)

This is exactly row 3 of A = LU. That row of L holds {3;, £33, 1. All rows look like this,
whatever the size of A. With no row exchanges, we have A = LU.

Better balance The L U factorization is “unsymmetric” because U has the pivots on its
diagonal where L has 1’s. This is easy to change. Divide U by a diagonal matrix D that
contains the pivots. That leaves a new matrix with 1’s on the diagonal:

di I uiz/dy wis/d
dy 1 uzs/da

—

Split U into

i dp | L 1
It is convenient (but a little confusing) to keep the same letter U for this new upper trian-
gular matrix. It has 1’s on the diagonal (like L). Instead of the normal LU, the new form

has D in the middle: Lower triangular L times diagonal D times upper trianguler U .

Whenever you see LDU, it is understood that U has 1’s on the diagonal. Each row is
divided by its first nonzero entry—the pivot. Then L and U are treated evenly in LDU:

[; (1)] [g 2] splits further into [; (1)] [2 5:| [(1) ﬂ @

The pivots 2 and 5 went into D. Dividing the rows by 2 and 5 left the rows [1 4] and
[0 1]inthe new U with diagonal ones. The multiplier 3 is still in L.

My own lectures sometimes stop at this point. The next paragraphs show how elimina-
tion codes are organized, and how long they take. If MATLAB (or any software) is available,
you can measure the computing time by just counting the seconds.

One Square System = Two Triangular Systems

The matrix L contains our memory of Gaussian elimination. It holds the numbers that
multiplied the pivot rows, before subtracting them from lower rows. When do we need this
record and how do we use it in solving Ax = b?

We need L as soon as there is a right side b. The factors L and U were completely
decided by the left side (the matrix A). On the right side of Ax = b, we use L~ and
then U 1. That Solve step deals with two triangular matrices.
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1 Factor (into L and U, by climination on the left side matrix 4) -~

2 Solve (forward elimination on b using L, then back substitution for ¥ using U).

Earlier, we worked on A and b at the same time. No problem with that—just aug-
ment to [A b ]. But most computer codes keep the two sides separate. The memory of
elimination is held in L and U, to process b whenever we want to. The User’s Guide to
LAPACK remarks that “This situation is so common and the savings are so important that
no provision has been made for solving a single system with just one subroutine.”

How does Solve work on b? First, apply forward elimination to the right side (the
multipliers are stored in L, use them now). This changes & to a new right side ¢. We are
really solving Le¢ = b. Then back substitution solves Ux = ¢ as always. The original
system Ax = b is factored into two triangular systems:

, Forwardand backward ~Solve Le=b andthensolve Ux=c . 5)

To see that x is correct, multiply Ux = ¢ by L. Then LUx = Lc is just Ax = b.

To emphasize: There is nothing new about those steps. This is exactly what we have
done all along. We were really solving the triangular system Lc¢ = b as elimination went
forward. Then back substitution produced x. An example shows what we actually did.

Example 3 Forward elimination (downward) on Ax = bendsat Ux = ¢:

u+2v=>35 u+2v=>5 _
Ax =b du 4 9y = 21 becomes v =1 Ux =c¢

The multiplier was 4, which is saved in L. The right side used it to change 21 to 1:

g . 1 0 15 15
Le =5 The lowe{ triangular system [4 1:| [c:| = [21] gave ¢ = [1]

Ux = ¢ The upper triangular system [(1) ?] [x] = [i] gives x = ﬁ] .

L and U can go into the n? storage locations that originally held 4 (now forgettable).

The Cost of Elimination

A very practical question is cost—or computing time. We can solve 1000 equations on a
PC. What if n = 100,000? (Not if A is dense.) Large systems come up all the time
in scientific computing, where a three-dimensional problem can easily lead to a million
unknowns. We can let the calculation run overnight, but we can’t leave it for 100 years.



2.6. Elimination = Factorization: A = LU 99

The first stage of elimination, on column 1, produces zeros below the first pivot. To
find each new entry below the pivot row requires one multiplication and one subtraction.
We will count this first stage as n* multiplications and n? subtractions. 1t is actually less,
n? — n, because row 1 does not change.

The next stage clears out the second column below the second pivot. The working
matrix is now of size n — 1. Estimate this stage by (n — 1) multiplications and subtractions.
The matrices are getting smaller as elimination goes forward. The rough count to reach U
is the sum of squares n + (n — )% + - + 22 + 12,

There is an exact formula %n(n + %)(n + 1) for this sum of squares. When 7 is large,
the % and the 1 are not important. The number that matters is %n3. The sum of squares is
like the integral of x?! The integral from 0 to n is 1n3:

Elimination.on. A requires about Ln® multiplications and Ln® subtractions.

What about the right side ? Going forward, we subtract multiples of b, from the lower
components b,,...,b,. This is n — 1 steps. The second stage takes only n — 2 steps,
because b; is not involved. The last stage of forward elimination takes one step.

Now start back substitution. Computing x, uses one step (divide by the last pivot). The
next unknown uses two steps. When we reach x; it will require n steps (n — 1 substitutions
of the other unknowns, then division by the first pivot). The total count on the right side,
from b to ¢ to x—jforward to the bottom and back to the top—is exactly n?:

(=D +@—-2D+--+1 + 1+2+4--+(@n~-1)+n] =n (6)

To see that sum, pair off (n — 1) with 1 and (n — 2) with 2. The pairings leave n terms, each
equal to n. That makes n2. The right side costs a lot less than the left side!

Solve Eachrzght Sldeneeds n? multiplications andnzsubtractwns

A band matrix B has only w nonzero diagonals below and also above its main diagonal.
The zero entries outside the band stay zero in elimination (zeros in L and U). Clearing out
the first column needs w? multiplications and subtractions (w zeros to be produced below
the pivot, each one using a pivot row of length w). Then clearing out all » columns, to
reach U, needs no more than nw?. This saves a lot of time:

200

es - Factor  change §n3 to nw Solve  change rn? to2nw .‘

Here are codes to factor A into LU and to solve Ax = b. The Teaching code slu
stops right away if a number smaller than the tolerance “tol” appears in a pivot position.
The Teaching Codes are on web.mit.edu/18.06/www. Professional codes will look down
each column for the largest available pivot, to exchange rows and continue solving.

MATLAB’s backslash command x = A\& combines Factor and Solve to reach x.
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%  Square LU factorization with no row exchanges!
[n,n] = size(4); tol = l.e —6;
fork=1:n
if abs(A(k, k)) < tol
end % Cannot proceed without a row exchange: stop
L(k,k) =1,
fori=k+1:n
L@, k) = A(i,k)/A(k,k); % Multipliers for column k are put into L
for j =k +1:n % Elimination beyond row k and column k
A, j) = AG,j)— LG, k) » Ak, j); % Matrix still called A

end
end
forj=k:n
Uk,j)= Ak, j); % row k is settled, now name it U
end

end

% using L and U from slu(A).
[L,U] =slu(A);s =0; % No row exchanges!
fork =1:n % Forward elimination to solve L¢ = b

forj=1:k-1
s=s+Lk,j)*xc(j); % Add L times earlier ¢(j) before ¢ (k)
end
c(k) =b(k) —s;5 =0, % Find ¢(k) and reset s for next k
end

fork=n:-1:1 % Going backwards from x (n) to x (1)
forj =k +1:n % Back substitution
t=t+Uk,j)*x(j); % U times later x(j)
end
x(k) = (c(k) —t)/U(k,k); % Divide by pivot
end
x = x’; % Transpose to column vector

How long does it take to solve Ax = b? For a random matrix of order n = 1000,
a typical time is 1 second. See web.mit.edu/18.06 and math.mit.edu/linearalgebra for
the times in MATLAB, Maple, Mathematica, SciLab, Python, and R. The time is multiplied
by about 8 when 7 is multiplied by 2. For professional codes go to netlib.org.

According to this n3 rule, matrices that are 10 times as large (order 10,000) will take a
thousand seconds. Matrices of order 100,000 will take a million seconds. This is too ex-
pensive without a supercomputer, but remember that these matrices are full. Most matrices
in practice are sparse (many zero entries). In that case A = LU is much faster.

For tridiagonal matrices of order 10,000, storing only the nonzeros, solving Ax = b
is a breeze. Provided the code recognizes that A is tridiagonal.
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m REVIEW OF THE KEY IDEAS =

1. Gaussian elimination (with no row exchanges) factors A into L times U'.

L3

The lower triangular L contains the numbers £;; that multiply pivot rows, going from
A to U. The product LU adds those rows back to recover A.

On the right side we solve L¢ = b (forward) and Ux = ¢ (backward).
Factor : There are %(n3 — n) multiplications and subtractions on the left side.

Solve : There are n? multiplications and subtractions on the right side.

& o s oW

For a band matrix, change %n:" to nw? and change n? to 2wn.

® WORKED EXAMPLES =

2.6 A The lower triangular Pascal matrix L contains the famous “Pascal triangle”.
Gauss-Jordan found its inverse in the worked example 2.5 C. This problem connects L
to the symmetric Pascal matrix P and the upper triangular U. The symmetric P has Pas-
cal’s triangle tilted, so each entry is the sum of the entry above and the entry to the left. The
n by n symmetric P is pascal(n) in MATLAB.

Problem: Establish the amazing lower-upper factorization P = LU.

111 1 100071111
1 2 3 4 1100 /|lo123
pascald)=| 1 5 ¢ |1 210]|l0oo13]|=LY
1 4 10 20 1 331(loo o1

Then predict and check the next row and column for 5 by 5 Pascal matrices.

Solution  You could multiply LU to get P. Better to start with the symmetric P and
reach the upper triangular U by elimination:

1 1 1 1 1 11 1 1 11 1 1 1 1 1

P = 1 2 3 4 N 0 1 2 3 N 01 2 3 - 01 2 3 —U
1 3 6 10 0 25 9 0O 01 3 0 01 3 ’
1 4 10 20 0 3 9 19 0 0 3 10 0 0 0 1

The multipliers £;; that entered these steps go perfectly into L. Then P = LU is a partic-
ularly neat example. Notice that every pivot is 1 on the diagonal of U.

The next section will show how symmetry produces a special relationship between the
triangular L and U. For Pascal, U is the “transpose” of L.
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You might expect the MATLAB command lu(pascal(4)) to produce these L and U.
That doesn’t happen because the lu subroutine chooses the largest available pivot in each
column. The second pivot will change from 1 to 3. But a “Cholesky factorization” does no
row exchanges: U = chol(pascal(4))

The full proof of P = LU for all Pascal sizes is quite fascinating. The paper “Pascal
Matrices” is on the course web page web.mit.edu/18.06 which is also available through
MIT’s OpenCourseWare at ocw.mit.edu. These Pascal matrices have so many remarkable
properties—we will see them again.

2.6 B The problem is: Solve Px = b = (1,0,0,0). This right side = column of /
means that x will be the first column of P 1. That is Gauss-Jordan, matching the columns
of PP~1 = I. We already know the Pascal matrices L and U as factors of P:

Two triangular systems Lc¢ = b (forward) Ux = ¢ (back).

Solution  The lower triangular system Lc¢ = b is solved top to bottom:

1 =1 ¢y = +1
¢+ ¢ =0 . ¢y =—1
c1+2¢+ c3 =0 Blves c3 = +1
c1+3c2+3cs+cs=0 ca = —1

Forward elimination is multiplication by L~!. It produces the upper triangular system
Ux = c. The solution x comes as always by back substitution, bottom to top:

X1+x24+ x3+ x4 = 1 x; = +4
X2 +2x3 +3x4 = —1 . X, = —6
x3+3x4 = 1 gives x3 = +4
X4=—1 x4 = —1

I see a pattern in that x, but I don’t know where it comes from. Try inv(pascal(4)).

Problem Set 2.6
Problems 1-14 compﬁte the factorization A = LU (and also A = LDU).
1 (Important) Forward elimination changes [ } } |x = b to a triangular [ § ] |x = ¢:
x+ y=5 x+ y=5 115 1 1 5
—>
x+2y=7 y =2 1 27 01 2
That step subtracted £7; = times row 1 from row 2. The reverse step adds
£,; times row 1 to row 2. The matrix for that reverse step is L = . Multiply
this L times the triangular system [ 1 1]x; = [ 5] to get = . In letters,

L multiplies Ux = ¢ to give

2 Write down the 2 by 2 triangular systems L¢ = b and Ux = ¢ from Problem 1.
Check that ¢ = (5, 2) solves the first one. Find x that solves the second one.



2.6. Elimination = Factorization: 4 = LU 103

3 (Move to 3 by 3) Forward elimination changes Ax = b to a triangular Ux = ¢:

x+ y+ z=5 x+ y+ z=5 x+ y+ z=5
x+2y+3z=17 y+2z=2 y+2z=2
x+3y+6z=11 2y +52 =6 z=2

The equation z = 2 in Ux = c¢ comes from the original x + 3y + 6z = 11 in
Ax = b by subtracting £3; = times equation 1 and €35 = times the
final equation 2. Reverse that to recover [1 3 6 11] in the last row of A and b
fromthe final [1 1 1| 5]and[0 1 2 2]and[0 0 1 2}in U andc:

Row3of[A4 b]= ({33 Row 1+ €3 Row2+1Row3)of [U c].
In matrix notation this is multiplicationby L. So 4 = LU and b = Lc.

4 What are the 3 by 3 triangular systems Lc¢ = b and Ux = ¢ from Problem 3?
Check that ¢ = (5, 2, 2) solves the first one. Which x solves the second one?

5 What matrix E puts A into triangular form EA = U? Multiply by E~1 = L to
factor A into LU':

210
A=10 4 2
6 3 5

6 What two elimination matrices Ej; and E3; put A into upper triangular form
E3Ey A = U? Multiply by E3,! and E5}! to factor A into LU = E5'E;U:

1 11
A=|2 4 5
0 4 0

7 What three elimination matrices E5y, E3;, E3; put A into its upper triangular form
E3E31 Ey A = U? Multiply by E3;!, E;! and E5}! to factor A into L times U:

1 0 1
A=2 2 2| L=E;E};E;.
3 45

8 Suppose A is already lower triangular with 1°s on the diagonal. Then U = I!

1 00
A=L=]|a 1 0
b ¢ 1

The elimination matrices E»;, E31, E3 contain —a then —b then —c.

(a) Multiply E3; E31 E»; to find the single matrix E that produces EA = [.
(b) Multiply E5; E5' E3; to bring back L (nicer than E).
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10

11

12

13

14
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When zero appears in a pivot position, A = LU is not possible! (We are requiring
nonzero pivots in UJ.) Show directly why these are both impossible:

0 1 1 01Td e 1 1 0 1 d e g
1 2 1 m n 1 i

This difficulty is fixed by a row exchange. That needs a “permutation” P.

Which number ¢ leads to zero in the second pivot position? A row exchange is
needed and A = LU will not be possible. Which ¢ produces zero in the third pivot
position? Then a row exchange can’t help and elimination fails:

1 ¢ O
A=12 4 1
3 51

What are L and D (the diagonal pivot matrix) for this matrix A? What is U in
A= LU and whatisthenew U in A = LDU?

Already triangular A=

oo N
O W A
~ O ®

A and B are symmetric across the diagonal (because 4 = 4). Find their triple factor-
izations L DU and say how U is related to L for these symmetric matrices:

5 4 1 4 0
Symmetric A= [ 41 1} and B=[|4 12 4
0 4 0

(Recommended) Compute L and U for the symmetric matrix A:

& 8 8 8
oo O R
SIS SR
Qo o

Find four conditions on a, b, ¢, d to get A = LU with four pivots.

This nonsymmetric matrix will have the same L as in Problem 13:

Kind L and U for A=

& 8 & 9
o alw  w
L T o T T |
Q, ™ O

Find the four conditionson a, b,c,d,r, s,t to get A = LU with four pivots.
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Problems 15-16 use L and U (without needing A) to solve Ax = b.

15

16

17

18

19

20

21

Solve the triangular system Lc¢ = b to find ¢. Then solve Ux = ¢ to find x:

1 0O 2 4 2
L—[4 1] and U_[O 1] and b—[ll].

For safety multiply LU and solve Ax = b as usual. Circle ¢ when you see it.

Solve Le¢ = b to find ¢. Then solve Ux = ¢ to find x. What was A?

1 0 0 1 1 1 4
L=]1120 and U=|0 1 1 and b=|5
1 1 1 0 0 1 6
(a) When you apply the usual elimination steps to L, what matrix do you reach?
1 0 O
L=1}14; 1 0
l31 43 1

(b) When you apply the same steps to /, what matrix do you get?

(c) When you apply the same steps to LU, what matrix do you get?
If A= LDU and also A = L DU, with all factors invertible, then L = L; and
D = Dy and U = U,. “The three factors are unique.”
Derive the equation L7 LD = D,U;U~1. Are the two sides triangular or diagonal?
Deduce L = L; and U = U (they all have diagonal 1’s). Then D = D,.

Tridiagonal matrices have zero entries except on the main diagonal and the two ad-
jacent diagonals. Factor these into A = LU and A = LDL™:

1 1 0 a a 0
A=11 2 1 and A=|a a+b b
0 1 2 0 b b+c

When T is tridiagonal, its L and U factors have only two nonzero diagonals. How
would you take advantage of knowing the zeros in T, in a code for Gaussian elimi-
nation? Find L and U."

1 2 00

- 12 310
Tridiagonal T = 01 2 3
0 0 3 4

If A and B have nonzeros in the positions marked by x, which zeros (marked by 0)
stay zero in their factors L and U?

A=

S O R =R
O R & =®
R A R o B
B R O xR
S X =X
2 O =R =
= = O
® xR x O
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23

24

25

26
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Suppose you eliminate upwards (almost unheard of). Use the last row to produce
zeros in the last column (the pivot is 1). Then use the second row to produce zero
above the second pivot. Find the factors in the unusual order A = UL.

5 3 1
Upper times lower A=13 3 1
1 1 1

Easy but important. If A has pivots 5, 9, 3 with no row exchanges, what are the pivots
for the upper left 2 by 2 submatrix A, (without row 3 and column 3)?

Challenge Problems

Which invertible matrices allow A = LU (elimination without row exchanges)?
Good question! Look at each of the square upper left submatrices of A.

All upper left k by k submatrices Ay must be invertible (sizesk = 1,...,n).

Explain that answer: Ay factors into because LU = [ fk 2 ][ 8] k : ]

For the 6 by 6 second difference constant-diagonal matrix K, put the pivots and
multipliers into K = LU. (L and U will have only two nonzero diagonals, because
K has three.) Find a formula for the i, j entry of L™!, by software like MATLAB
using inv(L) or by looking for a nice pattern.

~1
-1,2,~1 matrix K = o = toeplitz(2 —1 0 0 0 0])

i 12

If you print K1, it doesn’t look so good. But if you print 7K ~! (when K is 6 by 6),
that matrix looks wonderful. Write down 7K ~! by hand, following this pattern:

1 Row 1 and column 1 are (6,5,4,3,2,1).
2 On and above the main diagonal, row i is i times row 1.

3 On and below the main diagonal, column j is j times column 1.

Multiply K times that 7K~ to produce 7/ . Here is that pattern for n = 3:

3 by 3 case 2 -1 0|3 2 1 4
The determinant (K)4K H=|-1 2 —-1||2 4 2|= 4
of this K is 4 0 -1 2111 2 3 4
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2.7 Transposes and Permutations

We need one more matrix, and fortunately it is much simpler than the inverse. It is the
“transpose” of A, which is denoted by AT. The columns of AT are the rows of A.
When A is an m by » matrix, the transpose is n by m:

123 10
Transpose f A=| 27| then AT=| 2 0
004 3 4

You can write the rows of A into the columns of AT. Or you can write the columns of 4
into the rows of AT. The matrix “flips over” its main diagonal. The entry in row i, column j
of AT comes from row j, column i of the original 4:

Exchange rows and columns (AT), o= Aji.

The transpose of a lower triangular matrix is upper triangular. (But the inverse is still lower
triangular.) The transpose of AT is A.

Note MATLAB’s symbol for the transpose of 4 is A’. Typing [1 2 3] gives a row vec-
tor and the column vector is v = [1 2 3]’. To enter a matrix M with second column
w =[456] youcould define M =][ v w |. Quicker to enter by rows and then
transpose the whole matrix: M =[1 2 3; 4 5 6]

The rules for transposes are very direct. We can transpose A + B to get (A + B)".
Or we can transpose A and B separately, and then add AT + BT—with the same result.
The serious questions are about the transpose of a product A B and an inverse A~

Sum The transposeof A+ B is AT + BT (1)
Product 'The transpose of AB is' (AB)T= BTAT (2)
Inverse The transpose of A~! s (A HT = 4H™. 3)

Notice especially how BT AT comes in reverse order. For inverses, this reverse order
was quick to check: B~'4! times AB produces I. To understand (AB)T = BTAT,
start with (4x)T = xTAT:

Ax combines the columns of A while x* A" combines the rows of A'.

It is the same combination of the same vectors! In A they are columns, in AT they are rows.
So the transpose of the column Ax is the row xTAT. That fits our formula (4x)T = xT 4T,
Now we can prove the formula (4B)T = BTAT, when B has several columns.

If B =[x x3] has two columns, apply the same idea to each column. The columns
of AB are Ax; and Ax,. Their transposes are the rows of BTAT:

x7A4T

Transposing AB = | Ax, Ax, --- | gives | *¥34T | whichis BTAT. (4)
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The right answer BT AT comes out a row at a time. Here are numbers in (4B)T = BTAT:

N R R N

The reverse order rule extends to three or more factors: (ABC)T equals CTBTAT.
If A=LDU then AT = UYDTLT. The pivot matrix has D = D7 .

Now apply this product rule to both sides of A='4 = I. On one side, IT is 1. We
confirm the rule that (A™1)T is the inverse of AT, because their product is I:

Transpose of inverse A7 '4 =17 istransposedto AT(A™HT=1. (5

Similarly A4~! = I leads to (A"1)TAT = I. We can invert the transpose or we can
transpose the inverse. Notice especially: AT is invertible exactly when A is invertible.

Example 1 The inverseof A = [19]is 47" = [_}9]. The transpose is AT = [1¢].

(AT and (A)™' areboth equalto [} %]

The Meaning of Inner Products

We know the dot product (inner product) of x and y. It is the sum of numbers Xx;y;.
Now we have a better way to write x - y, without using that unprofessional dot. Use
matrix notation instead:

Tisinside  The dot product or inner product is xT y (Ixn)(nx1)

T is outside The rank one product or outer product is xyT (n x 1)(1 x n)
xTy is a number, xyT is a matrix. Quantum mechanics would write those as < x|y >

(inner) and |x >< y| (outer). I think the world is governed by linear algebra, but physics
disguises it well. Here are examples where the inner product has meaning:

From mechanics ~ Work = (Movements) (Forces) = xT f
From circuits Heat loss = (Voltage drops) (Currents) = ety

From economics Income = (Quantities) (Prices) = qT P

We are really close to the heart of applied mathematics, and there is one more point to
explain. It is the deeper connection between inner products and the transpose of A.

We defined AT by flipping the matrix across its main diagonal. That’s not mathematics.
There is a better way to approach the transpose. AT is the matrix that makes these two
inner products equal for every x and y:

(Ax)Ty = xT(ATy) Inner product of Ax with y = Inner product of x with ATy
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-1 1 0 1
Example 2  Start with A = [ 0 —1 1] x =|x2 y= [yl]
X3

On one side we have Ax multiplying y: (x2 — x1)y1 + (x3 — x2)y2
That is the same as x1(—y1) + x2(y1 — ¥2) + x3(y2). Now x is multiplying ATy.

- —1 0
ATy mustbe | y; — y» | which produces AT = 1 —1] asexpected.
Y2 0 1

Example 3  Will you allow me a little calculus? It is extremely important or I wouldn’t
leave linear algebra. (This is really linear algebra for functions x(¢).) The difference ma-
trix changes to a derivative A = d/dt. Its transpose will now come from (dx/dt,y) =
(x,—dy/dt).

The inner product changes from a finite sum of x yj to an integral of x(z) y(?).

o0

Inner product -
of fun(E)tions X'y =(xy) = / x(t) y(t)dt by definition
— 00
Transpose rule X y
(Ax)Tl; = xT(ATy) / ZJ’(I) dt = / x(2) (_E) dt shows AT 6)
00 R

I hope you recognize “integration by parts”. The derivative moves from the first
function x(¢) to the second function y(¢). During that move, a minus sign appears.
This tells us that the “transpose” of the derivative is minus the derivative.

The derivative is anti-symmetric: A = d/dt and AT = —d /dt. Symmetric matrices
have AT = A, anti-symmetric matrices have AT = —A. In some way, the 2 by 3 difference
matrix above followed this pattern. The 3 by 2 matrix AT was minus a difference matrix.
It produced y; — y» in the middle component of AT y instead of the difference y; — y;.

Symmetric Matrices

For a symmetric matrix, transposing A to AT produces no change. Then AT = A. Its (j, 1)
entry across the main diagonal equals its (7, j) entry. In my opinion, these are the most
important matrices of all.

Symmetric matrices A = [1 2] =AT and D= [1 O] = DT,

2 5 0 10

The inverse of a symmetric matrix is also symmetric. The transpose of A~! is
(A HT = (A7)~ = AL, That says A~! is symmetric (when 4 is invertible):

.. -1_ | 5 =2 1 _ {10
Symmetric inverses A7 = [_2 ) and D™ = 0 o1l

Now we produce symmetric matrices by multiplying any matrix R by R”.
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Symmetric Products RTR and RR" and LDL"

Choose any matrix R, probably rectangular. Multiply RT times R. Then the product RTR
is automatically a square symmetric matrix:

The transpose of RTR is RT(R™)T whichis RTR. ¢))

That is a quick proof of symmetry for RT R. We could also look at the (i, j) entry of RTR.
It is the dot product of row i of RT (column i of R) with column j of R. The (j,i) entry
is the same dot product, column j with column i. So RTR is symmetric.

The matrix RRT is also symmetric. (The shapes of R and RT allow multiplication.)
But RRT is a different matrix from RTR. In our experience, most scientific problems that
start with a rectangular matrix R end up with RTR or RRT or both. As in least squares.

-1 0
Example 4 Multiply R = [—(1) _} (1)] and RT = 1 —1 | in both orders.
0 1
) 1 -1 0
RRT = [_1 2] and RTR= | -1 2 —1 | are both symmetric matrices.
0 -1 1

The product RTR is n by n. In the opposite order, RRT is m by m. Both are symmetric,
with positive diagonal (why?). But even if m = n, it is not very likely that RTR = RRT.
Equality can happen, but it is abnormal.

Symmetric matrices in elimination AT = A makes elimination faster, because we can
work with half the matrix (plus the diagonal). It is true that the upper triangular U is
probably not symmetric. The symmelry is in the triple product A = LDU. Remember
how the diagonal matrix D of pivots can be divided out, to leave 1’s on the diagonal of both
L and U:

1 2 1 0] [1 2] L U misses the symmetry of A
2 7 2 1 0

W

_[1 o] [1 0] [1 27 LDU captures the symmetry
2.1} |0 3] [O 1] NowUisthe transpose of L.

When A is symmetric, the usual form A = LDU becomes A = LDLT. The final U
(with 1’s on the diagonal) is the transpose of L (also with 1’s on the diagonal). The
diagonal matrix D containing the pivots is symmetric by itself.

The symmetric factorization of a symmetric matrixis A = LDLT.

Notice that the transpose of L DLT is automatically (LT)TDTLT whichis L DLT again.
The work of elimination is cut in half, from n3/3 multiplications to #3/6. The storage is
also cut essentially in half. We only keep L and D, not U which is just L7,
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Permutation Matrices

The transpose plays a special role for a permutation matrix. This matrix P has a single “1”
in every row and every column. Then PT is also a permutation matrix—maybe the same
or maybe different. Any product P; P, is again a permutation matrix. We now create every
P from the identity matrix, by reordering the rows of /.

The simplest permutation matrix is P = I (no exchanges). The next simplest are the
row exchanges P;;. Those are constructed by exchanging two rows i and j of I. Other
permutations reorder more rows. By doing all possible row exchanges to [, we get all
possible permutation matrices:

I == 1 P21 = 1 P32P21 = 1

P3; = 1 P3p = 1 Py Pz = | 1

There are n! permutation matrices of order n. The symbol n! means “n factorial,” the
product of the numbers (1)(2) --- (n). Thus 3! = (1)(2)(3) which is 6. There will be 24
permutation matrices of order n = 4. And 120 permutations of order 5.

There are only two permutation matrices of order 2, namely [§ 9] and [$3].

Important: P~ is also a permutation matrix. Among the six 3 by 3 P’s displayed
above, the four matrices on the left are their own inverses. The two matrices on the right
are inverses of each other. In all cases, a single row exchange is its own inverse. If we
repeat the exchange we are back to /. But for Ps3; P5;, the inverses go in opposite order
as always. The inverse is Py P35.

More important: P~ is always the same as P". The two matrices on the right are
transposes—and inverses—of each other. When we multiply PPT, the “1” in the first row
of P hits the “1” in the first column of PT (since the first row of P is the first column of
PT). It misses the ones in all the other columns. So PPT = J.

Another proof of PT = P~ looks at P as a product of row exchanges. Every row
exchange is its own transpose and its own inverse. PT and P~! both come from the
product of row exchanges in reverse order. So PT and P! are the same.

Symmetric matrices ledto A = L DL"™. Now permutations leadto PA = LU.
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The PA = LU Factorization with Row Exchanges

We sure hope you remember 4 = L U. It started with A = (E5}' --- E;'---)U. Every
elimination step was carried out by an E;; and it was inverted by E ij Those inverses were
compressed into one matrix L, bringing U back to A. The lower triangular L has 1’s on
the diagonal, and the resultis A = L U.

This is a great factorization, but it doesn’t always work. Sometimes row exchanges
are needed to produce pivots. Then A = (E~!. . E71...pTlo U, Every row
exchange is carried out by a P;; and inverted by that P;;. We now compress those row ex-
changes into a single permutation matrix P. This gives a factorization for every invertible
matrix A—which we naturally want.

The main question is where to collect the P;;’s. There are two good possibilities—
do all the exchanges before elimination, or do them after the E;;’s. The first way gives
PA = L U. The second way has a permutation matrix P; in the middle.

1. The row exchanges can be done in advance. Their product P puts the rows of 4 in
the right order, so that no exchanges are needed for PA. Then PA = L U.

2. If we hold row exchanges until after elimination, the pivot rows are in a strange order.
P, puts them in the correct triangular order in U;. Then A = Ly P1Uj.

PA = LU is constantly used in all computing (and in MATLAB). We will concentrate on
this form. Most numerical analysts have never seen the other form.

The factorization A = L P;U; might be more elegant. If we mention both, it is because
the difference is not well known. Probably you will not spend a long time on either one.
Please don’t. The most important case has P = I, when A4 equals L U with no exchanges.

For this matrix A, exchange rows 1 and 2 to put the first pivot in its usual place.
Then go through elimination on PA:

0 1 1 1 21 1 2 1 1 2 1

1 2 1 |- 01 1{—> |01 1]|—> 0 1 1

2 7 9 279 0 3 7 0 0 4

l3; =2 £z, =3

The matrix PA has its rows in good order, and it factors as usual into L U':
010 1 0 O 1 21
P=|1 0 0 PA=10 1 0|0 1 1|=LU. (8)

0 01 2 3 1 0 0 4

We started with A and ended with U. The only requirement is invertibility of A.

: S;;for A}to be'mvernbleﬂ
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In MATLAB, A(fr k],:) = A([k r],:) exchanges row k with row r below it (where the
kth pivot has been found). Then the lu code updates L and P and the sign of P:

A([r k],2) = A([k ], );

This is part of L(rkl,1:k—D)=L(kr],1:k-1);
[L,U, P] =Ilu(4) P(lr kl,:) = P(k r],:);
sign = —sign

The “sign” of P tells whether the number of row exchanges is even (sign = +1).
An odd number of row exchanges will produce sign = —1. At the start, P is / and sign
= +1. When there is a row exchange, the sign is reversed. The final value of sign is the
determinant of P and it does not depend on the order of the row exchanges.

For PA we get back to the familiar L U. This is the usual factorization. In reality,
lu( A) often does not use the first available pivot. Mathematically we accept a small pivot—
anything but zero. It is better if the computer looks down the column for the largest pivot.
(Section 9.1 explains why this “partial pivoting” reduces the roundoff error.) Then P may
contain row exchanges that are not algebraically necessary. Still P4 = L U.

Our advice is to understand permutations but let the computer do the work. Calculations
of A = LU are enough to do by hand, without P, The Teaching Code splu(A) factors
PA = LU and spiv(A4, b) solves Ax = b for any invertible A. The program splu stops if
no pivot can be found in column k. Then A is not invertible.

® REVIEW OF THE KEY IDEAS =
1. The transpose puts the rows of A into the columns of AT. Then (AT);; = A;;.
2. The transpose of AB is BT AT. The transpose of A~! is the inverse of A™.
3. The dot product is x - y = xTy. Then (Ax)Ty equals the dot product xT(4T y).
4. When A is symmetric (AT = A), its L DU factorization is symmetric: A = LDLT.
5. A permutation matrix P has a 1 in each row and column, and PT = P -1
6. There are n! permutation matrices of size n. Half even, half odd.

7. If A is invertible then a permutation P will reorder its rows for PA = L U.
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= WORKED EXAMPLES =

2.7 A Applying the permutation P to the rows of A destroys its symmetry:

01 0 I 4 5 4 2 6
P=]0 0 1 A=14 2 6 PA=1]5 6 3
1 00 5 6 3 1 4 5

What permutation Q applied to the columns of PA will recover symmetry in PAQ?
The numbers 1,2,3 must come back to the main diagonal (not necessarily in order).
Show that Q is PT, so that symmetry is saved by PAQ = PAPT.

Solution  To recover symmetry and put “2” back on the diagonal, column 2 of PA
must move to column 1. Column 3 of PA (containing “3”) must move to column 2.
Then the “1” moves to the 3, 3 position. The matrix that permutes columns is Q:

4 2 6 0 0 1 2 6 4
PA=|5 6 3 Q=11 0 0 PAQ =6 3 5| issymmetric.
1 4 5 01 0 4 5 1

The matrix Q is PT. This choice always recovers symmetry, because PAPT is guaranteed
to be symmetric. (Its transpose is again PAPY.) The matrix Q is also P™', because the
inverse of every permutation matrix is its transpose.

If D is a diagonal matrix, we are finding that PDP7 is also diagonal. When P moves
row 1 down to row 3, PT on the right will move column 1 to column 3. The (1, 1) entry
moves down to (3, 1) and over to (3, 3).

2.7 B  Find the symmetric factorization A = LDLT for the matrix A above. Is this 4
invertible? Find also the PQ = L U factorization for Q, which needs row exchanges.

Solution  To factor A into LDLT we eliminate below the pivots:

1 4 5 1 4 5 1 4 5
A=|4 2 6|=—> |0 =14 ~-14| — |0 =14 =14 | =U.
5 6 3 0 —14 —-22 0O 0 -8

The multipliers were £5) = 4 and £3; = 5 and £3, = 1. The pivots 1,—14, —8 go into D.
When we divide the rows of U by those pivots, LT should appear:

Symmetric 1 00 1 1 4 5
factorization A=LDLT=14 1 0 —14 01 1
when A = AT 51 1 -8 0 0 1

This matrix A is invertible because it has three pivots. Its inverse is (LT)"!D~!L~! and
A~ is also symmetric. The numbers 14 and 8 will turn up in the denominators of A1,
The “determinant” of A is the product of the pivots (1)(—14)(—8) = 112.
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Any permutation matrix Q is invertible. Here elimination needs two row exchanges:

0 0 1 TOWS 1 0 O rows I 0 0
g=|1 0 0 —_— 0 0 1 — 01 0=1.
0 1 0 12 01 0 23 0 0 1

With A = Q,the PQ = (L)(U) factorization is the same as 0~ Q = (I)(J).

2.7 C For a rectangular A, this saddle-point matrix S is symmetric and important:

Block matrix _ [ I 4

_ QT -
from least squares AT o ] = ST has size m + n.
Apply block elimination to find a block factorization S = L DLT. Then test invertibility:

S isinvertible <<= ATAisinvertible <= Ax # 0 wheneverx # 0
Solution The first block pivot is /. The matrix to multiply row 1 is certainly AT:

N I A I A .
Block elimination S—[AT 0] goes to [0 —ATA:|’ This is U.

The block pivot matrix D contains / and —AT A. Then L and LT contain AT and A:

I 0 1 0 I A
- . — T —
Block factorization S =LDL" = [ AT I} [O AT A] [ 0 }

L is certainly invertible, with diagonal 1°’s from /. The inverse of the middle matrix
involves (ATA)~!. Section 4.2 answers a key question about the matrix ATA:

When is AT 4 invertible? Answer: A must have independent columns.
Then Ax =0 only if x =0. Otherwise Ax = 0 will lead to ATAx =0.

Problem Set 2.7

Questions 1-7 are about the rules for transpose matrices.

1 Find AT and A7 ! and (A7 1)T and (4T)~! for

1 O 1 ¢
A_[g 3] and also A—-[C 0].

2 Verify that (AB)T equals BT AT but those are different from AT BT:

o A IS P TR

In case AB = BA (not generally true!) how do you prove that BTAT = ATBT?
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(a) The matrix ((4B)~!)T comes from (A~1)T and (B~1)". In what order?

(b) If U is upper triangular then (U ~1)T is triangular.
Show that A2 = Qs possible but ATA = 0is not possible (unless A = zero matrix).

(a) The row vector xT times A4 times the column y produces what number?

0
. 1 2 3
Ty = [0 1][ =
4 5 6 0
(b) This is the row xT4 = times the column y = (0, 1, 0).

(c) Thisistherow xT = [0 1] times the column Ay =

The transpose of a block matrix M = [4B]is MT = . Test an example.
Under what conditions on 4, B, C, D is the block matrix symmetric?

True or false:

(a) The block matrix [X 4 ] is automatically symmetric.

(b) If A and B are symmetric then their product A B is symmetric.
(c) If A is not symmetric then A~! is not symmetric.

(d) When A, B, C are symmetric, the transpose of ABC is CBA.

Questions 8-15 are about permutation matrices.

8
9

10

11

12

13

Why are there n! permutation matrices of order n?

If P, and P, are permutation matrices, so is P; P,. This still has the rows of I in
some order. Give examples with Py P, # P, Py and P3Py = P4 Ps.

There are 12 “even” permutations of (1, 2, 3, 4), with an even number of exchanges.
Two of them are (1,2, 3, 4) with no exchanges and (4, 3,2, 1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, just order the numbers.

Which permutatioﬁ makes PA upper triangular? Which permutations make P; AP,

lower triangular? Multiplying A on the right by P, exchanges the of A.
0 0 6
A=11 2 3
0 4 5

Explain why the dot product of x and y equals the dot product of Px and P y.
Then from (Px)T(Py) = xTy deduce that PTP = I for any permutation. With
x =(1,2,3)and y = (1, 4,2) choose P to show that Px - y is not always x - P y.
(a) Find a 3 by 3 permutation matrix with P3 = I (butnot P = I).
(b) Find a 4 by 4 permutation P with P* # I.
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14

15

If P has 1's on the antidiagonal from (1, #) to (n, 1), describe PAP. Note P = PT,

All row exchange matrices are symmetric: PT = P. Then PTP = I becomes

P? = I. Other permutation matrices may or may not be symmetric.

(a) If P sends row 1 to row 4, then PT sends row to row
When PT = P the row exchanges come in pairs with no overlap.

(b) Find a 4 by 4 example with PT = P that moves all four rows.

Questions 16-21 are about symmetric matrices and their factorizations.

16

17

18

19

20

21

If A = AT and B = BT, which of these matrices are certainly symmetric?
(a) A2— B? (b) (A+ B)(A—-B) (c) ABA (d) ABAB.

Find 2 by 2 symmetric matrices A = AT with these properties:

(a) A is notinvertible.
(b) A is invertible but cannot be factored into L U (row exchanges needed).

(c) A can be factored into LDLT but not into L LT (because of negative D).

(a) How many entries of A can be chosen independently, if A = AT is 5 by 57
(b) How do L and D (still 5 by 5) give the same number of choices in LDL™?

(c) How many entries can be chosen if 4 is skew-symmetric? (AT = —A).
Suppose R is rectangular (72 by n) and A is symmetric (m by m).

(a) Transpose RTAR to show its symmetry. What shape is this matrix?

(b) Show why RT R has no negative numbers on its diagonal.

Factor these symmetric matrices into A = LDL". The pivot matrix D is diagonal:

2 -1 0
A=-|:;J g] and A=|:ll) Ic)] and A=|-1 2 -1
0 -1 2

After elimination clears out column 1 below the first pivot, find the symmetric 2 by
2 matrix that appears in the lower right corner:

2 4 8 1 b ¢
StartfromA =4 3 9 and A=1|b d e
8 9 0 c e f



118 Chapter 2. Solving Linear Equations

Questions 22-24 are about the factorizations PA = LU and A = L{P,U;.
22 Find the PA = L U factorizations (and check them) for

0 1 1 1 20
A=|1 0 1 and A=|2 4 1
2 3 4 I 1 1

23 Find a 4 by 4 permutation matrix (call it A) that needs 3 row exchanges to reach the
end of elimination. For this matrix, what are its factors P, L, and U?

24  Factor the following matrix into PA = L U. Factor it also into A = L, P,U;
(hold the exchange of row 3 until 3 times row 1 is subtracted from row 2):

A=

[\ B e am]
— D =
— 00 N

25 Extend the slu code in Section 2.6 to a code splu that factors PA into LU.

26  Prove that the identity matrix cannot be the product of three row exchanges (or five).
It can be the product of two exchanges (or four).

27 (a) Choose E3; to remove the 3 below the first pivot. Then multiply £ AE; , to
remove both 3’s:

(o=l | e
—_—o O

1 3 0 1

A=[3 11 4 isgoingtoward D = |0

0 4 9 0

(b) Choose E3; to remove the 4 below the second pivot. Then A is reduced to D

by Es;Ey AE] EY, = D.Invertthe E’stofind Lin A = LDL™.

28  If every row of a 4 by 4 matrix contains the numbers 0, 1, 2, 3 in some order, can the
matrix be symmetric?

29  Prove that noreordering of rows and reordering of columns can transpose a typical
matrix. (Watch the diagonal entries.)

The next three questions are about applications of the identity (Ax)Ty = xT(A4Ty).

30  Wires go between Boston, Chicago, and Seattle. Those cities are at voltages xp, x¢,
xs. With unit resistances between cities, the currents between cities are in y:

YBC 1 -1 0 XB
y=Ax is yes | =10 1 -1 xc
VBS 1 0 -1 Xs

(a) Find the total currents ATy out of the three cities.
(b) Verify that (4x)Ty agrees with xT(4T y)—six terms in both.
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31

32

33

34

35

36

37

38

39

40
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Producing x; trucks and x, planes needs x; + 50x; tons of steel, 40x; 4+ 1000x;
pounds of rubber, and 2x; 4+ 50x, months of labor. If the unit costs y;, y,, y3 are
$700 per ton, $3 per pound, and $3000 per month, what are the values of one truck
and one plane? Those are the components of ATy.

Ax gives the amounts of steel, rubber, and labor to produce x in Problem 31. Find A.
Then Ax - y is the of inputs while x « ATy is the value of

The matrix P that multiplies (x, y,z) to give (z, x, y) is also a rotation matrix.
Find P and P3. The rotation axis @ = (1,1,1) doesn’t move, it equals Pa.
What is the angle of rotation from v = (2,3, -5) to Pv = (-5,2,3)?

Write 4 = [12] as the product EH of an elementary row operation matrix £ and a
symmetric matrix H.

Here is a new factorization of A into triangular (with 1°s) times symmetric:
Start from A = LDU. Then 4 = L(UY)™! times UTDU.
Why is L(UT)™! triangular? Its diagonal is all 1’s. Why is UT DU symmetric?

A group of matrices includes AB and A™! if it includes A and B. “Products and
inverses stay in the group.” Which of these sets are groups?
Lower triangular matrices L with 1’s on the diagonal, symmetric matrices S,
positive matrices M, diagonal invertible matrices D, permutation matrices P,
matrices with Q7 = Q™. Invent two more matrix groups.

Challenge Problems

A square northwest matrix B is zero in the southeast comer, below the antidiagonal
that connects (1,#) to (z,1). Will BT and B? be northwest matrices? Will B~! be
northwest or southeast? What is the shape of BC = northwest times southeast?
If you take powers of a permutation matrix, why is some P* eventually equal to I?
Finda5by5 permutatioﬁ P so that the smallest power to equal [ is PS.
(a) Write down any 3 by 3 matrix A. Split A into B + C where B = BT is
symmetric and C = —C" is anti-symmetric.
(b) Find formulas for B and C involving A and AT. We want A = B + C with
B=BTandC =-CT".
Suppose QT equals Q™! (transpose equals inverse, so QTQ = I).

(a) Show that the columns gy, .. ., ¢, are unit vectors: |lq;||*> = 1.
(b) Show that every two columns of Q are perpendicular: q"quz =0.
(c) Find a 2 by 2 example with first entry g1, = cos 6.



Chapter 3

Vector Spaces and Subspaces

3.1 Spaces of Vectors

To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vectors.
The columns of Ax and AB are linear combinations of n vectors—the columns of A.
This chapter moves from numbers and vectors to a third level of understanding (the highest
level). Instead of individual columns, we look at “spaces” of vectors. Without seeing vector
spaces and especially their subspaces, you haven’t understood everything about Ax = b.

Since this chapter goes a little deeper, it may seem a little harder. That is natural. We
are looking inside the calculations, to find the mathematics. The author’s job is to make it
clear. The chapter ends with the “Fundamental Theorem of Linear Algebra”.

We begin with the most important vector spaces. They are denoted by R!, R2, R3,
R*, .. .. Each space R" consists of a whole collection of vectors. R> contains all column
vectors with five components. This is called “S-dimensional space”.

The components of v.are real numbers, which is the reason for the letter R. A vector whose
n components are complex numbers lies in the space C”.

The vector space R? is represented by the usual xy plane. Each vector v in R? has two
components. The word “space” asks us to think of all those vectors—the whole plane.
Each vector gives the x and y coordinates of a point in the plane: v = (x, y).

Similarly the vectors in R3 correspond to points (x, y, z) in three-dimensional space.
The one-dimensional space R! is a line (like the x axis). As before, we print vectors as a
column between brackets, or along a line using commas and parentheses:

1—i

The great thing about linear algebra is that it deals easily with five-dimensional space.
We don’t draw the vectors, we just need the five numbers (or » numbers).

[7‘:] isinR2, (1,1,0,1,1)isinR5, [Hf]isincz.

120
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To multiply v by 7, multiply every component by 7. Here 7 is a “scalar”. To add vectors
in R, add them a component at a time. The two essential vector operations go on inside
the vector space, and they produce linear combinations:

We can add any vectors in R", and we can multiply any vector v by any scalar c.

“Inside the vector space” means that the result stays in the space. If v is the vector in R*
with components 1, 0,0, 1, then 2v is the vector in R* with components 2, 0,0, 2. (In this
case 2 is the scalar.) A whole series of properties can be verified in R”. The commutative
law is v + w = w + v; the distributive law is ¢c(v + w) = cv + cw. There is a unique
“zero vector” satisfying 0 + v = v. Those are three of the eight conditions listed at the
start of the problem set.

These eight conditions are required of every vector space. There are vectors other than
column vectors, and vector spaces other than R”, and all vector spaces have to obey the
eight reasonable rules.

A real vector space is a set of “vectors” together with rules for vector addition and for
multiplication by real numbers. The addition and the multiplication must produce vectors
that are in the space. And the eight conditions must be satisfied (which is usually no
problem). Here are three vector spaces other than R":

In M the “vectors” are really matrices. In F the vectors are functions. In Z the only addition
is 0 + 0 = 0. In each case we can add: matrices to matrices, functions to functions, zero
vector to zero vector. We can multiply a matrix by 4 or a function by 4 or the zero vector
by 4. The result is still in M or F or Z. The eight conditions are all easily checked.

The function space F is infinite-dimensional. A smaller function space is P, or Py,
containing all polynomials ag + a1x + --- + a,x" of degree n.

The space Z is zero-dimensional (by any reasonable definition of dimension). It is the
smallest possible vector space. We hesitate to call it R?, which means no components—
you might think there was no vector. The vector space Z contains exactly one vector (zero).
No space can do without that zero vector. Each space has its own zero vector—the zero
matrix, the zero function, the vector (0, 0, 0) in R3.

Subspaces

At different times, we will ask you to think of matrices and functions as vectors. But at all
times, the vectors that we need most are ordinary column vectors. They are vectors with
n components—but maybe not all of the vectors with n components. There are important
vector spaces irnside R". Those are subspaces of R".

Start with the usual three-dimensional space R3. Choose a plane through the origin
(0,0,0). That plane is a vector space in its own right. If we add two vectors in the plane,
their sum is in the plane. If we multiply an in-plane vector by 2 or —5, it is still in the plane.
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[a 2] = typical vector in M

®
01 smallest vector space
[O 0] zero vector only

Figure 3.1: “Four-dimensional” matrix space M. The “zero-dimensional” space Z.

A plane in three-dimensional space is not R? (even if it looks like R?). The vectors have
three components and they belong to R>. The plane is a vector space inside R3.

This illustrates one of the most fundamental ideas in linear algebra. The plane going
through (0, 0, 0) is a subspace of the full vector space R>.

(1) v + w is in the s'uvbspace

(11) cvisin the subspace

In other words, the set of vectors is “closed” under addition v + w and multiplication cv
(and cw). Those operations leave us in the subspace. We can also subtract, because —w is
in the subspace and 1ts sum with v is v — w. In short, all linear combinations stay in the
subspace.

All these operations follow the rules of the host space, so the eight required conditions
are automatic. We just have to check the requirements for a subspace, so that we can take
linear combinations.

First fact: Every subspace contains the zero vector. The plane in R? has to go through
(0,0, 0). We mention this separately, for extra emphasis, but it follows directly from rule (ii).
Choose ¢ = 0, and the rule requires Qv to be in the subspace.

Planes that don’t contain the origin fail those tests. When v is on such a plane, —v
and Ov are not on the plane. A plane that misses the origin is not a subspace.

Lines through the origin are also subspaces. When we multiply by 5, or add two
vectors on the line, we stay on the line. But the line must go through (0, 0, 0).
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Another subspace is all of R®. The whole space is a subspace (of itself). Here is a list
of all the possible subspaces of R3:

(L) Any line through (0, 0, 0) (R?) The whole space
(P) Any plane through (0,0, 0) (Z) The single vector (0,0, 0)

If we try to keep only part of a plane or line, the requirements for a subspace don’t hold.
Look at these examples in R?.

Example 1 Keep only the vectors (x, y) whose components are positive or zero (this is
a quarter-plane). The vector (2, 3) is included but (=2, —3) is not. So rule (ii) is violated
when we try to multiply by ¢ = —1. The quarter-plane is not a subspace.

Example 2 Include also the vectors whose components are both negative. Now we have
two quarter-planes. Requirement (ii) is satisfied; we can multiply by any c. But rule (i)
now fails. The sum of v = (2,3) and w = (—3,-2) is (-1, 1), which is outside the
quarter-planes. Two quarter-planes don’t make a subspace.

Rules (i) and (ii) involve vector addition v + w and multiplication by scalars like ¢ and
d. The rules can be combined into a single requirement—the rule for subspaces:

A subspace containing v and r combinations cv + dw..

Example 3 Inside the vector space M of all 2 by 2 matrices, here are two subspaces:

(U) All upper triangular matrices {g z] (D) All diagonal matrices [g 2] .

Add any two matrices in U, and the sum is in U. Add diagonal matrices, and the sum is
diagonal. In this case D is also a subspace of U! Of course the zero matrix is in these
subspaces, when a, b, and d all equal zero.

To find a smaller subspace of diagonal matrices, we could require @ = d. The matrices
are multiples of the identity matrix /. The sum 2/ + 3] is in this subspace, and so is 3
times 4/. The matrices ¢/ form a “line of matrices” inside M and U and D.

Is the matrix I a subspace by itself? Certainly not. Only the zero matrix is. Your mind
will invent more subspaces of 2 by 2 matrices—write them down for Problem 5.

The Column Space of A

The most important subspaces are tied directly to a matrix A. We are trying to solve
Ax = b. If A is not invertible, the system is solvable for some & and not solvable for
other b. We want to describe the good right sides b—the vectors that can be written as A
times some vector x. Those b’s form the “column space” of A.

Remember that Ax is a combination of the columns of A. To get every possible b, we
use every possible x. So start with the columns of A, and take all their linear combinations.
This produces the column space of A. 1t is a vector space made up of column vectors.

C (A) contains not just the #n columns of A, but all their combinations Ax.
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This column space is crucial to the whole book, and here is why. To solve Ax = b is
to express b as a combination of the columns. The right side b has to be in the column
space produced by A on the left side, or no solution!

is in the column space o

When 4 is in the column space, it is a combination of the columns. The coefficients in
that combination give us a solution x to the system Ax = b.

Suppose A is an m by n matrix. Its columns have m components (not n). So the
columns belong to R™. The column space of A is a subspace of R™ (not R" ). The set
of all column combinations Ax satisfies rules (i) and (ii) for a subspace: When we add
linear combinations or multiply by scalars, we still produce combinations of the columns.
The word “subspace” is justified by taking all linear combinations.

Here is a 3 by 2 matrix 4, whose column space is a subspace of R3. The column space
of A is a plane in Figure 3.2.

Example 4
1 o] 1 0
Ax is |4 3 {‘] whichis x; | 4| +x2|3
2 3| L*2 2 3
1 0
A=1[4 3
2 3

Plane = C(A) = all vectors Ax

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = b is
solvable when b is on that plane. Then b is a combination of the columns.
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The column space of all combinations of the two columns fills up a plane in R3.
We drew one particular & (a combination of the columns). This b = Ax lies on the plane.
The plane has zero thickness, so most right sides b in R are not in the column space. For
most b there is no solution to our 3 equations in 2 unknowns.

Of course (0,0, 0) is in the column space. The plane passes through the origin. There
is certainly a solution to Ax = 0. That solution, always available, is x =

To repeat, the attainable right sides b are exactly the vectors in the column space One
possibility is the first column itself—take x; = 1 and x5 = 0. Another combination is the
second column—take x; = 0 and x, = 1. The new level of understanding is to see all
combinations—the whole subspace is generated by those two columns.

Notation The column space of A is denoted by C (A). Start with the columns and take all
their linear combinations. We might get the whole R™ or only a subspace.

Important Instead of columns in R™, we could start with any set S of vectors in a vector
space V. To get a subspace SS of V, we take all combinations of the vectors in that set:

S = setof vectors in V (probably not a subspace)
SS = all combinations of vectors in S

SS __ a“?i@ ‘+ + cNfzJ N = the subspace of V spanned” by S

When S is the set of columns, SS is the column space. When there is only one nonzero
vector v in S, the subspace SS is the line through v. Always SS is the smallest subspace
containing S. This is a fundamental way to create subspaces and we will come back to it.

The subspace SS is the “span” of S, containing all combinations of vectors in S.

Example 5 Describe the column spaces (they are subspaces of R?) for

I 0 1 2 1 2 3
I—[O 1] and A-—[z 4] and B-[O 0 4].

Solution The column space of I is the whole space R2. Every vector is a combination of
the columns of /. In vector space language, C (I) is R2.

The column space of A is only a line. The second column (2, 4) is a multiple of the first
column (1, 2). Those vectors are different, but our eye is on vector spaces. The column
space contains (1,2) and (2, 4) and all other vectors (c, 2c) along that line. The equation
Ax = b is only solvable when b is on the line.

For the third matrix (with three columns) the column space C (B) is all of R%. Every
b is attainable. The vector & = (5, 4) is column 2 plus column 3, so x can be (0, 1, 1).
The same vector (5, 4) is also 2(column 1) 4+ column 3, so another possible x is (2,0, 1).
This matrix has the same column space as I—any b is allowed. But now x has extra
components and there are more solutions—more combinations that give b.

The next section creates a vector space N(A), to describe all the solutions of Ax = 0.
This section created the column space C (A4), to describe all the attainable right sides 5.
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® REVIEW OF THE KEY IDEAS =

1. R” contains all column vectors with 7 real components.
M (2 by 2 matrices) and F (functions) and Z (zero vector alone) are vector spaces.

A subspace containing v and w must contain all their combinations cv + dw.

& Wb

The combinations of the columns of A form the column space C(A). Then the
column space is “spanned” by the columns.

5. Ax = b has a solution exactly when b is in the column space of A.

= WORKED EXAMPLES =

3.1 A We are given three different vectors bq, b5, b3. Construct a matrix so that the
equations Ax = b; and Ax = b, are solvable, but Ax = b3 is not solvable. How can you
decide if this is possible? How could you construct A?

Solution  We want to have b; and b, in the column space of A. Then Ax = b; and
Ax = b, will be solvable. The quickest way is to make by and b, the two columns of A.
Then the solutions are x = (1,0) and x = (0, 1).

Also, we don’t want Ax = b3 to be solvable. So don’t make the column space any
larger! Keeping only the columns of b and b,, the question is:

Isdx =1| by b, [ il ] = b3 solvable? Is b3 a combination of by and b,?
2

If the answer is no, we have the desired matrix A. If the answer is yes, then it is not possible
to construct A. When the column space contains b and b5, it will have to contain all their
linear combinations. So &3 would necessarily be in that column space and Ax = b3 would
necessarily be solvable.

3.1 B Describe a subspace S of each vector space V, and then a subspace SS of S.

V. = all combinations of (1,1,0,0) and (1,1,1,0) and (1,1, 1, 1)
V, = all vectors perpendicularto z = (1,2,1), sou-v =0

V3 = all symmetric 2 by 2 matrices (a subspace of M)

V4 = all solutions to the equation d*y/dx* = 0 (a subspace of F)

Describe each V two ways: All combinations of . ..., all solutions of the equations.. . ..
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Solution  V; starts with three vectors. A subspace S comes from all combinations of the
first two vectors (1, 1,0,0) and (1, 1, 1,0). A subspace SS of S comes from all multiples
(¢, c,0,0) of the first vector. So many possibilities.

A subspace S of V, is the line through (1, —1, 1). This line is perpendicular to #. The
vector x = (0,0,0) is in S and all its multiples cx give the smallest subspace SS = Z.

The diagonal matrices are a subspace S of the symmetric matrices. The multiples ¢/
are a subspace SS of the diagonal matrices.

V4 contains all cubic polynomials y = @ + bx + cx? + dx3, with d*y/dx* = 0.
The quadratic polynomials give a subspace S. The linear polynomials are one choice of
SS. The constants could be SSS.

In all four parts we could take S = V itself, and SS = the zero subspace Z.

Each V can be described as all combinations of . ... and as all solutions of ....:

V. = all combinations of the 3 vectors V; = all solutionsof v; —v, =0
V, = all combinations of (1,0, —1) and (1, —~1, 1) are solutions of # - v = 0.
V3 = all combinationsof [3 3],[94].[99]. V3 = all solutions [25] of b =¢

V4 = all combinations of 1, x,x%,x3 V4 = all solutions to d*y /dx* = 0.

Problem Set 3.1

The first problems 1-8 are about vector spaces in general. The vectors in those spaces
are not necessarily column vectors. In the definition of a vector space, vector addition
X + y and scalar multiplication cx must obey the following eight rules:

Mx+y=y+x

@D x+@+z)=x+y)+:z

(3) There is a unique “zero vector” such that x + 0 = x forall x
(4) For each x there is a unique vector —x such that x + (—x) =0
(5) 1 times x equals x

(6) (cie2)x = c1{c2x)

(7) c(x +y)=cx+cy

8) (c1 +c2)x = c1x + cpx.

1 Suppose (x3,x2) + (y1, y2) is defined to be (x3 + y2,x2 + y1). With the usual
multiplication cx = (cxy, cx2), which of the eight conditions are not satisfied?

2 Suppose the multiplication cx is defined to produce (cxy,0) instead of (cx;, cxz).
With the usual addition in R2, are the eight conditions satisfied?
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(a) Which rules are broken if we keep only the positive numbers x > 0 in R1?
Every ¢ must be allowed. The half-line is not a subspace.
(b) The positive numbers with x + y and cx redefined to equal the usual xy and
‘ x¢ do satisfy the eight rules. Test rule 7 whenc = 3,x = 2,y = 1. (Then
x 4+ y = 2 and cx = 8.) Which number acts as the “zero vector”?

The matrix A = [% %] is a “vector” in the space M of ail 2 by 2 matrices. Write

down the zero vector in this space, the vector %A, and the vector —A. What matrices
are in the smallest subspace containing A4?

(a) Describe a subspace of M that contains A = [} § | butnot B = [J _¢].
(b) If a subspace of M contains A and B, must it contain {?
(c) Describe a subspace of M that contains no nonzero diagonal matrices.

The functions f(x) = x? and g(x) = 5x are “vectors” in F. This is the vector
space of all real functions. (The functions are defined for —oo0 < x < 00.) The
combination 3 f (x) — 4g(x) is the function A(x) =

Which rule is broken if multiplying f (x) by ¢ gives the function f(cx)? Keep the
usual addition f(x) + g(x).

If the sum of the “vectors” f(x) and g(x) is defined to be the function f(g(x)),
then the “zero vector” is g (x) = x. Keep the usual scalar multiplication ¢ f (x) and
find two rules that are broken.

Questions 9-18 are about the “subspace requirements”: x + y and cx (and then all
linear combinations cx + d y) stay in the subspace.

9

10

11

One requirement can be met while the other fails. Show this by finding

(a) A set of vectors in R? for which x + y stays in the set but %x may be outside.
(b) A set of vectors in R? (other than two quarter-planes) for which every cx stays
in the set but x + y may be outside.
Which of the following subsets of R3 are actually subspaces?

(a) The plane 01; vectors (by, by, b3) with by = b,.

(b) The plane of vectors with b; = 1.

(¢) The vectors with b1b2b3 = 0.

(d) All linear combinations of v = (1,4,0) and w = (2, 2, 2).
(e} All vectors that satisfy by + by + b3 = 0.

(f) All vectors with by < b, < bs.

Describe the smallest subspace of the matrix space M that contains

@ [0 ofwls o] @ foo] @loo]mels 1]
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12

13

14

15

16

17

18

Let P be the plane in R?® with equation x + y — 2z = 4. The origin (0, 0, 0) is not
in P! Find two vectors in P and check that their sum is notin P.

Let Py be the plane through (0, 0, 0) parallel to the previous plane P. What is the
equation for Py? Find two vectors in Py and check that their sum is in Py.

The subspaces of R? are planes, lines, R3 itself, or Z containing only (0, 0, 0).

(a) Describe the three types of subspaces of R,

(b) Describe all subspaces of D, the space of 2 by 2 diagonal matrices.

(a) The intersection of two planes through (0, 0, 0) is probably a but it could
be a . It can’t be Z!

(b) The intersection of a plane through (0, 0, 0) with a line through (0, 0, 0) is prob-
ably a but it could be a .

(c) If S and T are subspaces of R>, prove that their intersection S N T is a
subspace of R>. Here S N T consists of the vectors that lie in both subspaces.
Check the requirements on x + y and cx.

Suppose P is a plane through (0, 0,0) and L is a line through (0, 0, 0). The smallest
vector space containing both P and L is either or .

(a) Show that the set of invertible matrices in M is not a subspace.

(b) Show that the set of singular matrices in M is not a subspace.
True or false (check addition in each case by an example):

(a) The symmetric matrices in M (with AT = A) form a subspace.
(b) The skew-symmetric matrices in M (with AT = —A) form a subspace.

(c) The unsymmetric matrices in M (with AT # A) form a subspace.

Questions 19-27 are about column spaces C (A) and the equation Ax = b.

19

20

Describe the column spaces (lines or planes) of these particular matrices:

1 2 1 0 1 0
A=10 0 and B=]|0 2 and C=1[2 O
0 0 0 0 0 0

For which right sides (find a condition on by, b,, b3) are these systems solvable?

1 4 2 X1 bl 1 4 X bl
@ | 2 8 4||{xx]|=]|b; (b) 2 9 [x1}= b,
—1 —4 2| x3 bs -1 —4 ? bs
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21

22

23

24

25

26

27

28

29
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Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C.
A combination of the columns of (B or C ?) is also a combination of the columns of
A. Which two matrices have the same column ?

1 2 1 2 1 3
A—[z 4:] and B—m[3 6] and C_[Z 6]'

For which vectors (b1, b3, b3) do these systems have a solution?

1 1 1 X1 b1 1 1 1- X1 bl
01 1 x2 | = | by and 0 1 1 x2 | = | bs
0 0 1 X3 b3 0 0 0_ X3 b3
1 1 X1 bl
and 0 0 1 X2 | =1 b2
0 0 1]|/|xs bs |

(Recommended) If we add an extra column & to a matrix A, then the column space
gets larger unless . Give an example where the column space gets larger and
an example where it doesn’t. Why is Ax = b solvable exactly when the column
space doesn’t get larger—it is the same for A and [ A b ]?

The columns of A B are combinations of the columns of A. This means: The column
space of AB is contained in (possibly equal to) the column space of A. Give an
example where the column spaces of A and A B are not equal.

Suppose Ax = b and Ay = b* are both solvable. Then Az = b + b* is solvable.

What is z? This translates into: If b and b* are in the column space C (A4), then
b+ b* isin C (A).

If A is any 5 by 5 invertible matrix, then its column space is . Why?
True or false (with a counterexample if false):

(a) The vectors b that are not in the column space C (A) form a subspace.
(b) If C (A) contains only the zero vector, then A is the zero matrix.

(c) The column space of 24 equals the column space of A.

(d) The column space of A — I equals the column space of A (test this).

Construct a 3 by 3 matrix whose column space contains (1, 1,0) and (1,0, 1) but not
(1,1, 1). Construct a 3 by 3 matrix whose column space is only a line.

If the 9 by 12 system Ax = b is solvable for every b, then C(A4) =
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30

31

32

Challenge Problems

Suppose S and T are two subspaces of a vector space V.

(a) Definition: The sum S + T contains all sums s 4+ ¢ of a vector s in S and a
vector ¢ in T. Show that S + T satisfies the requirements (addition and scalar
multiplication) for a vector space.

(b) If S and T are lines in R™, what is the difference between S + T and S U T?
That union contains all vectors from S or T or both. Explain this statement:
The spanof SUT is S + T. (Section 3.5 returns to this word “span”.)

If S is the column space of A and T is C (B), then S + T is the column space of what
matrix M ? The columns of A and B and M are all in R”. (I don’t think A + B is
always a correct M .)

Show that the matrices 4 and [ A AB ] (with extra columns) have the same column
space. But find a square matrix with C (42) smaller than C (4). Important point:

An n by n matrix has C (4) = R” exactly when A is an matrix.
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3.2 The Nullspace of A: Solving Ax =0

This section is about the subspace containing all solutions to Ax = 0. The m by n matrix
A can be square or rectangular. One immediate solution is x = 0. For invertible matrices
this is the only solution. For other matrices, not invertible, there are nonzero solutions to
Ax = 0. Each solution x belongs to the nullspace of A.

Elimination will find all solutions and identify this very important subspace.

The nullspace of A conszsts of all solutzons to Ax = 0
The nullspace containing all solutions of Ax = 0 is denoted t

Check that the solution vectors form a subspace. Suppose x and y are in the nullspace (this
means Ax = 0 and Ay = 0). The rules of matrix multiplication give A(x + y) = 0 + 0.
The rules also give A(cx) = c0. The right sides are still zero. Therefore x + y and cx are
also in the nullspace N (4). Since we can add and multiply without leaving the nullspace,
it is a subspace.

To repeat: The solution vectors x have n components. They are vectors in R”, so the
nullspace is a subspace of R". The column space C (A4) is a subspace of R”.

If the right side b is not zero, the solutions of Ax = b do not form a subspace. The
vector x == 0 is only a solution if & = 0. When the set of solutions does not include x = 0,
it cannot be a subspace. Section 3.4 will show how the solutions to Ax = & (if there are
any solutions) are shifted away from the origin by one particular solution.

Example 1 x + 2y + 3z = 0 comes from the 1 by 3 matrix A = [1 2 3]. This
equation Ax = 0 produces a plane through the origin (0, 0, 0). The plane is a subspace of
R3. It is the nullspace of A.

The solutions to x 4+ 2y + 3z = 6 also form a plane, but not a subspace.

Example 2 Describe the nullspace of A = [:1)) 2] This matrix is singular !
Solution Apply elimination to the linear equations Ax = 0:

X1+ 2x,=0 N X1 +2x,=0

3x; +6x,=0 0=0

There is really only one equation. The second equation is the first equation multiplied by
3. In the row picture, the line x; + 2x, = 0 is the same as the line 3x; + 6x, = 0. That
line is the nullspace N (A4). It contains all solutions (x1, x5).

To describe this line of solutions, here is an efficient way. Choose one point on the line
(one “special solution”). Then all points on the line are multiples of this one. We choose
the second component to be x, = 1 (a special choice). From the equation x; + 2x, = 0,
the first component must be x; = —2. The special solution s is (-2, 1):

Special
solution
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This is the best way to describe the nullspace, by computing special solutions to Ax = 0.
This example has one special solution and the nullspace is a line.

The nullspace consists of all combinations of the special solutions.

The plane x + 2y + 3z = 0 in Example 1 had two special solutions:

X -2 -3
[1 2 3]| y | =0has the special solutions s; = | 1| ands, =| 0
z 0 1

Those vectors s; and s, lie on the plane x + 2y + 3z = 0, which is the nullspace of
A= [ 1 23 ] All vectors on the plane are combinations of s; and s5.

Notice what is special about s; and §,. They have ones and zeros in the last two
components. Those components are “free” and we choose them specially. Then the first
components —2 and —3 are determined by the equation Ax = 0.

The first column of A = [ 1 2 3] contains the pivot, so the first component of x is
not free. The free components correspond to columns without pivots. This description of
special solutions will be completed after one more example.

The special choice (one or zero) is only for the free variables.

Example 3  Describe the nullspaces of these three matrices 4, B, C:

1 2
1 2 A 3 8 1 22 4
A=[3 8] B_[2A]_ 2 4| C=l4 2A]‘[3 8 6 16]'
16

Solution  The equation Ax = 0 has only the zero solution x = 0. The nullspace is Z.
It contains only the single point x = 0 in R?. This comes from elimination:

0

ol

0] A0

A is invertible. There are no special solutions. All columns of this A have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in Bx = 0
again require x = 0. The last two equations would also force x = 0. When we add
extra equations, the nullspace certainly cannot become larger. The extra rows impose more
conditions on the vectors x in the nullspace.

The rectangular matrix C is different. It has extra columns instead of extra rows. The
solution vector x has four components. Elimination will produce pivots in the first two
columns of C, but the last two columns are “free”. They don’t have pivots:

1 2 2 4 1 2 2 4
C—[3 2 6 16]becomesU—[O 2 0 4:|

tort

free columns.

I

For the free variables x3 and x4, we make special choices of ones and zeros. First x3 = 1,
x4 = 0 and second x3 = 0, x4 = 1. The pivot variables x| and x, are determined by the
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equation Ux = 0. We get two special solutions in the nullspace of C (which is also the
nullspace of U). The special solutions are s; and s5:

-2 0| <« pivot
0 —2 | <« variables

S1= 1 and 52 = 0 <« free
0 1 < variables

One more comment to anticipate what is coming soon. Elimination will not stop at the
upper triangular U'! We can continue to make this matrix simpler, in two ways:

Those steps don’t change the zero vector on the right side of the equation. The nullspace
stays the same. This nullspace becomes easiest to see when we reach the reduced row
echelon form R. It has I in the pivot columns:

Reduced
form R TR P [ G
. now the pivot columns contain [ .

I subtracted row 2 of U from row 1, and then multiplied row 2 by % The original two
equations have simplified to x; -+ 2x3 = 0 and x5 + 2x4 = 0.

The first special solution is still s; = (—2,0, 1,0), and s, is also unchanged. Special
solutions are much easier to find from the reduced system Rx = 0.

Before moving to m by n matrices A and their nullspaces N (A4) and special solutions,
allow me to repeat one comment. For many matrices, the only solutionto Ax = 0isx = 0.
Their nullspaces N (A) = Z contain only that zero vector. The only combination of the
columns that produces b = 0 is then the “zero combination” or “trivial combination”.
The solution is trivial (just x = 0) but the idea is not trivial.

This case of a zero nullspace Z is of the greatest importance. It says that the columns
of A are independent. No combination of columns gives the zero vector (except the zero
combination). All columns have pivots, and no columns are free. You will see this idea of
independence again . . .

Solving Ax = 0 by Elimination

This is important. A is rectangular and we still use elimination. We solve m equations in
n unknowns when b = 0. After A is simplified by row operations, we read off the solution
(or solutions). Remember the two stages (forward and back) in solving Ax = 0:
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1. Forward elimination takes A to a triangular U (or its reduced form R).

2. Back substitutionin Ux = 0 or Rx = 0 produces x.

You will notice a difference in back substitution, when A and U have fewer than n
pivots. We are allowing all matrices in this chapter, not just the nice ones (which are
square matrices with inverses).

Pivots are still nonzero. The columns below the pivots are still zero. But it might
happen that a column has no pivot. That free column doesn’t stop the calculation. Go on
to the next column. The first example is a 3 by 4 matrix with two pivots:

I 1 2 3
A=12 2 8 10
3 3 10 13

Certainly a;; = 1 is the first pivot. Clear out the 2 and 3 below that pivot:

A—

OO
oo =
L

3
4 (subtract 2 x row 1)
4 (subtract 3 x row 1)

The second column has a zero in the pivot position. We look below the zero for a nonzero
entry, ready to do a row exchange. The entry below that position is also zero. Elimination
can do nothing with the second column. This signals trouble, which we expect anyway for
a rectangular matrix. There is no reason to quit, and we go on to the third column.

The second pivot is 4 (but it is in the third column). Subtracting row 2 from row 3 clears
out that column below the pivot. The pivot columns are 1 and 3:

Triangular U :

The fourth column also has a zero in the pivot position—but nothing can be done. There
is no row below it to exchange, and forward elimination is complete. The matrix has three
rows, four columns, and only two pivots. The original Ax = 0 seemed to involve three
different equations, but the third equation is the sum of the first two. It is automatically
satisfied (0 = 0) when the first two equations are satisfied. Elimination reveals the inner
truth about a system of equations. Soon we push on from U to R.

Now comes back substitution, to find all solutions to Ux = 0. With four unknowns
and only two pivots, there are many solutions. The question is how to write them all down.
A good method is to separate the pivot variables from the free variables.

- The pivot variables are x; and x3.

‘The free variables are x5 and x4.

OB S
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The free variables x, and x4 can be given any values whatsoever. Then back substitution
finds the pivot variables x; and x3. (In Chapter 2 no variables were free. When A is
invertible, all variables are pivot variables.) The simplest choices for the free variables are
ones and zeros. Those choices give the special solutions.

Special solutions to xy + x5 + 2x3 + 3x4 = 0and 4x3 + 4x4 =0
o Setxp = 1 and x4 = 0. By back substitution x3 = 0. Then x; = —1.
e Set x, =0and x4 = 1. By back substitution x3 = —1. Then x; = —1.

These special solutions solve Ux = 0 and therefore Ax = 0. They are in the nullspace.
The good thing is that every solution is a combination of the special solutions.

X 1 n 0
2 0 X4 —1 (1)
_ 0 1

Please look again at that answer. It is the main goal of this section. The vector s =
(—1, 1,0, 0) is the special solution when x; = 1 and x4 = 0. The second special solution
has xo = 0 and x4 = 1. All solutions are linear combinations of s, and s,. The special
solutions are in the nullspace N (A), and their combinations fill out the whole nullspace.

The MATLAB code nullbasis computes these special solutions. They go into the columns
of a nullspace matrix N. The complete solution to Ax = 0 is a combination of those
columns. Once we have the special solutions, we have the whole nullspace.

There is a special solution for each free variable. If no variables are free—this means
there are n pivots—then the only solution to Ux = 0 and Ax = 0 is the trivial solution
x = 0. All variables are pivot variables. In that case the nullspaces of A and U contain
only the zero vector. With no free variables, and pivots in every column, the output from
nullbasis is an empty matrix. The nullspace with n pivots is Z.

Example 4 Find the nullspace of U = (1) g ; .
The second column of U has no pivot. So x is free. The special solution has x; = 1. Back
substitution into 9x3 = 0 gives x3 = 0. Then x; 4+ 5x2 = 0 or x; = —5. The solutions to
Ux = 0 are multiples of one special solution:
-5 The nullspace of U is a line in R>.
X = Xo 1 It contains multiples of the special solution s = (-5, 1,0).
0 One variable is free, and N = nullbasis (UU) has one column s.

In a minute elimination will get zeros above the pivots and ones in the pivots.
By continuing elimination on U, the 7 is removed and the pivot changes from 9 to 1.
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The final result will be the reduced row echelon form R:

1 5 7 1 50
U—[O 0 9] reducestoR:[O 0 1ilzrref(U).

This makes it even clearer that the special solution (column of N)is s = (—5,1,0).

Echelon Matrices

Forward elimination goes from A to U. It acts by row operations, including row exchanges.
It goes on to the next column when no pivot is available in the current column. The m by »
“staircase” U is an echelon matrix.

Here is a 4 by 7 echelon matrix with the three pivots p highlighted in boldface:

Question What are the column space and the nullspace for this matrix?

Answer The columns have four components so they lie in R*. (Not in R3!) The fourth
component of every column is zero. Every combination of the columns—every vector
in the column space—has fourth component zero. The column space C (U) consists of
all vectors of the form (b1, by, b3,0). For those vectors we can solve Ux = b by back
substitution. These vectors b are all possible combinations of the seven columns.

The nullspace N (U) is a subspace of R’. The solutions to Ux = 0 are all the combi-
nations of the four special solutions—one for each free variable:

1. Columns 3, 4, 5, 7 have no pivots. So the free variables are x3, x4, X5, X7.
2. Set one free variable to 1 and set the other free variables to zero.
3. Solve Ux = 0 for the pivot variables xy, x2, Xs.

4. This gives one of the four special solutions in the nullspace matrix N.

The nonzero rows of an echelon matrix go down in a staircase pattern. The pivots are
the first nonzero entries in those rows. There is a column of zeros below every pivot.

Counting the pivots leads to an extremely important theorem. Suppose A has more
columns than rows. With n > m there is at least one free variable. The system Ax = 0
has at least one special solution. This solution is not zero!
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A short wide matrix (n > m) always has nonzero vectors in its nullspace. There must be at
least n — m free variables, since the number of pivots cannot exceed m. (The matrix only
has m rows, and a row never has two pivots.) Of course a row might have no pivot—which
means an extra free variable. But here is the point: When there is a free variable, it can be
set to 1. Then the equation Ax = 0 has a nonzero solution.

To repeat: There are at most m pivots. With n > m, the system Ax = 0 has a
nonzero solution. Actually there are infinitely many solutions, since any multiple cx is
also a solution. The nullspace contains at least a line of solutions. With two free variabies,
there are two special solutions and the nullspace is even larger.

The nullspace is a subspace. Its “dimension” is the number of free variables. This
central idea—the dimension of a subspace—is defined and explained in this chapter.

The Reduced Row Echelon Matrix R

From an echelon matrix U we go one more step. Continue with a 3 by 4 example:

1 1 2 3
U=10 0 4 4
00 00

We can divide the second row by 4. Then both pivots equal 1. We can subtract 2 times this
new row [O 011 ] from the row above. The reduced row echelon matrix R has zeros
above the pivots as well as below:

Reduced row
echelon matrix

Pivot rows
contain I

R has 1’s as pivots. Zeros above pivots come from upward elimination.

Important If A is invertible, its reduced row echelon form is the identity matrix R = I.
This is the ultimate in row reduction. Of course the nullspace is then Z.
The zeros in R make it easy to find the special solutions (the same as before):

1. Set x, = 1and x4 = 0. Solve Rx = 0. Then x; = —1 and x3 = 0.
Those numbers —1 and'0 are sitting in column 2 of R (with plus signs).

2. Set x =0and x4 = 1. Solve Rx = 0. Then x; = —1 and x3 = —1.
Those numbers —1 and —1 are sitting in column 4 (with plus signs).

By reversing signs we can read off the special solutions directly from R. The nullspace
N (A) = N(U) = N(R) contains all combinations of the special solutions:

-1 -1
X =X (1) + x4 1= (complete solution of Ax = 0).
0 1

The next section of the book moves firmly from U to the row reduced form R. The
MATLAB command [ R, pivcol | = rref(A) produces R and also a list of the pivot columns.
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m REVIEW OF THE KEY IDEAS =

1. The nullspace N (A) is a subspace of R". It contains all solutions to Ax = 0.

2. Elimination produces an echelon matrix U, and then a row reduced R, with pivot
columns and free columns.

3. Every free column of U or R leads to a special solution. The free variable equals 1
and the other free variables equal 0. Back substitution solves Ax = 0.

4. The complete solution to Ax = 0 is a combination of the special solutions.

5. If n > m then A has at least one column without pivots, giving a special solution. So
there are nonzero vectors x in the nullspace of this rectangular A.

® WORKED EXAMPLES =

3.2 A Create a 3 by 4 matrix whose special solutions to Ax = 0 are s; and §5:

-3 -2
s 1 d . 0 pivot columns 1 and 3
1= 0 anc S2=1 ¢ free variables x, and x4
0 1

You could create the matrix A in row reduced form R. Then describe all possible matrices
A with the required nullspace N (A4) = all combinations of sy and s.

Solution  The reduced matrix R has pivots = 1 in columns 1 and 3. There is no third
pivot, so the third row of R is all zeros. The free columns 2 and 4 will be combinations of
the pivot columns:

1 3 0 2
R=]0 01 6 has Rs; =0 and Rs, =0.
0 0 0O

The entries 3,2, 6 in R are the negatives of —3, —2, —6 in the special solutions!

R is only one matrix (one possible A) with the required nullspace. We could do any
elementary operations on R—exchange rows, multiply a row by any ¢ # 0, subtract any
multiple of one row from another. R can be multiplied (on the left) by any invertible
matrix, without changing its nullspace.

Every 3 by 4 matrix has at least one special solution. These matrices have two.
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3.2B Find the special solutions and describe the complete solution to Ax = 0 for
0 0 0O 3 6
A1=[0000] A2=[12] As=[ 4 4]
Which are the pivot columns? Which are the free variables? What is R in each case?

Solution  A;x = 0 has four special solutions. They are the columns 51, 55, 53, §4 of the
4 by 4 identity matrix. The nullspace is all of R*. The complete solution to A;x = 0 is
any X = ¢85 + c252 + c353 + c454 in R*. There are no pivot columns; all variables are
free; the reduced R is the same zero matrix as 4;.

Azx = 0 has only one special solution s = (—2,1). The multiples x = cs give the
complete solution. The first column of A is its pivot column, and x5 is the free variable.
The row reduced matrices R, for A, and R; for A3 = [A; A ] have 1’s in the pivot:

36 12 1212
A2=[1 2]_’R2=[0 0] [AzAZ]_’RF[o 00 o]

Notice that R3 has only one pivot column (the first column). All the variables x5, x3, x4
are free. There are three special solutions to A3 x = 0 (and also R3 x = 0):

51=(-2,1,0,0) s,=(-1,0,1,0) s3=(-2,0,0,1) Complete x =c;5; + 252 +¢353.

With r pivots, A has n — r free variables. Ax = 0 has n — r special solutions.

Problem Set 3.2

Questions 1-4 and 5-8 are about the matrices in Problems 1 and 5.

1 Reduce these matrices to their ordinary echelon forms U':

1 22 46 2 4 2
@ A=[1 2 3 6 9 ®) B=1|0 4 4].
00 1 2 3 0 8 8

Which are the free variables and which are the pivot variables?

2 For the matrices in Problem 1, find a special solution for each free variable. (Set the
free variable to 1. Set the other free variables to zero.)

3 By combining the special solutions in Problem 2, describe every solution to Ax = 0
and Bx = 0. The nullspace contains only x = 0 when there are no

4 By further row operations on each U in Problem 1, find the reduced echelon form R.
True or false: The nullspace of R equals the nullspace of U.

5 By row operations reduce each matrix to its echelon form U. Write down a 2 by 2
lower triangular L such that B = LU.
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-1 3 5 -1 3 5
(a)A‘_‘[-—z 6 10] ®) B=[—2 6 7]'

6 For the same A4 and B, find the special solutions to Ax =0 and Bx =0. For an m by
n matrix, the number of pivot variables plus the number of free variables is

7 In Problem 5, describe the nullspaces of A and B in two ways. Give the equations
for the plane or the line, and give all vectors x that satisfy those equations as combi-
nations of the special solutions.

8 Reduce the echelon forms U in Problem 5 to R. For each R draw a box around the
identity matrix that is in the pivot rows and pivot columns.

Questions 9-17 are about free variables and pivot variables.
9 True or false (with reason if true or example to show it is false):

(a) A square matrix has no free variables.
(b) An invertible matrix has no free variables.
(¢) An m by n matrix has no more than n pivot variables.

(d) Anm by n matrix has no more than m pivot variables.
10  Construct 3 by 3 matrices A to satisfy these requirements (if possible):

(a) A hasno zeroentriesbut U = 1.
(b) A has no zero entries but R = 1,
(c) A hasno zero entriesbut R = U.
d A=U =2R.
11 Put as many 1’s as possible in a 4 by 7 echelon matrix U whose pivot columns are
(@) 2,4,5
(b) 1,3,6,7
(c) 4and6.

12  Put as many 1’s as possible in a 4 by 8 reduced echelon matrix R so that the free
columns are

(@ 2,4,5,6
() 1,3,6,7,8.

13  Suppose column 4 of a 3 by 5 matrix is all zero. Then x4 is certainly a
variable. The special solution for this variable is the vector x =

14  Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). Then
is a free variable. Find the special solution for this variable.



142

15

16

17

18

19

20
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Suppose an m by » matrix has r pivots. The number of special solutions is
The nullspace contains only x = 0 when r = . The column space is all of
R" when r =

The nullspace of a 5 by 5 matrix contains only x = 0 when the matrix has
pivots. The column space is R®> when there are pivots. Explain why.

The equation x — 3y — z = 0 determines a plane in R>. What is the matrix 4 in
this equation? Which are the free variables? The special solutions are (3, 1, 0) and

(Recommended) The plane x —3y —z = 12 is parallel to the plane x —3y—z = O in
Problem 17. One particular point on this plane is (12, 0, 0). All points on the plane
have the form (fill in the first components)

N =

={0|+y|1|+z]0
0 0 1

Prove that U and 4 = LU have the same nullspace when L is invertible:

IfUx =0then LUx =0. If LUx =0, howdoyouknow Ux = 0?

Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free)? What is the
special solution? What is the nullspace?

Questions 21-28 ask for matrices (if possible) with specific properties.

21

22
23

24

25

26
27
28

Construct a matrix whose nullspace consists of all combinations of (2,2, 1,0) and
(3,1,0,1).

Construct a matrix whose nullspace consists of all multiples of (4, 3,2, 1).

Construct a matrix whose column space contains (1, 1,5) and (0, 3, 1) and whose
nullspace contains (1, 1, 2).

Construct a matrix whose column space contains (I, 1,0) and (0, 1, 1) and whose
nullspace contains (1,0, 1) and (0,0, 1).

Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is the
line of multiples of (1,1, 1, 1).

Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.
Why does no 3 by 3 matrix have a nullspace that equals its column space?

If AB = 0 then the column space of B is contained in the of A. Give an
example of A and B.
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29

30

31

32

33

34

35

36

37

The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure
to be . What R is virtually certain if the random A4 is 4 by 3?

Show by example that these three statements are generally false:

(a) A and AT have the same nullspace.
(b) A and AT have the same free variables.
(c) If R is the reduced form rref(A4) then RT is rref(AT).

If the nullspace of A consists of all multiples of x = (2, 1,0, 1), how many pivots
appear in U? What is R?

If the special solutions to Rx = 0 are in the columns of these N, go backward to
find the nonzero rows of the reduced matrices R:

2 3 0
N=]1 0 and N=1]0 and N = (empty 3 by 1).
0 1 1

(a) What are the five 2 by 2 reduced echelon matrices R whose entries are all 0’s
and 1’s?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1’s? Are all eight of
them reduced echelon matrices R?

Explain why A and —A always have the same reduced echelon form R.
Challenge Problems

If A 1s 4 by 4 and invertible, describe all vectors in the nullspace of the 4 by 8 matrix
B =[A A].

How is the nullspace N (C) related to the spaces N(A) and N(B),if C = [ g ] ?

Kirchhoff’s Law says that current in = current out at every node. This network has
SiX currents i, ..., e (the arrows show the positive direction, each y; could be
positive or negative). Find the four equations Ay = 0 for Kirchhoff’s Law at the
four nodes. Find three special solutions in the nullspace of A.

J1
1 > »2

Ya s

3 y2
Y6t
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3.3 The Rank and the Row Reduced Form

The numbers m and n give the size of a matrix—but not necessarily the true size of a linear
system. An equation like 0 = 0 should not count. If there are two identical rows in A,
the second one disappears in elimination. Also if row 3 is a combination of rows 1 and 2,
then row 3 will become all zeros in the triangular U and the reduced echelon form R.
We don’t want to count rows of zeros. The true size of A is given by its rank:

That definition is computational, and I would like to say more about the rank r.
The matrix will eventually be reduced to r nonzero rows. Start with a 3 by 4 example.

Four columns .
! A=|[1 2 2 5 |. (D
How many pivots? 1 3 2 6

The first two columns are (1,1, 1) and (1,2, 3), going in different directions. Those will
be pivot columns. The third column (2, 2, 2) is a multiple of the first. We won’t see a pivot
in that third column. The fourth column (4, 5, 6) is a combination of the first three (their
sum). That column will also be without a pivot.

The fourth column is actwally a combination 3(1,1,1) + (1,2, 3) of the two pivot
columns. Every “free column” is a combination of earlier pivot columns. 1t is the
special solutions s that tell us those combinations of pivot columns:

Column 3 = 2 (column 1) s1=(-2,0,1,0) As; =0
Column 4 = 3 (column 1) + 1 (column 2) s =(-3,-1,0,1) As, =0
With nice numbers we can see the right combinations. The systematic way to find s is by

elimination! This will change the columns but it won’t change the combinations, because
Ax = 0is equivalent to Ux = 0 and also Rx = 0. I will go from A4 to U and then to R:

1 1 2 4 1 1 2 4 11 2 4
122 5(—-(0101|—=-f{0101/|=U
1 3 2 6 0 2 0 2 0 0 0O

U already shows the two pivots in the pivot columns. The rank of A (and U) is 2.
Continuing to R we see the combinations of pivot columns that produce the free columns:

1 1.2 4 Subtract 1023
U= 01 0 1 — R=|01 0 1 2)
00 0 0 row 1 —row 2 00 0 0

Clearly the (3, 1,0) column equals 3 (column 1) + column 2. Moving all columns to the
“left side” will reverse signs to —3 and —1, which go in the special solution s:

' =3 (column 1) — (column 2) + (column 4) =0 s = (=3,—1,0,1).
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Rank One

Matrices of rank one have only one pivot. When elimination produces zero in the first
column, it produces zero in all the columns. Every row is a multiple of the pivot row. At
the same time, every column is a multiple of the pivot column!

1 3 10 1 3 10
Rank one matrix A=12 6 20 —> R=]10 0 O
3 9 30 0O 0 O

The column space of a rank one matrix is “one-dimensional”. Here all columns are on the
line through # = (1,2, 3). The columns of A are # and 3u and 10u. Put those numbers
intotherow vT =[ 1 3 10 ] and you have the special rank one form 4 = uv":

‘ 1 3 10 1 |1 3 10]
A = column times row = uv" 2 6 20 | =] 2 3
3 9 30 3

With rank one, the solutions to Ax = 0 are easy to understand. That equation u(vTx) = 0
leads us to v'x = 0. All vectors x in the nullspace must be orthogonal to v in the
row space. This is the geometry: row space = line, nullspace = perpendicular plane.
Now describe the special solutions with numbers:

Pivot row [1 3 10] -3 -10
Pivot variable x; s1=1 1 s2=1 0
Free variables x, and x; 0 1

The nullspace contains all combinations of §; and s,. This produces the plane x + 3y +
10z = 0, perpendicular to the row (1, 3, 10). Nullspace (plane) perpendicular to row
space (line).

Example 1 When all rows are multiples of one pivot row, the rank is r = 1:

Our second definition of rank will be at a higher level. It deals with entire rows and
entire columns—yvectors and not just numbers. The matrices A and U and R have r inde-
pendent rows (the pivot rows). They also have r independent columns (the pivot columns).
Section 3.5 says what it means for rows or columns to be independent.

A third definition of rank, at the top level of linear algebra, will deal with spaces of
vectors. The rank r is the “dimension” of the column space. 1t is also the dimension of
the row space. The great thing is that r also reveals the dimension of the nullspace.
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The Pivot Columns

The pivot columns of R have 1’s in the pivots and 0’s everywhere else. The r pivot columns
taken together contain an r by r identity matrix /. It sits above m — r rows of zeros. The
numbers of the pivot columns are in the list pivcol.

The pivot columns of A are probably not obvious from A itself. But their column
numbers are given by the same list pivcol. The r columns of A that eventually have pivots
(in U and R) are the pivot columns of A. This example has pivcol = (1, 3):

Pivot 1302 -1 13 0 2 -1
Columns =0 0 1 4 —3|yieldsR=|0 0 1 4 -3
1316 —4 0: 0 00 0

The column spaces of A and R are different! All columns of this R end with zeros.
Elimination subtracts rows 1 and 2 of A from row 3, to produce that zero row in R:

1 0 0 1 0 0
ﬁA—;;Z'I}lR E=|0 10| ad E'=|010
- -1 —-1 1 1 1 1

The 7 pivot columns of A are also the first r columns of E~!. The r by r identity matrix
inside R just picks out the first 7 columns of E~! as columns of A = E~1R.

One more fact about pivot columns. Their definition has been purely computational,
based on R. Here is a direct mathematical description of the pivot columns of A4:

A pivot column of R (with 1 in the pivot row) cannot be a combination of earlier
columns (with 0’s in that row). The same column of A can’t be a combination of earlier
columns, because Ax = 0 exactly when Rx = 0.

Now we look at the special solution x from each free column.

[N

The Special Solutions

Each special solution to Ax = 0 and Rx = 0 has one free variable equal to 1. The other
free variables in x are all zero. The solutions come directly from the echelon form R:

o
Free columns 1 3 0 2 -1 X2 0
Free variables Rx=10 01 4 -3 x3 | =10
in boldface O 0 0 0 0 X4 0

Set the first free variable to x, = 1 with x4 = x5 = 0. The equations give the pivot
variables x; = —3 and x3 = 0. The special solutionis s; = (—3,1,0,0,0).
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The next special solution has x4 = 1. The other free variables are x, = x5 = 0. The
solution is s, = (—2,0,—4,1,0). Notice —2 and —4 in R, with plus signs.

The third special solution has xs = 1. With x, = 0 and x4 = 0 we find 53 =
(1,0,3,0,1). The numbers x; = 1 and x3 = 3 are in column 5 of R, again with opposite
signs. This is a general rule as we soon verify. The nullspace matrix N contains the three
special solutions in its columns, so AN = zero matrix:

Nullspace matrix
n—r=5-2
3 special solutions

The linear combinations of these three columns give all vectors in the nullspace. This is
the complete solution to Ax = 0 (and Rx = 0). Where R had the identity matrix (2 by 2)
in its pivot columns, N has the identity matrix (3 by 3) in its free rows.

There is a special solution for every free variable. Since r columns have pivots, that
leaves n — r free variables. This is the key to Ax = 0 and the nullspace:

When we introduce the idea of “independent” vectors, we will show that the special
solutions are independent. You can see in N that no column is a combination of the other
columns. The beautiful thing is that the count is exactly right:

Ax = 0 has r independent equations so it has n — r independent solutions.

The special solutions are easy for Rx = 0. Suppose that the first » columns are the
pivot columns. Then the reduced row echelon form looks like

r pivot rows
. M —T Zero rows

C))

r pivot variables
n — r free variables

Check RN = 0. The first block row of RN is (I times —F) + (F times [) = zero.
The columns of N solve Rx = 0. When the free part of Rx = 0 moves to the right side,
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the left side just holds the identity matrix:

Rx =0 means I[ ‘ Vanables] (6)

In each special solution, the free variables are a column of /. Then the pivot variables are
a column of —F. Those special solutions give the nullspace matrix N.

The idea is still true if the pivot columns are mixed in with the free columns. Then /
and F are mixed together. You can still see —F in the solutions. Here is an example where
I = [1] comes first and F = [2 3] comes last.

Example 2 The special solutions of Rx = x; + 2x5 + 3x3 = 0 are the columns of N:
_F -2 =3
R=[1 2 3] N:[ ]: 1 0
1
0 1
The rank is one. There are n —r = 3 — 1 special solutions (—2, 1,0) and (—3,0, 1).

Final Note How can I write confidently about R not knowing which steps MATLAB will
take? A could be reduced to R in different ways. Very likely you and Mathematica and
Maple would do the elimination differently. The key is that the final R is always the same.
The original A completely determines the I and F and zero rows in R.

For proof I will determine the pivot columns (which locate I) and free columns (which
contain F) in an “algebra way”—two rules that have nothing to do with any particular
elimination steps. Here are those rules:

1. The pivot columns are not combinations of earlier columns of A.

2. The free columns are combinations of earlier columns (F tells the combinations).

A small example with rank one will show two E’s that produce the correct £EA = R:

A= [% %] ‘reducesto R = [(1) (1)] = rref(4) and no other R.

You could multiply row 1 of A by %, and subtract row 1 from row 2:

. 1 0f{1/2 O | 1/2 Of _
Two steps give £ [_1 1”:0 1]_[_1/2 1]_E.

Or you could exchange rows in A, and then subtract 2 times row 1 from row 2:

. . 1 0f{0 1] _ 0 1} _
Two different steps give E [_2 1] [1 O:| = [1 _2] = Fuew-

Multiplication gives EA = R and also EpwA = R. Different E’s but the same R.
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Codes for Row Reduction

There is no way that rref will ever come close in importance to lu. The Teaching Code elim
for this book uses rref. Of course rref(R) would give R again!

MATLAB: [R, pivcol] = rref(A) Teaching Code: [E,R] = elim(A4)

The extra output pivcol gives the numbers of the pivot columns., They are the same in A
and R. The extra output E in the Teaching Code is an m by m elimination matrix that
puts the original A (whatever it was) into its row reduced form R:

EA=R.

The square matrix E is the product of elementary matrices E;; and also P;; and D1,
P;; exchanges rows. The diagonal D~! divides rows by their pivots to produce 1’s.

If we want E, we can apply row reduction to the matrix [ A I | with # + m columns.
All the elementary matrices that multiply A (to produce R) will also multiply  (to produce
E’). The whole augmented matrix is being multiplied by £

E[41] = [RE] Q)
This is exactly what “Gauss-Jordan” did in Chapter 2 to compute A~!. When A is
square and invertible, its reduced row echelon form is I. Then EA = R becomes

EA = I. In this invertible case, E is A~!. This chapter is going further, to every 4.

® REVIEW OF THE KEY IDEAS =

1. The rank r of A is the number of pivots (which are 1’s in R = rref(A)).

2. The r pivot columns of A and R are in the same list pivcol.

3. Those r pivot columns are not combinations of earlier columns.

4. The n — r free columns are combinations of earlier columns (pivot columns).

3. Those combinations (using —F taken from R) give the n — r special solutions to
Ax = 0and Rx = 0. They are the n — r columns of the nullspace matrix N.

" WORKED EXAMPLES =

3.3A Find the reduced echelon form of A. What is the rank? What is the special solution
to Ax = 0?

1 -1 0 ©
Second differences —1,2, -1 y=| "1t 2 -1 0
Notice 41, = Ay =1 - 0 -1 2 -1

0 0 -1 1
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Solution Addrow 1 to row 2. Then add row 2 to row 3. Then add row 3 to row 4:

1 -1 0 0
. . 0 1 —1 0
First differences 1, —1 U= 0 0 1 —1
0 0 0 0
Now add row 3 to row 2. Then add row 2 to row 1:
1 0 0 -1
01 0 -1 I F
Reduced form R = 00 1 -1 |= [ 0 0 ]
0 00 0
The rank is » = 3. There is one free variable (n — r = 1). The special solution is

s = (1,1,1,1). Every row adds to 0. Notice —F = (1, 1, 1) in the pivot variables of s.

3.3B  Factor these rank one matrices into A = uv!' = column times row:
3

1 2
A=|2 4 6 ,4=[“ Z] (find d from a, b, ¢ if a # 0)
3 6 9 ¢

Split this rank two matrix into ulfvf + uzvg = (3 by 2) times (2 by 4) using R:

11 0 2 110 1 0 0 1
A=[1 2 0 3 |=]l1 20 01 0 1 |=ER
2 30 5 2 3 1 0000

Solution  For the 3 by 3 matrix A, all rows are multiples of vT = [1 2 3]. All columns
are multiples of the column # = (1,2, 3). This symmetric matrix has # = v and A4 is uu’.
Every rank one symmetric matrix will have this form or else —uu?.

If the 2 by 2 matrix [.2 & | has rank one, it must be singular. In Chapter 5, its determinant
is ad — bc = 0. In this chapter, row 2 is ¢/a times row 1.

R A R A R

The 3 by 4 matrix of rank two is a sum of two matrices of rank one. All columns of A
are combinations of the pivot columns 1 and 2. All rows are combinations of the nonzero
rows of R. The pivot columns are #; and u; and those rows are v] and vi. Then 4 is

u1vT + upvl, multiplying r columns of E~! times r rows of R:
1 2 plying

Columns 1 1 0 2 1 [T 0 0 1] 1 [0 1 0 1]
times 1 2 0 3 |= 1 +1 2
rows 2 3 0 5 3



3.3. The Rank and the Row Reduced Form 151

3.3 C Find the row reduced form R and the rank r of A and B (those depend on c).
Which are the pivot columns of A? What are the special solutions and the matrix N?

1 2 1
Find special solutions A=|3 6 3| and B= [ € ¢ ]
4 8 ¢ ¢ ¢

Solution  The matrix A has rank »r = 2 except if ¢ = 4. The pivots are in columns 1
and 3. The second variable x5, is free. Notice the form of R:

c#4 R= c=4 R=

OO
o O N
O = O
O QO
S O N
OO ==

Two pivots leave one free variable x,. But when ¢ = 4, the only pivot is in column 1
(rank one). The second and third variables are free, producing two special solutions:

-2

¢ # 4 Special solution with x, = 1 goesinto N = 1
0

-2 -1
¢ = 4 Another special solution goes into N = 1 0
0 1

The 2 by 2 matrix [2 2] has rank r = 1 except if ¢ = 0, when the rank is zero!

c#0 R=[(1) (1)] and Nzl:—i] Nullspace = line

The matrix has no pivot columns if ¢ = 0. Then both variables are free:

_ 100 10 _ p2
c=0 R_[O"O] and N—[O 1] Nullspace = R”.

Problem Set 3.3

1 Which of these rules gives a correct definition of the rank of A?

(a) The number of nonzero rows in R.

(b) The number of columns minus the total number of rows.
(¢) The number of columns minus the number of free columns.
(d) The number of 1’s in the matrix R.
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2 Find the reduced row echelon forms R and the rank of these matrices:

(a) The 3 by 4 matrix with all entries equal to 4.
(b) The 3 by 4 matrix witha;; =i + j — 1.
(¢) The 3 by 4 matrix with a;; = (—1)”.

3 Find the reduced R for each of these (block) matrices:

000
A=|0 0 3| B=[4 4] c:[ﬁ ‘g]
2 46

4 Suppose all the pivot variables come last instead of first. Describe all four blocks in
the reduced echelon form (the block B should be r by r):

A B
k=2 2].
What is the nullspace matrix N containing the special solutions?

5 (Silly problem) Describe all 2 by 3 matrices Ay and A,, with row echelon forms
Ry and R,, such that R; + R, is the row echelon form of A; + A,. Is is true that
R; = A, and Ry = A5 in this case? Does Ry — R; equal rref(4; — 45)?

6 If A has r pivot columns, how do you know that AT has r pivot columns? Give a 3
by 3 example with different column numbers in pivcol for A and A7,

7 What are the special solutions to Rx = 0 and y*R = 0 for these R?

1 0 2 3 01 2
R=]01 4 5 R=10 0 O
0 0 0 O 0 00
Problems 8-11 are about matrices of rank » = 1.
8 Fill out these matrices so that they have rank 1:
1 2 4 9 a b
A=12 and B=]1 and M = [c :| .
4 . 2 6 =3

9 If A is an m by n matrix with r = 1, its columns are multiples of one column and its
rows are multiples of one row. The column space is a in R”. The nullspace
isa in R”. The nullspace matrix N has shape

10 Choose vectors # and v so that A = uvT = column times row:

3 6 6
A=|1 2 2 and Az[_% _% _g _;]
4 8 8

A = uv? is the natural form for every matrix that has rank r = 1.

11 If A is a rank one matrix, the second row of U is . Do an example.
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Problems 12-14 are about r by r invertible matrices inside A.

12  If A has rank r, then it has an r by r submatrix S that is invertible. Remove
m — r rows and n — r columns to find an invertible submatrix S inside A, B, and C.
You could keep the pivot rows and pivot columns:

0
1 2 3 1 2 3
[32 s3] s

13  Suppose P contains only the r pivot columns of an m by n matrix. Explain why this
m by r submatrix P has rank r.

O O -

0
0
1

14  Transpose P in problem 13. Then find the r pivot columns of PT. Transposing back,
this produces an r by r invertible submatrix S inside P and A:

For A = find P (3 by 2) and then the invertible S (2 by 2).

NN =
- RN
~3 N W

Problems 15-20 show that rank(A4 B) is not greater than rank(4) or rank(B).

15  Find the ranks of AB and AC (rank one matrix times rank one matrix):

1 2 2 1 4 1 b
A‘[z 4] and B“[3 1.5 6] and C=[c bc]'

16  The rank one matrix u#v! times the rank one matrix wz? is uzT times the number
. This product zvTwz" also has rank one unless = 0.

17 (a) Suppose column j of B is a combination of previous columns of B. Show that
column j of AB is the same combination of previous columns of AB. Then
A B cannot have new pivot columns, so rank(4 B) < rank(B).

(b) Find 4; and A3 so that rank(4, B) = 1 and rank(4,B) = Ofor B = [11].

18  Problem 17 proved that rank(AB) < rank(B). Then the same reasoning gives
rank(BTAT) < rank(AT). How do you deduce that rank(4 B) < rank A?

19  (Important) Suppose A and B are n by n matrices, and AB = I. Prove from
rank(A B) < rank(A4) that the rank of A is n. So A4 is invertible and B must be its
two-sided inverse (Section 2.5). Therefore BA = I (which is not so obvious!).

20 IfAis2by3and Bis3by2and AB = I, show from its rank that BA # I. Give an
example of A and B with AB = I. For m < n, aright inverse is not a left inverse.

21 Suppose A and B have the same reduced row echelon form R.

(a) Show that A and B have the same nullspace and the same row space.
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(b) Weknow £14A = Rand E; B = R. So A equals an matrix times B.
Express A and then B as the sum of two rank one matrices:
1 10
rank=2  A=[1 1 4 B=|:§ g]
1 1 8
Answer the same questions as in Worked Example 3.3 C for
1 1 2 2
A=|2 2 4 4 and B=[lgc 23(:]'
I ¢ 2 2

What is the nullspace matrix N (containing the special solutions) for 4, B, C?

I 1

A=[I I] and B=[O 0

] and C=[I I I}

Neat fact Every m by n matrix of rank r reduces fo (m by r) times (r by n):
‘ 1 1 of A ﬁrst r rews of R) = (CQL)

Write the 3 by 4 matrix A in equatlon (1) at the start of this section as the product of
the 3 by 2 matrix from the pivot columns and the 2 by 4 matrix from R.

Challenge Problems

Suppose A is an m by n matrix of rank r. Its reduced echelon form is R. Describe
exactly the matrix Z (its shape and all its entries) that comes from fransposing the
reduced row echelon form of R’ (prime means transpose):

R = rmref(4) and Z = (rref(R))'.

Suppose R is m by n of rank r, with pivot columns first:

l F
R= [O F ] .
(a) What are the shapes of those four blocks?
(b) Find a right-inverse B with RB = 1 ifr = m
(c) Find a left-inverse C with CR =1 if r = n.
(d) What is the reduced row echelon form of RT (with shapes)?

(e) What is the reduced row echelon form of RTR (with shapes)?

Prove that RTR has the same nullspace as R. Later we show that AT 4 always has
the same nullspace as A (a valuable fact).

Suppose you allow elementary column operations on A as well as elementary row
operations (which get to R). What is the “row-and-column reduced form” for an m
by n matrix of rank r?
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3.4 The Complete Solution to Ax = b

The last sections totally solved Ax = 0. Elimination converted the problem to Rx = 0.
The free variables were given special values (one and zero). Then the pivot variables were
found by back substitution. We paid no attention to the right side b because it started and
ended as zero. The solution x was in the nullspace of A.

Now b is not zero. Row operations on the left side must act also on the right side.
Ax = b is reduced to a simpler system Rx = d. One way to organize that is to add b as
an extra column of the matrix. 1 will “augment” A with the right side (b1, b,,b3) =
(1,6,7) and reduce the bigger matrix [ A 5 |:

X1

1302x 1 has the 1 3 0 2 1
0 0 1 4| *1=|6| oaugmented |0 0 1 4 6|=[4 5]
1316)(3 7 matrix 1 316 7

4

The augmented matrix is just [ A b ]. When we apply the usual elimination steps to A,
we also apply them to b. That keeps all the equations correct.

In this example we subtract row 1 from row 3 and then subtract row 2 from row 3. This
produces a complete row of zeros in R, and it changes & to a new right side d = (1, 6,0):

X1

130 277 17 hasthe [1 3 6 2 1] .
0 0 1 4 x2 =|6| augmented |0 0 1 4 6|=[R d].
0O 0 00 x3 0 | matrix 1.0 0 0 0

That very last zero is crucial. The third equation has become 0 = 0 and the equations can
be solved. In the original matrix A, the first row plus the second row equals the third row.
If the equations are consistent, this must be true on the right side of the equations also!
The all-important property on the right side was 1 4+ 6 = 7.

Here are the same augmented matrices for a general b = (by, b,, b3):

1 3 0 2 by 1 3 0 2 b
[A b]=|0 0 1 4 b |— |0 0 1 4 by =[R d]
1 3 1 6 bs 0 0 0 0 bs—by—b,

Now we get 0 = 0 in the third equation provided b3 — by — b, = 0. This is by + by = bs.

One Particular Solution

For an easy solution x, choose the free variables to be x, = x4 = 0. Then the two nonzero
equations give the two pivot variables x; = 1 and x3 = 6. Our particular solution to
Ax = b (and also Rx = d)is x, = (1,0, 6,0). This particular solution is my favorite:
free variables = zero, pivot variables from d . The method always works.
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For a solution to exist, zero rows in R must also be zero in d. Since I is in the pivot
rows and pivot columns of R, the pivot variables in x particular come from d:

1
1302 0 1 Pivot variables 1, 6
Rxp=10 01 4 6 |~ 6 Free variables 0,0
00 00 0 0 ’

Notice how we choose the free variables (as zero) and solve for the pivot variables. After
the row reduction to R, those steps are quick. When the free variables are zero, the pivot
variables for x, are already seen already seen in the right side vector d.

X particular

X nullspace

That particular solution is (1,0,6,0). The two special (nullspace) solutions to
Rx = 0 come from the two free columns of R, by reversing signs of 3,2, and 4.
Please notice how I write the complete solution x, + x, to Ax = b:

L oo -

Question  Suppose A is a square invertible matrix, m = n = r. What are x, and x,,?

Answer  The particular solution is the one and only solution A~'h. There are no
special solutions or free variables. R = [ has no zero rows. The only vector in the
nullspace is x, = 0. The complete solutionis x = x, + x, = A7'5 + 0.

This was the situation in Chapter 2. We didn’t mention the nullspace in that chapter.
N (A) contained only the zero vector. Reduction goes from [A &]to [I A~1b]. The
original Ax = b is reduced all the way to x = A~1b which is d. This is a special case
here, but square invertible matrices are the ones we see most often in practice. So they got
their own chapter at the start of the book.

For small examples we can reduce [4 &] to [R d]. For a large matrix,
MATLAB does it better. One particular solution (not necessarily ours) is 4\ from back-
slash. Here is an example with full column rank. Both columns have pivots.

Example 1  Find the condition on (b1, b3, b3) for Ax = b to be solvable, if

1 1 by
A= | 2land b=|by
-2 =3 bs

This condition puts b in the column space of A. Find the complete x = x, + x,.
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Solution Use the augmented matrix, with its extra column b. Subtract row 1 of [A b]
from row 2, and add 2 times row 1 to row 3 to reach [ R d ]:

1 1 b 1 I b 1 0 2b;—by
1 2 bg — | 0 1 bz - bl —- [0 1 bz - bl
-2 =3 b; 0 -1 b3+ 2bh 0 0 bs+by+b,

The last equation is 0 = 0 provided b3 + b; + b = 0. This is the condition to put b
in the column space; then Ax = b will be solvable. The rows of A add to the zero row.
So for consistency (these are equations!) the entries of b must also add to zero.

This example has no free variables since n —r = 2 — 2. Therefore no special solutions.
The nullspace solution is x, = 0. The particular solution to Ax = b and Rx = d is atthe
top of the augmented column d:

Only solution X=Xp+X,= [2bbz1:bb12] + [8] .

If b3 + by + by is not zero, there is no solution to Ax = b (x, doesn’t exist).

This example is typical of an extremely important case: A has full column rank.
Every column has a pivot. The rank is r = n. The matrix is tall and thin (m > n).
Row reduction puts / at the top, when A is reduced to R with rank »n:

(1)

0

Full columnrank R = [I] = [" by n identity matnx]
m — n rows of zeros

There are no free columns or free variables. The nullspace matrix is empty!
We will collect together the different ways of recognizing this type of matrix.

‘Bvery mtrix A with full column rank (- = ) hasall these properties:

1. Allcolumnsof A are pivotcolumns, -

In the essential language of the next section, this A has independent columns.
Ax = 0 only happens when x = 0. In Chapter 4 we will add one more fact to the list:
The square matrix AT A is invertible when the rank is n.

In this case the nullspace of A (and R) has shrunk to the zero vector. The solution to
Ax = b is unique (if it exists). There will be m — n (here 3 — 2) zero rows in R. So there
are m — n conditions in order to have 0 = 0 in those rows, and b in the column space.
With full column rank, Ax = b has one solution or no solution (rn > n is overdetermined).
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The Complete Solution

The other extreme case is full row rank. Now Ax = b has one or infinitely many solutions.
In this case A must be short and wide (m < n). A matrix has full row rank if r = m
(“independent rows™). Every row has a pivot, and here is an example.

Example 2 There are n = 3 unknowns but only m = 2 equations:

x 4+ y 4+ z =

Full row rank X + 2y — z

(rank r =m = 2)

i

3
4
These are two planes in xyz space. The planes are not parallel so they intersect in a line.
This line of solutions is exactly what elimination will find. The particular solution will be

one point on the line. Adding the nullspace vectors x,, will move us along the line. Then
X = xp + x, gives the whole line of solutions.

We find x, and x, by elimination on [A b ] Subtract row 1 from row 2 and then
subtract row 2 from row 1:

11 1 3 11 13 10 32
[1 2 -1 4]_’[0 [ =2 1]*[01—2 1]_[Rd]'

The particular solution has free variable x3 = 0. The special solution has x; = 1:

X particular comes directly from d on the right side: x, = (2,1,0)
X special comes from the third column (free column) of R: s = (-3,2,1)

It is wise to check that x,, and s satisfy the original equations Ax, = b and As = 0:

241
2+2

3 —342+1
4 —34+4-1

0
0

The nullspace solution x,, is any multiple of s. It moves along the line of solutions, starting
at X particular- Please notice again how to write the answer:

\

1l +xs) 2f.¢
£y

This line is drawn in Figure 3.3. Any point on the line could have been chosen as the
particular solution; we chose the point with x3 = 0.

The particular solution is nof multiplied by an arbitrary constant! The special solution
18, and you understand why.

Now we summarize this short wide case of full row rank. If m < n the equation
Ax = b is underdetermined (many solutions).
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Line of solutions to Ax = b

Line of solutions to Ax =0

Figure 3.3: Complete solution = one particular solution + al/ nullspace solutions.

full row rank (r = m)

In this case with m pivots, the rows are “linearly independent”. So the columns of AT
are linearly independent. We are more than ready for the definition of linear independence,
as soon as we summarize the four possibilities—which depend on the rank. Notice how r,
m, n are the critical numbers.

The four possibilities for linear equations depend on the rank r:

r=m and r=n Square and invertible Ax = b has ] solution
r=m and r<n Short and wide Ax = b has oo solutions
r<m and r=an Tall and thin Ax = b hasOor 1 solution
r<m and r<n . Notfull rank Ax = b has 0 or oo solutions

The reduced R will fall in the same category as the matrix A. In case the pivot columns
happen to come first, we can display these four possibilities for R. For Rx = d (and the
original Ax = b) to be solvable, d must end in m — r zeros.

Four types R=|[I] [I F] [(I)] [IO g]
Their ranks r=m=n Fr=m<n r=p<m Fr<m,r<n

Cases 1 and 2 have full row rank r = m. Cases 1 and 3 have full column rank r = n.
Case 4 is the most general in theory and it is the least common in practice.

Note My classes used to stop at U before reaching R. Instead of reading the complete
solution directly from Rx = d, we found it by back substitution from Ux = ¢. This
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reduction to U and back substitution for x is slightly faster. Now we prefer the complete
reduction: a single “1” in each pivot column. Everything is so clear in R (and the computer
should do the hard work anyway) that we reduce all the way.

® REVIEW OF THE KEY IDEAS =

The rank r is the number of pivots. The matrix R has m — r zero rows,

Ax = b is solvable if and only if the last m — r equations reduce to 0 = 0.
One particular solution x, has all free variables equal to zero.

The pivot variables are determined after the free variables are chosen.

Full column rank r = n means no free variables: one solution or none.

A U o

Full row rank r = m means one solution if m = n or infinitely many if m < n.

® WORKED EXAMPLES =

3.4 A This question connects elimination (pivot columns and back substitution) to
column space-nullspace-rank-solvability (the full picture). A has rank 2:

X1+ 2x3 4+ 3x3+ Sx4=20b
Ax =b is 2x1 +4xy +8x3 + 12x4 = by
3x1 4+ 6x9 + Tx3 + 13x4 = b3

Reduce [A b]to[U c],sothat Ax = b becomes a triangular system Ux = c.
Find the condition on b1, b,, b3 for Ax = b to have a solution.

Describe the column space of A. Which plane in R3?

Describe the nullspace of A. Which special solutions in R* ?

Find a particular solution to Ax = (0, 6, —6) and then the complete solution.
Reduce [U c]to[R d]: Special solutions from R, particular solution from d.

AN I e

Solution

1. The multipliers in elimination are 2 and 3 and —1. They take [A b]into [U ¢].
123 5b; 1 2
24812b, (>0 O
36713 b3 0 0

1 2 3 5(b
2 b2 - 2b1 -0 0 2 2 bz - 2b1
2 0 0 0 Ofbs+by—5b;
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2. The last equation shows the solvability condition b3 + b, — 5b; = 0. Then 0 = 0.

3. First description: The column space is the plane containing all combinations of the
pivot columns (1,2,3) and (3,8,7). The pivots are in columns 1 and 3. Second
description: The column space contains all vectors with b3 + b, — 5b; = 0. That
makes Ax = b solvable, so b is in the column space. All columns of A pass this test
bs + by — 5by = 0. This is the equation for the plane in the first description

4. The special solutions have free variables x = 1,x4 = Oand then x, = 0,x4 = 1:

-2 -2

Special solutions to Ax =0 1 0
§1 = §9 =

Back substitution in Ux = 0 0 —1

0 1

The nullspace N (4) in R* contains all x, = ¢181 + ¢292.
5. One particular solution x, has free variables = zero. Back substitute in Ux = ¢:

-9

Particular solution to Ax, = b = (0,6, —6) 0
X, =

This vector b satisfies bz + b, — 5b; =0 d 3

0

The complete solution to Ax = (0,6, —6)is x = x + all x,.
6. In the reduced form R, the third column changes from (3,2,0) in U to (0, 1,0).
The right side ¢ = (0, 6, 0) becomes d = (-9, 3,0) showing —9 and 3 in x:

1 2350 1 20 2 -9
[U e]=| 002 2 6 |—[Rd]=|001 1 3
00000 0000 O

3.4 B If you have this information about the solutions to Ax = b for a specific b, what
does that tell you about the shape of A (and A itself)? And possibly about b.

] +c[4]
J+eld]

1. There is exactly one solution.

2. All solutions to Ax = b have the form x = |
3. There are no solutions.
4
5

Ot =D

. All solutions to Ax = b have the form x = [
. There are infinitely many solutions.

Solution In case 1, with exactly one solution, A must have full column rank r = n.
The nullspace of A contains only the zero vector. Necessarily m > n.

In case 2, A must have n = 2 columns (and m is arbitrary). With [}] in the nullspace
of A, column 2 is the negative of column 1. Also A 5 0: the rank is 1. Withx = [f] asa
solution, & = 2(column 1) + (column 2). My choice for x, would be (1, 0).

In case 3 we only know that b is not in the column space of A. The rank of A must be
less than m. I guess we know b # 0, otherwise x = 0 would be a solution.
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In case 4, A must have n = 3 columns. With (1,0, 1) in the nullspace of A, column 3
is the negative of column 1. Column 2 must not be a multiple of column 1, or the nullspace
would contain another special solution. So the rank of 4 is 3 — 1 = 2. Necessarily 4 has
m > 2 rows. The right side b is column 1 + column 2.

In case 5§ with infinitely many solutions, the nullspace must contain nonzero vectors.
The rank r must be less than # (not full column rank), and b must be in the column space
of A. We don’t know if every b is in the column space, so we don’t know if r = m.

3.4C  Find the complete solution x = x p + xp by forward elimination on [4 b]:

X1

1 21 0 . 4

2 4 4 8 x2=.2

4 8 6 8 3 10
X4

Find numbers y, y2, ¥3 so that y; (row 1) + y, (row 2) + y3 (row 3) = zero row. Check
that b = (4,2, 10) satisfies the condition y1b; + y2b5 + y3bs = 0. Why is this the
condition for the equations to be solvable and b to be in the column space?

Solution  Forward elimination on [4 &] produces a zero row in [U ¢]. The third equa-
tion becomes 0 = 0 and the equations are consistent (and solvable):

1 210 4 1 21 0 4 1 210 4
2 4 48 2 |~—>|002 8 —6|—]| 002 8 -6
4 8 6 8 10 0 0 2 8 -6 0 0 0O 0

Columns 1 and 3 contain pivots. The variables x, and x4 are free. If we set those to zero
we can solve (back substitution) for the particular solution x p = (7,0,—3,0). We see 7
and —3 again if elimination continues all the way to [R d]:

1 210 4 1 210 4 1 2 0 -4 7
0028 -6|—{0O014 -3 |—]001 4 -3
0 000 O 0000 0 0 00 0 0

For the nullspace part xp with b = 0, set the free variables x3, x4 to 1,0 and also 0, 1:
Special solutions s1=(-2,1,0,0) and s, =(4,0,—-4,1)

Then the complete solution to Ax = & (and Rx = d)is Xcomplete = X p + €151 + C252.
The rows of A produced the zero row from 2(row 1) + (row 2) — (row 3) = (0,0, 0, 0).
Thus y = (2, 1, —1). The same combination for b = (4, 2, 10) gives 2(4)+(2)—(10) = 0.
If a combination of the rows (on the left side) gives the zero row, then the same combi-
nation must give zero on the right side. Of course! Otherwise no solution.

Later we will say this again in different words: If every column of A4 is perpendicular
to y = (2, 1,—1), then any combination b of those columns must also be perpendicular to
y. Otherwise b is not in the column space and Ax = b is not solvable.

And again: If y is in the nullspace of AT then y must be perpendicular to every b in
the column space of A. Just looking ahead...



3.4. The Complete Solution to Ax = b 163

Problem Set 3.4

1 (Recommended) Execute the six steps of Worked Example 3.4 A to describe the
column space and nullspace of A and the complete solution to Ax = b:

2 4 6 4 by 4
A=|2 517 6 b=| b | =] 3
2 3 5 2 bs 5

2 Carry out the same six steps for this matrix A with rank one. You will find two
conditions on b1, by, b3 for Ax = b to be solvable. Together these two conditions

put b into the space (two planes give a line):
1 2 1 3 by 10
a=|3 | 213 1639 b=| b | =] 30
2 4 2 6 b3 20

Questions 3-15 are about the solution of Ax = b. Follow the steps in the text to x,
and x,. Use the augmented matrix with last column b.

3 Write the complete solution as x, plus any multiple of s in the nullspace:

x+3y+3z=1
2x+6y+9z=5
—-x =3y +3z=5.

4 Find the complete solution (also called the general solution) to

1 31 27|°% 1
264832):3
00 2 4]} ]

5 Under what condition on by, by, b3 is this system solvable? Include b as a fourth
column in elimination. Find all solutions when that condition holds:

x+2y—2z=b
2x + 5y —4z =b,
4x 4+ 9y — 8z = bs.

6 What conditions on by, b», b3, by make each system solvable? Find x in that case:

1 2 by 1 2 3 by
2 41|[x ba 2 4 6| | b
25 I:x2i|— b 2 5 7|7 | bs
39 ba 3 9 12|L" ba
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Show by elimination that (b;, b,, b3) is in the column space if b3 — 2b, + 45, = 0.

1 3 1
A=|3 8 2
2 40

What combination of the rows of A gives the zero row?

Which vectors (b, b2, b3) are in the column space of A? Which combinations of the
rows of A give zero?

1 2 1 111
@A=|2 6 3 ) A=|1 2 4
02 5 2 4 8

(a) The Worked Example 3.4 A reached [U c¢| from [A b ). Put the multipliers
into L and verify that LU equals 4 and Lc equals b.

(b) Combine the pivot columns of A with the numbers —9 and 3 in the particular
solution x,. What is that linear combination and why?

Construct a 2 by 3 system Ax = b with particular solution x, = (2,4,0) and
homogeneous solution x, = any multiple of (1, 1,1).

Why can’t a 1 by-3 system have x, = (2, 4,0) and x, = any multiple of (1, 1, 1)?

(a) If Ax = b has two solutions x; and x5, find two solutions to Ax = 0.
(b) Then find another solution to Ax = 0 and another solution to Ax = .

Explain why these are all false:

(a) The complete solution is any linear combination of x, and x;,.
(b) A system Ax = b has at most one particular solution.

(c) The solution x, with all free variables zero is the shortest solution (minimum
length ||x||). Find a 2 by 2 counterexample.

(d) IfAis invertible there is no solution x, in the nullspace.
Suppose column 5 of U has no pivot. Then x5 is a variable. The zero vector

(is) (is not) the only solutionto Ax = 0. If Ax = b has a solution, then it has
solutions.

Suppose row 3 of U has no pivot. Then that row is . The equation Ux = ¢
is only solvable provided . The equation Ax = b (is) (is not) (might not be)
solvable.

Questions 16-20 are about matrices of “full rank” r =morr = n.

16

The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in every
of U and R. The solution to Ax = b (always exists) (is unique). The column
space of A is . An example is A =
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17

18

19

20

21

22

23

24

25

The largest possible rank of a 6 by 4 matrix is . Then there is a pivot in
every of U and R. The solution to Ax = b (always exists) (is unique). The
nullspace of A is . Anexampleis A =

Find by elimination the rank of 4 and also the rank of AT:

1 4 0 1 0 1
A= 2 11 5 and A= |1 1 2| (rank dependson g).
-1 2 10 1 1 g¢g

Find the rank of A and also of ATA and also of AA™:
2 0
A=[} (l)fjl and A=1[]1 1
1 2

Reduce A to its echelon form U. Then find a triangular L so that 4 = LU.

1 01 0
A=[3400) e an|22 03
0 6 5 4

Find the complete solution in the form x, + x, to these full rank systems:

x+y+z=4

=4 b
@ x+y+z ® s

If Ax = b has infinitely many solutions, why is it impossible for Ax = B (new
right side) to have only one solution? Could Ax = B have no solution?

Choose the number g so that (if possible) the ranks are (a) 1, (b) 2, (¢) 3:

6 4 2
A=|-3 -2 —-1| and B=[3 ; 3].
9 6 ¢ q 2 ¢

Give examples of matrices A for which the number of solutions to Ax = b is

(a) Oor 1, depending on b
(b) o0, regardless of b

(¢) 0 or co, depending on b
(d) 1, regardless of b.

Write down all known relations between r and m and n if Ax = b has

(a) no solution for some b
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(b) infinitely many solutions for every b
(c) exactly one solution for some b, no solution for other b
(d) exactly one solution for every b.

Questions 26-33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrix R.

26

27
28

29

30

31

Continue elimination from U to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeros above those pivots to reach R:

2 4 4 2 4 4
U=10 3 6 and U={0 3 6
0 0 0 0 0 5

Suppose U is square with n pivots (an invertible matrix). Explain why R = I.

Apply Gauss-Jordan elimination to Ux = 0 and Ux = c¢. Reach Rx = 0 and
Rx =d:

[wol=lg g 4 o] m (vel=[y 035

Solve Rx = 0 to find x,, (its free variable is x, = 1). Solve Rx = d to find x,, (its
free variable is x, = 0).

Apply Gauss-Jordan elimination to reduce to Rx = 0and Rx = d:
3 0 6 0 3069
U 0|=10 0 2 0 and U ¢c|={0 0 2 4
0 0 0 0 0 0 0 5

Solve Ux = 0 or Rx = 0 to find x, (free variable = 1). What are the solutions to
Rx =d?

Reduce to Ux = ¢ (Gaussian elimination) and then Rx = d (Gauss-Jordan):

X1

: 1 0 2 3 2
Ax=1320§2=5=b.
2 0 4 9 3 10

X4

Find a particular solution x, and all homogeneous solutions x,.

Find matrices 4 and B with the given property or explain why you can’t:
- -
(@) Theonly solutionof Ax = | 2 |isx = [ 1 |
3 i

(b) The only solution of Bx =

0
1

1
:lisx= 2
3
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32

33

34

35

36

Find the LU factorization of A and the complete solution to Ax = b:

1 3 1 1] 1
11 2 3 |3 {0
A= 2 4 6 and b = 6 andthen b = 0
1 1 5 5 0

0

The complete solution to Ax = [ ; ] isx = 1 ] +c [ (1) ] Find A.

Challenge Problems

Suppose you know that the 3 by 4 matrix A has the vector s = (2, 3, 1, 0) as the only
special solution to Ax = 0.

(a) What is the rank of A and the complete solution to Ax = 0?

(b) What is the exact row reduced echelon form R of 47

(¢) How do you know that Ax = b can be solved for all b ?
Suppose K is the 9 by 9 second difference matrix (2’s on the diagonal, —1’s on
the diagonal above and also below). Solve the equation Kx = b = (10,...,10).

If you graph xq, ..., xo above the points 1, . .., 9 on the x axis, I think the nine points
fall on a parabola.

Suppose Ax = b and Cx = b have the same (complete) solutions for every b.
Isit true that A = C?
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3.5 Independence, Basis and Dimension

This important section is about the true size of a subspace. There are n columns in an
m by n matrix. But the true “dimension” of the column space is not necessarily n. The
dimension is measured by counting independent columns—and we have to say what that
means. We will see that the true dimension of the column space is the rank r.

The idea of independence applies to any vectors vq,. .., v, in any vector space. Most
of this section concentrates on the subspaces that we know and use—especially the col-
umn space and the nullspace of A. In the last part we also study “vectors” that are not
column vectors. They can be matrices and functions; they can be linearly independent (or
dependent). First come the key examples using column vectors.

The goal is to understand a basis: independent vectors that “span the space”.

Every vector in the space is a unique combination of the basis vectors.

We are at the heart of our subject, and we cannot go on without a basis. The four essential
ideas in this section (with first hints at their meaning) are:

Linear Independence

Our first definition of independence is not so conventional, but you are ready for it.

The columns are independent when the nullspace N (4) contains only the zero vector.
Let me illustrate linear independence (and dependence) with three vectors in R?:

1. If three vectors are not in the same plane, they are independent. No combination of
v1, V2, v3 in Figure 3.4 gives zero except Ovy + Ovy + Ovs.

2. If three vectors w1, w2, w3 are in the same plane, they are dependent.

This idea of independence applies to 7 vectors in 12-dimensional space. If they are the
columns of A, and independent, the nullspace only contains x = 0. None of the vectors is
a combination of the other six vectors.

Now we choose different words to express the same idea. The following definition of
independence will apply to any sequence of vectors in any vector space. When the vectors
are the columns of 4, the two definitions say exactly the same thing.
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U
In a plane
Notin 0
a plane V2 /\ > W3
V3 w1 _ wa

Figure 3.4: Independent vectors vy, v2, v3. Only Ov; + Ov, + Ovs gives the vector 0.
Dependent vectors wj, w,, w3. The combination w; — w, + w3 is (0,0, 0).

Linear independence
X101 + Xv3 + -+ x,v, = 0 only happens when all x’s are zero

S Ry

If a combination gives 0, when the x’s are not all zero, the vectors are dependent.

Correct language: “The sequence of vectors is linearly independent.” Accepitable
shortcut: “The vectors are independent.” Unacceptable: “The matrix is independent.”

A sequence of vectors is either dependent or independent. They can be combined to
give the zero vector (with nonzero x’s) or they can’t. So the key question is: Which com-
binations of the vectors give zero? We begin with some small examples in R?:

(a) The vectors (1,0) and (0, 1) are independent.

(b) The vectors (1, 0) and (1,0.00001) are independent.

(c) The vectors (1, 1) and (—1, —1) are dependent.

(d) The vectors (1,1) and (O‘, 0) are dependent because of the zero vector.

(e) In R?, any three vectors (a, b) and (c, d) and (e, f) are dependent.

Geometrically, (1, 1) and (—1, —1) are on a line through the origin. They are dependent.
To use the definition, find numbers x; and x, so that x;(1,1) + x2(—1,—-1) = (0,0).
This is the same as solving Ax = 0:

1 —I{lxi| _1O _ _
[1 _1][x2:|—[0] forx; = 1and x; = 1.

The columns are dependent exactly when there is a nonzero vector in the nullspace.
If one of the v’s is the zero vector, independence has no chance. Why not?
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Three vectors in R? cannot be independent! One way to see this: the matrix 4 with
those three columns must have a free variable and then a special solution to Ax = 0.
Another way: If the first two vectors are independent, some combination will produce the
third vector. See the second highlight below.

Now move to three vectors in R3. If one of them is a multiple of another one, these
vectors are dependent. But the complete test involves all three vectors at once. We put
them in a matrix and try to solve Ax = 0.

Example 1 The columns of this A are dependent. Ax = 0 has a nonzero solution:

1 0 3 -3 1 0 3 0
Ax =12 1 5 1 is =3|2t+1{1]|4+1}5|=|0
1 0 3 1 1 0 3 0

The rank is only r = 2. Independent columns produce full column rankr = n = 3.
In that matrix the rows are also dependent. Row 1 minus row 3 is the zero row. For a
square matrix, we will show that dependent columns imply dependent rows.

Question How to find that solution to Ax = 0? The systematic way is elimination.

1 0 3 1 0 3
A=12 1 5| reducestoR=]0 1 -1
1 0 3 0O 0 0

The solution x = (—3, 1, 1) was exactly the special solution. It shows how the free column
(column 3) is a combination of the pivot columns. That kills independence!

One case is of special importance because it is clear from the start. Suppose seven
columns have five components each (m = 5 is less than n = 7). Then the columns must
be dependent. Any seven vectors from R® are dependent. The rank of 4 cannot be larger
than 5. There cannot be more than five pivots in five rows. Ax = Qhas atleast 7 —5 = 2
free variables, so it has nonzero solutions—which means that the columns are dependent.

This type of matrix has more columns than rows—it is short and wide. The columns are
certainly dependent if n > m, because Ax = 0 has a nonzero solution.

The columns might be dependent or might be independent if # < m. Elimination will
reveal the r pivot columns. It is those r pivot columns that are independent.

Note Another way to describe linear dependence is this: “One vector is a combination
of the other vectors.” That sounds clear. Why don’t we say this from the start? Our
definition was longer: “Some combination gives the zero vector, other than the trivial
combination with every x = (0.” We must rule out the easy way to get the zero vector.
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That trivial combination of zeros gives every author a headache. If one vector is a combi-
nation of the others, that vector has coefficient x = 1.

The point is, our definition doesn’t pick out one particular vector as guilty. All columns
of A are treated the same. We look at Ax = 0, and it has a nonzero solution or it hasn’t. In
the end that is better than asking if the last column (or the first, or a column in the middle)
is a combination of the others.

Vectors that Span a Subspace

The first subspace in this book was the column space. Starting with columns vy,...,v,,
the subspace was filled out by including all combinations xjv; + -+ 4+ X, vy. The column
space consists of all combinations Ax of the columns. We now introduce the single word
“span” to describe this: The column space is spanned by the columns.

The columns of a matrix span its column space. They might be dependent.

1

Example2 v, = [O

and v, = [?] span the full two-dimensional space R
1

Example3 v; = [(1) , Vg = [(1)], V3 = [3] also span the full space R2.

Exampled w; = B] and w, = [—lji only span a line in R%. So does w; by itself.

Think of two vectors coming out from (0, 0, 0) in 3-dimensional space. Generally they
span a plane. Your mind fills in that plane by taking linear combinations. Mathematically
you know other possibilities: two vectors could span a line, three vectors could span all of
R3, or only a plane. It is even possible that three vectors span only a line, or ten vectors
span only a plane. They are cértainly not independent!

The columns span the column space. Here is a new subspace—which is spanned by the
rows. The combinations of the rows produce the “row space”.

DEFINITI.N The ‘j “ lw;.sjpace of a matnx is. the subspace of R" spanned by the rowsy = i
The row space of Ais C (AT) It is the column space of AT, e

The rows of an m by n matrix have n components. They are vectors in R"—or they
would be if they were written as column vectors. There is a quick way to fix that: Transpose
the matrix. Instead of the rows of A, look at the columns of AT. Same numbers, but now
in the column space C (AT). This row space of A is a subspace of R".
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Example 5 Describe the column space and the row space of A.

1 4

A=1{2 7 ::1ndAT=|:£11 3 g}.Herem=3andn=2.
3 5

The column space of 4 is the plane in R? spanned by the two columns of A. The row space
of A is spanned by the three rows of A (which are columns of AT). This row space is all
of R2, Remember: The rows are in R” spanning the row space. The columns are in R”
spanning the column space. Same numbers, different vectors, different spaces.

A Basis for a Vector Space

Two vectors can’t span all of R3, even if they are independent. Four vectors can’t be
independent, even if they span R?®. We want enough independent vectors to span the
space (and not more). A “basis” is just right.

DEFINITION baszs for a vcctor space isa sequen ex of vectors w1th two propert,

The baszs vectors are lmearly mdependent and they span the space

This combination of properties is fundamental to linear algebra. Every vector v in the space
is a combination of the basis vectors, because they span the space. More than that, the com-
bination that produces v is unique, because the basis vectors vy, ..., v, are independent:

There is one and only one way to write v as a combination of the basis vectors.

Reason: Suppose v = a1v; +---+a,v, andalsov = byv; +---+b,v,. By subtraction
(ay —by)vy + -+ (an — by) vy, is the zero vector. From the independence of the v’s, each
a; —b; = 0. Hence a; ='b;, and there are not two ways to produce v.

Example 6 The columns of [ = [ (1) (1)] produce the “standard basis” for R2.

The basis vectors i = [ (1)] and j = [?] are independent. They span RZ.

Everybody thinks of this basis first. The vector i goes across and j goes straight up. The
columns of the 3 by 3 identity matrix are the standard basis 7, j, k. The columns of the n
by n identity matrix give the “standard basis” for R".

Now we find many other bases (infinitely many). The basis is not unique!
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Example 7  (Important) The columns of every invertible n by n matrix give a basis for R":

Invertible matrix 1 00 Singular matrix I 0 1
Independentcolumns A=|1 1 O Dependentcolumns B=|1 1 2
Column space is R3 1 1 1| Columnspace# R? 1 1 2

The only solution to Ax = 0is x = A~10 = 0. The columns are independent. They span
the whole space R”—because every vector b is a combination of the columns. Ax = b can
always be solved by x = A71h. Do you see how everything comes together for invertible
matrices? Here it is in one sentence:

, . baszs for R" exactly when they are the columns of a

;,_has mﬁmtely many dlfferent bases L

When the columns are dependent, we keep only the pivot columns—the first two columns
of B above, with its two pivots. They are independent and they span the column space.

The pzvot columni ,of A are a, bas:s for tts column;s V ce_, The plvot rows of A are a bas1s
for its TOW space: So are the prOt rows of 1ts echelon, orm: R | '

Example 8 This matrix is not invertible. Its columns are not a basis for anything!

One pivot column |2 4 1 2
One pivot row (r = 1) 4= [3 6] reduces to R = [O O]'

Column 1 of A4 is the pivot column. That column alone is a basis for its column space.
The second column of A would be a different basis. So would any nonzero multiple of that
column, There is no shortage of bases. One definite choice is the pivot columns.

Notice that the pivot column (1, 0) of this R ends in zero. That column is a basis for
the column space of R, but it doesn’t belong to the column space of A. The column spaces
of A and R are different. Their bases are different. (Their dimensions are the same.)

The row space of 4 is the same as the row space of R. It contains (2, 4) and (1, 2) and
all other multiples of those vectors. As always, there are infinitely many bases to choose
from. One natural choice is to pick the nonzero rows of R (rows with a pivot). So this
matrix A with rank one has only one vector in the basis:

Basis for the column space: [g] . Basis for the row space: [ :12] .

The next chapter will come back to these bases for the column space and row space. We
are happy first with examples where the situation is clear (and the idea of a basis is still
new). The next example is larger but still clear.

Example 9 Find bases for the column and row spaces of this rank two matrix:
1 2 0 3

R=]10 0 1 4

0 0 00
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Columns 1 and 3 are the pivot columns. They are a basis for the column space (of R!).
The vectors in that column space all have the form b = (x, y,0). The column space of
R is the “xy plane” inside the full 3-dimensional xyz space. That plane is not R?,itisa
subspace of R3. Columns 2 and 3 are also a basis for the same column space. Which pairs
of columns of R are not a basis for its column space?

The row space of R is a subspace of R*. The simplest basis for that row space is the
two nonzero rows of R. The third row (the zero vector) is in the row space too. But it is
not in a basis for the row space. The basis vectors must be independent.

First answer Make them the rows of A, and eliminate to find the nonzero rows of R.
Second answer Put the five vectors into the columns of 4. Eliminate to find the pivot
columns (of A not R). The program colbasis uses the column numbers from pivcol.

Could another basis have more vectors, or fewer? This is a crucial question with a good
answer: No. All bases for a vector space contain the same number of vectors.

The number of vectors, in any and every basis, is the “dimension” of the space.

Dimension of a Vector Space

We have to prove what was just stated. There are many choices for the basis vectors, but
the number of basis vectors doesn’t change.

Proof Suppose that there are more w’s than v’s. From n > m we want to reach a con-
tradiction. The v’s are a basis, so w; must be a combination of the v’s. If w; equals
ai1vy + -+ + am vy, this is the first column of a matrix multiplication VA:

Each wisa an Q1in

combination W= |w; wy ... w, | =|v1 ... vp : : = VA.
9

of the v’s ami Amn

We don’t know each a;;, but we know the shape of A4 (it is m by n). The second vector
w-, is also a combination of the v’s. The coefficients in that combination fill the second
column of A. The key is that 4 has a row for every v and a column for every w. A is a
short wide matrix, since we assumed n > m. So Ax = 0 has a nonzero solution.

Ax = 0 gives VAx = 0 which is Wx = 0. A combination of the w’s gives zero! Then
the w’s could not be a basis—our assumption n > m is not possible for two bases.

If m > n we exchange the v’s and w’s and repeat the same steps. The only way to
avoid a contradiction is to have m = n. This completes the proof that m = n.

The number of basis vectors depends on the space—not on a particular basis. The
number is the same for every basis, and it counts the “degrees of freedom” in the space.
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The dimension of the space R” is n. We now introduce the important word dimension
for other vector spaces too.

+., The dimension of a space is the number of vectors in every basis.

This matches our intuition. The line through v = (1, 5, 2) has dimension one. It is a sub-
space with this one vector v in its basis. Perpendicular to that line is the plane
x 4+ 5y + 2z = 0. This plane has dimension 2. To prove it, we find a basis (-5, 1,0)
and (=2, 0, 1). The dimension is 2 because the basis contains two vectors.

The plane is the nullspace of the matrix A = [1 5 2], which has two free variables.
Our basis vectors (—5,1,0) and (—2,0, 1) are the “special solutions” to Ax = 0. The
next section shows that the n — r special solutions always give a basis for the nullspace.
C (A) has dimension r and the nullspace N (A4) has dimensionn — r.

Note about the language of linear algebra We never say “the rank of a space” or “the
dimension of a basis” or “the basis of a matrix”. Those terms have no meaning. It is the
dimension of the column space that equals the rank of the matrix.

Bases for Matrix Spaces and Function Spaces

The words “independence”and “basis” and “dimension” are not at all restricted to column
vectors. We can ask whether three matrices A1, A, A3 are independent. When they are in
the space of all 3 by 4 matrices, some combination might give the zero matrix. We can also
ask the dimension of the full 3 by 4 matrix space. (It is 12.)

In differential equations, 42y /dx? = y has a space of solutions. One basis is y = e*
and y = e *. Counting the basis functions gives the dimension 2 for the space of all
solutions. (The dimension is 2 because of the second derivative.)

Matrix spaces and function spaces may look a little strange after R”. But in some
way, you haven’t got the ideas of basis and dimension straight until you can apply them to
“vectors” other than column vectors.

Matrix spaces The vector space M contains all 2 by 2 matrices. Its dimension is 4.

One basis is A1,A2,A3,A4=[(1) g][g (1)][(1) 8][8 (1)]

Those matrices are linearly independent. We are not looking at their columns, but at the
whole matrix. Combinations of those four matrices can produce any matrix in M, so they
span the space:

Every A combines

the basis matrices

c141 + c2A2 + 343 + c4 Ay = [CI 62] =A
C3 C4

A is zero only if the ¢’s are all zero—this proves independence of A, 4;, A3, Aa.
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The three matrices A, A, A4 are a basis for a subspace—the upper triangular
matrices. Its dimension is 3. A; and A4 are a basis for the diagonal matrices. What is
a basis for the symmetric matrices? Keep A1 and A4, and throw in A, + As.

To push this further, think about the space of all # by # matrices. One possible basis
uses matrices that have only a single nonzero entry (that entry is 1). There are n? positions
for that 1, so there are n2 basis matrices:

The dimension of the whole n by » matrix space is n2.

The dimension of the subspace of upper triangular matrices is 2n% + Zn.
The dimension of the subspace of diagornal matrices is n.

The dimension of the subspace of symmetric matrices is %nz + %n (why 7).

Function spaces The equations d%y/dx? = 0 and d?y/dx? = —y and d2y/dx? = y
involve the second derivative. In calculus we solve to find the functions y(x):

y”" =0  issolved by any linear function y = c¢x + d
y" = —y issolved by any combination y = csinx + d cos x
y’" =1y  issolved by any combination y = ce* + de™*.

That solution space for y” = —y has two basis functions: sinx and cos x. The space
for y” = O has x and 1. It is the “nullspace” of the second derivative! The dimension is 2
in each case (these are second-order equations).

The solutions of y” = 2 don’t form a subspace—the right side b = 2 is not zero. A
particular solution is y(x) = x2. The complete solution is y(x) = x2 + cx + d. All
those functions satisfy y” = 2. Notice the particular solution plus any function c¢x + d
in the nullspace. A linear differential equation is like a linear matrix equation Ax = b.
But we solve 1t by calculus instead of linear algebra.

We end here with the space Z that contains only the zero vector. The dimension of this
space is zero. The empty set (containing no vectors) is a basis for Z. We can never allow
the zero vector into a basis, because then linear independence is lost.

= REVIEW OF THE KEY IDEAS =

1. The columns of A4 are independent if x = 0 is the only solution to Ax = 0.
2. The vectors vy, ..., v, span a space if their combinations fill that space.

3. A basis consists of linearly independent vectors that span the space. Every vector
in the space is a unique combination of the basis vectors.

4. All bases for a space have the same number of vectors. This number of vectors in a
basis is the dimension of the space.

5. The pivot columns are one basis for the column space. The dimension is r.
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= WORKED EXAMPLES =

3.5 A Start with the vectors v; = (1,2,0) and v, = (2,3,0). (a) Are they linearly
independent? (b) Are they a basis for any space? (c¢) What space V do they span?
(d) What is the dimension of V? (e) Which matrices 4 have V as their column space?
() Which matrices have V as their nullspace? (g) Describe all vectors v3 that complete
a basis v, vq, v3 for R3.

Solution
(a) v; and v, are independent—the only combination to give 0 is Ov; + Ov,.
(b) Yes, they are a basis for the space they span.
(c) That space V contains all vectors (x, y,0). It is the xy plane in R3.
(d) The dimension of V is 2 since the basis contains two vectors.

(e) This V is the column space of any 3 by n matrix A of rank 2, if every column is a
combination of v; and v,. In particular 4 could just have columns v; and v,.

(f) This V is the nullspace of any m by 3 matrix B of rank 1, if every row is a multiple
of (0,0, 1). In particular take B = [0 O 1]. Then Bv; = 0 and Bv; = 0.

(g) Any third vector v3 = (a, b, ¢) will complete a basis for R* provided ¢ # 0.

3.5 B  Start with three independent vectors w;, wo, w3. Take combinations of those
vectors to produce v, v2, v3. Write the combinations in matrix form as V = WM :

v =w; + w2 1 1 0
vy = Wy + 2w, + w3  whichis v v U3 = |w; wy w3 1 2 1
vy = wy + cws 01 ¢

What is the test on a matrix V to see if its columns are linearly independent? If ¢ # 1 show
that v, vy, v3 are linearly independent. If ¢ = 1 show that the v’s are linearly dependent.

Solution  The test on V for independence of its columns was in our first definition:
The nullspace of V must contain only the zero vector. Then x = (0,0,0) is the only
combination of the columns that gives V' x = zero vector.

If ¢ = 1 in our problem, we can see dependence in two ways. First, v; + v3 will be
the same as v,. (If you add w; + w, to w, + w3 you get wy + 2w, + w3 which is v,.)
In other words v; — v3 + v3 = 0—which says that the v’s are not independent.

The other way is to look at the nulispace of M. If ¢ = 1, the vectorx = (1,—1,1) isin
that nullspace, and M x = 0. Then certainly WM x = 0 which is the same as Vx = 0. So
the v’s are dependent. This specific x = (1,—1, 1) from the nullspace tells us again that
v — vy +v3 =0.
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Now suppose ¢ # 1. Then the matrix M is invertible. So if x is any nonzero vector we
know that M x is nonzero. Since the w’s are given as independent, we further know that
WM x is nonzero. Since V' = WM, this says that x is not in the nullspace of V. In other
words v, v,, v3 are independent.

The general rule is “independent v’s from independent w’s when M is invertible™.
And if these vectors are in R3, they are not only independent—they are a basis for R3.
“Basis of v’s from basis of w’s when the change of basis matrix M is invertible.”

3.5C (Important example) Suppose vy, ..., v, is a basis for R” and the n by » matrix

A is invertible. Show that Av,, ..., Av, is also a basis for R".
Solution In matrix language: Put the basis vectors vy, ..., v, in the columns of an
invertible(!) matrix V. Then Av,,..., Av, are the columns of AV. Since A is invertible,

sois AV and its columns give a basis.

In vector language: Suppose c;Avy + -+ + cpAv, = 0. This is Av = 0 with
v = v+ -+Cpv,. Multiply by A 1 toreachv = 0. By linear independence of the v’s,
all ¢; = 0. This shows that the Av’s are independent.

To show that the Av’s span R”, solve ¢; Avy + --- + ¢, Av,, = b which is the same as
c1v1 + -+ + c,vp, = A71b. Since the v’s are a basis, this must be solvable.

Problem Set 3.5

Questions 1-10 are about linear independence and linear dependence.

1 Show that vy, v,, v3 are independent but v, v,, v3, v4 are dependent:

1
1 v3=1]1 Vg =
0 1

v = Va2 =

o O
W

Solve c1vy + vy + c3v3 +c4v4 = 0 or Ax = 0. The v’s go in the columns of A.

2 (Recommended) Find the largest possible number of independent vectors among

1 1 1 0 0 0
vy = ~1 Vy = 0 U3y = 0 Vg = ! Vs = L Vg = 0
0 -1 0 -1 0 1
0 0 —1 0 —1 —1

3 Prove thatifa = 0ord = O or f = 0 (3 cases), the columns of U are dependent:

U=

lan i an BN

b
d
0

~ 0 0
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4 If a,d, f in Question 3 are all nonzero, show that the only solution to Ux = 0 is
x = 0. Then the upper triangular U has independent columns.

5 Decide the dependence or independence of

(a) the vectors (1,3,2) and (2,1,3) and (3,2, 1)
(b) the vectors (1,—3,2) and (2,1, -3) and (-3, 2, 1).

6 Choose three independent columns of U. Then make two other choices. Do the same
for A.

and A=

SO O
OO AW
SO NN
O oo -
OO
N VW
(oo B B e
N OO -

7 If w;, wy, w3 are independent vectors, show that the differences v; = w, — w3 and
v, = wy — w3 and v3 = w; — w; are dependent. Find a combination of the v’s that
gives zero. Which matrix Ain [v; v, v3] =[w; w, w3 ] A4 is singular?

8 If w,, w,, w3 are independent vectors, show that the sums v; = w, + w3 and
v, = w; + w3 and v3 = w; + w; are independent. (Write ¢,v1 +cov2 +c3v3 = 0
in terms of the w’s. Find and solve equations for the ¢’s, to show they are zero.)

9 Suppose v1, V2, U3, V4 are vectors in R3.

(a) These four vectors are dependent because

(b) The two vectors v; and v, will be dependent if

(c) The vectors v; and (0, 0, 0) are dependent because

10  Find two independent vectors on the plane x +2y —3z—¢ = 0in R*. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

Questions 11-15 are about the space spanned by a set of vectors. Take all linear com-
binations of the vectors. \

11 Describe the subspace of R> (is it a line or plane or R*?) spanned by

(a) the two vectors (1,1,—1) and (—1,—1,1)

(b) the three vectors (0, 1, 1) and (1, 1,0) and (0, 0, 0)
(¢) all vectors in R? with whole number components
(d) all vectors with positive components.

12  The vector b is in the subspace spanned by the columns of A when has a
solution. The vector ¢ is in the row space of A when has a solution.

True or false: If the zero vector is in the row space, the rows are dependent.
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13

14
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Find the dimensions of these 4 spaces. Which two of the spaces are the same? (a) col-
umn space of 4, (b) column space of U, (c) row space of 4, (d) row space of U:

I 1 O 1 1 0
A=1]1 3 1 and U=|0 2 1
3 1 -1 0 0 0

v + w and v — w are combinations of v and w. Write v and w as combinations of
v + w and v — w. The two pairs of vectors the same space. When are they a
basis for the same space?

Questions 15-25 are about the requirements for a basis.

15

16

17

18

19

20

21

If vq,...,v, are linearly independent, the space they span has dimension
These vectors are a for that space. If the vectors are the columns of an m by
n matrix, then m is than n. If m = n, that matrix is

Find a basis for each of these subspaces of R*:

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1,1,0,0) and (1,0, 1, 1).
(d) The column space and the nullspace of I (4by 4).

Find three different bases for the column space of U = [19191]. Then find two
different bases for the row space of U.

Suppose v1, V3, ..., Vg are six vectors in R,

(a) Those vectors (do)(do not)(might not) span R*.
(b) Those vectors (are)(are not)(might be) linearly independent.
(c) Any four of those vectors (are)(are not)(might be) a basis for R*.
The columns of 4 are n vectors from R™. If they are linearly independent, what is

the rank of A? If they span R™, what is the rank? If they are a basis for R”, what
then? Looking ahead: The rank r counts the number of columns.

Find a basis for the plane x—2y 43z = 0in R, Then find a basis for the intersection
of that plane with the xy plane. Then find a basis for all vectors perpendicular to the
plane.

Suppose the columns of a 5 by 5 matrix A are a basis for R®.

(a) The equation Ax = 0 has only the solution x = 0 because
(b) If b is in R® then Ax = b is solvable because the basis vectors R3.

Conclusion: A is invertible. Its rank is 5. Its rows are also a basis for R>.
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22  Suppose S is a 5-dimensional subspace of R®. True or false (example if false):

(a) Every basis for S can be extended to a basis for R® by adding one more vector.

(b) Every basis for RS can be reduced to a basis for S by removing one vector.

23 U comes from A by subtracting row 1 from row 3:

1 3
A=10 1
1 3

O - W
O - N

1
and U=1|0
0

Do = B

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nulispaces. Which spaces stay fixed in elimination?

24  True or false (give a good reason):

(a) If the columns of a matrix are dependent, so are the rows.
(b) The column space of a 2 by 2 matrix is the same as its row space.
(¢) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.

25 For which numbers ¢ and d do these matrices have rank 2?
2 5 0 5

2 and Bz[c d].
5 d c

1
A=10 0 ¢ 2
0 0 0 d
Questions 26-30 are about spaces where the “vectors” are matrices.
26 Find a basis (and the dimension) for each of these subspaces of 3 by 3 matrices:

(a) All diagonal matrices.
(b) All symmetric matrices (AT = A).

(¢) All skew-symmetric'matrices (AT = —A4).
27  Construct six linearly independent 3 by 3 echelon matrices Uy, ..., Us.

28 Find a basis for the space of all 2 by 3 matrices whose columns add to zero. Find a
basis for the subspace whose rows also add to zero.

29  What subspace of 3 by 3 matrices is spanned (take all combinations) by

(a) the invertible matrices?
(b) the rank one matrices?

(¢) the identity matrix?

30 Find a basis for the space of 2 by 3 matrices whose nullspace contains (2, 1, 1).
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Questions 31-35 are about spaces where the “vectors” are functions.

31 (a) Find all functions that satisfy % = 0.
(b) Choose a particular function that satisfies % =3,

(c) Find all functions that satisfy % = 3.

32  The cosine space F3 contains all combinations y(x) = A cos x+B cos 2x+C cos 3x.
Find a basis for the subspace with y(0) = 0.

33  Find a basis for the space of functions that satisfy
@ 2 -2y=0
b L -2=0.

34  Suppose y;(x), y2(x), ys(x) are three different functions of x. The vector space
they span could have dimension 1, 2, or 3. Give an example of y;, y», y3 to show
each possibility.

35 Find a basis for the space of polynomials p(x) of degree < 3. Find a basis for the
subspace with p(1) = 0.

36 Find a basis for the space S of vectors (a, b, c¢,d) witha + ¢ + d = 0 and also for
the space T witha + b = 0 and ¢ = 2d. What is the dimension of the intersection
SNT?

37 If AS = SA for the shift matrix S, show that A must have this special form:

a b c 010 010]|a b ¢ a b c

If |ld e f|]0 0 1|=]001||d e f|thend=|0 a b

g h i 0 0 0 000||g h i 0 0 a
“The subsp‘ace of matrices that commute with the shift S has dimension ¢

38  Which of the follo\wing are bases for R3?

(a) (1,2,0)and (0,1,-1)

(b) (1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)
© (1,2,2),(-1,2,1),(0,8,0)

@ (1,2,2),(-1,2,1),(0,8,6)

39  Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the 5 by 5
matrix [A b ] is invertible. Show that Ax = b is solvable when [A b ] is singular.

40 (a) Find a basis for all solutions to d*y/dx* = y(x).
(b) Find a particular solution to d*y/dx* = y(x) + 1. Find the complete solution.
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a1

42

43

44

45

46

Challenge Problems

Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices! Then show that those five matrices are linearly independent. (Assume a
combination gives ¢; P; + - -+ + ¢5 Ps = zero matrix, and check entries to prove c;
is zero.) The five permutations are a basis for the subspace of 3 by 3 matrices with
row and column sums all equal.

Choose x = (x1,x2,X3,Xx4) in R*. It has 24 rearrangements like (x2, X1, x3, X4)
and (x4, x3, X1, X2). Those 24 vectors, including x itself, span a subspace S. Find
specific vectors x so that the dimension of S is: (a) zero, (b) one, (c) three, (d) four.

Intersections and sums have dim(V) + dim(W) = dim(V N W) + dim(V + W).
Start with a basis u;, ..., u, for the intersection V N W. Extend with vy, ..., v;
to a basis for V, and separately with wy, ..., w; to a basis for W. Prove that the #’s,
v’s and w’s together are independent. The dimensions have (r + s) + (r +t) =
(r) + (r + s + 1) as desired.

Mike Artin suggested a neat higher-level proof of that dimension formula in Prob-
lem 43. From all inputs v in V and w in W, the “sum transformation” produces v+w.
Those outputs fill the space V+ W. The nullspace contains all pairs v = u, w = —u
for vectorsu in VAW. (Thenv+w = u—u = 0.) Sodim(V+ W) 4 dim(VN'W)
equals dim(V) 4+ dim(W) (input dimension from V and W) by the crucial formula

dimension of outputs + dimension of nullspace = dimension of inputs.

Problem For an m by n matrix of rank r, what are those 3 dimensions? Outputs =
column space. This question will be answered in Section 3.6, can you do it now?

Inside R", suppose dimension (V) + dimension (W) > n. Show that some nonzero
vector is in both V and W.

Suppose A is 10 by 10 and A% = 0 (zero matrix). This means that the column space
of 4 is contained in the . If A has rank r, those subspaces have dimension
r <10 —r. So the rank is r < 5.

(This problem was added to the second printing: If 42 = 0 it says thatr < n/2.)
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3.6 Dimensions of the Four Subspaces

The main theorem in this chapter connects rank and dimension. The rank of a matrix
is the number of pivots. The dimensior of a subspace is the number of vectors in a basis.
We count pivots or we count basis vectors. The rank of A reveals the dimensions of
all four fundamental subspaces. Here are the subspaces, including the new one.

Two subspaces come directly from A4, and the other two from AT:

In this book the column space and nullspace came first. We know C(A) and N (A) pretty
well. Now the other two subspaces come forward. The row space contains all combinations
of the rows. This is the column space of AT.

For the left nullspace we solve ATy = 0—that system is n by m. This is the nullspace
of AT. The vectors y go on the left side of A when the equation is writtenas y T4 = 0. The
matrices A and AT are usually different. So are their column spaces and their nullspaces.
But those spaces are connected in an absolutely beautiful way.

Part 1 of the Fundamental Theorem finds the dimensions of the four subspaces. One
fact stands out: The row space and column space have the same dimension r (the rank of
the matrix). The other important fact involves the two nullspaces:

N(A) and N (A") have dimensions n — r and m — r, to make up the full n and m.

Part 2 of the Fundamental Theorem will describe how the four subspaces fit together
(two in R” and two in R™). That completes the “right way” to understand every Ax = b.
Stay with it—you are doing real mathematics.

4

The Four Subspaces for R

Suppose A is reduced to its row echelon form R. For that special form, the four subspaces
are easy to identify. We will find a basis for each subspace and check its dimension. Then
we watch how the subspaces change (two of them don’t change!) as we look back at A.
The main point is that the four dimensions are the same for A and R.

As a specific 3 by 5 example, look at the four subspaces for the echelon matrix R:

m=3 1 35 07 pivot rows 1 and 2
n=>5 0 001 2
r=2 0 00 0O pivot columns 1 and 4

The rank of this matrix R is r = 2 (two pivots). Take the four subspaces in order.
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1. The row space of R has dimension 2, matching the rask.

Reason: The first two rows are a basis. The row space contains combinations of all three
rows, but the third row (the zero row) adds nothing new. So rows 1 and 2 span the row
space C (RT).

The pivot rows 1 and 2 are independent. That is obvious for this example, and it is
always true. If we look only at the pivot columns, we see the r by r identity matrix.
There is no way to combine its rows to give the zero row (except by the combination with
all coefficients zero). So the r pivot rows are a basis for the row space.

The dimension of the row space is the rank r. The nonzero rows of R form a basis.

0 has dimension ¥

Reason: The pivot columns 1 and 4 form a basis for C (R). They are independent because
they start with the r by r identity matrix. No combination of those pivot columns can give
the zero column (except the combination with all coefficients zero). And they also span the
column space. Every other (free) column is a combination of the pivot columns. Actually
the combinations we need are the three special solutions !

Column 2 is 3 (column 1).  The special solution is (—3, 1, 0, 0, 0).
Column 3 is 5 (column 1).  The special solution is (—5,0, 1,0,0,).
Column 5 is 7 (column 1) + 2 (column 4). That solutionis (—7,0,0,-2,1).

The pivot columns are independent, and they span, so they are a basis for C (R).

The dimension of the column space is the rank r. The pivot columns form a basis.

-3 -5 =7
1 0 0 Rx = 0 has the
so=1 0 53 = 1 ss=1| 0 complete solution
0 0 —2 X = X287 + X383 + X555
| 0] | 0] | 1]

There is a special solution for each free variable. With n variables and r pivot variables,
that leaves n — r free variables and special solutions. N (R) has dimensionn — r.
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The nullspace has dimension n — r. The special solutions form a basis.

The special solutions are independent, because they contain the identity matrix in rows 2, 3,
5. All solutions are combinations of special solutions, x = x25, + X383 + X555, because
this puts x2, x3 and x5 in the correct positions. Then the pivot variables x; and x4 are
totally determined by the equations Rx = 0.

Reason: The equation RTy = 0 looks for combinations of the columns of RT (the rows
of R) that produce zero. This equation RTy = 0or yTR = 07 is

)’1[1, 3a 51 0’ 7]

+y2[0, 0, 0, 1, 2]
Left nullspace +y[0. 0. 0. 0, 0] (1)
[0, 0, 0, 0, 0]

The solutions y;, y2, y3 are pretty clear. We need y; = 0 and y, = 0. The variable y; is
free (it can be anything). The nullspace of RT contains all vectors y = (0,0, y3). It is the
line of all multiples of the basis vector (0,0, 1).

In all cases R ends with m — r zero rows. Every combination of these m — r rows
gives zero. These are the only combinations of the rows of R that give zero, because the
pivot rows are linearly independent. The left nullspace of R contains all these solutions
y = (07"' 90’yr+1a"' ’ym) to RTy =0,

If A is m by n of rank r, its left nullspace has dimension m — r.

To produce a zero combination, y must start with r zeros. This leaves dimension m — r.

Why is this a “left nullspace”? The reason is that RTy = 0 can be transposed to
yTR = 0. Now yT is a row vector to the left of R. You see the y’s in equation (1)
multiplying the rows. This subspace came fourth, and some linear algebra books omit
it-—but that misses the beauty of the whole subject.

So far this is proved for echelon matrices R. Figure 3.5 shows the same for A.

The Four Subspaces for 4

We have a job still to do. The subspace dimensions for A are the same as for R.
The job is to explain why. A is now any matrix that reduces to R = rref(A4).

1 3 5 0 7
A reduces to R A= 0 0 0 1 2 Notice C (A4) # C(R) 2)
1 351 9
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C (A)
dim r

row space

column space
all ATy

all Ax

The big picture

left nullspace

nullspace ATy=0

Ax=0

N (A)
dimension n r

N (AT)
dimensionm r

Figure 3.5: The dimensions of the Four Fundamental Subspaces (for R and for A).

An elimination matrix takes 4 to R. The big picture (Figure 3.5) applies to both. The
invertible matrix E is the product of the elementary matrices that reduce A to R:

A to R and back EA=R and A=E"'R 3)

1 A has the same row space as R . Same dimension r and same basis.

Reason: Every row of A is a combination of the rows of R. Also every row of R is a
combination of the rows of A. Elimination changes rows, but not row spaces.

Since A has the same row space as R, we can choose the first » rows of R as a basis.
Or we could choose 7 suitable rows of the original A. They might not always be the first r
rows of A, because those could be dependent. The good r rows of A are the ones that end
up as pivot rows in R. :

2 The column space of A has dimension r. For every matrix this is essential:
The number of independent columns equals the number of independent rows.

Wrong reason: “A and R have the same column space.” This is false. The columns of
R often end in zeros. The columns of A don’t often end in zeros. The column spaces are
different, but their dimensions are the same—equal to 7.

Right reason: The same combinations of the columns are zero (or nonzero) for A and R.
Say that another way: Ax = 0 exactly when Rx = 0. The r pivot columns (of both) are
independent.

Conclusion The r pivot columns of A are a basis for its column space.



188 Chapter 3. Vector Spaces and Subspaces

3 A has the same nullspace as R. Same dimension » — r and same basis.

Reason: The elimination steps don’t change the solutions. The special solutions are a ba-
sis for this nullspace (as we always knew). There are n — r free variables, so the dimension
of the nullspace is n — r. Notice that 7 4+ (n — r) equals n:

4 The left nullspace of A (the nullspace of AT) has dimension m — r.

Reason: AT is just as good a matrix as 4. When we know the dimensions for every A,
we also know them for AT. Its column space was proved to have dimension 7. Since AT is
n by m, the “whole space” is now R™. The counting rule for A was r + (n —r) = n. The
counting rule for AT is r 4+ (m — r) = m. We now have all details of the main theorem:

. The column space and row space both have dimension r. ;.
i.» The nullspaces have dimensions n —r and m — r.

By concentrating on spaces of vectors, not on individual numbers or vectors, we get these
clean rules. You will soon take them for granted—eventually they begin to look obvious.
But if you write down an 11 by 17 matrix with 187 nonzero entries, I don’t think most
people would see why these facts are true:

dimension of C (A4) = dimension of C (AT) = rank of 4
dimension of C (A) + dimension of N (4) = 17.

Example1 A=[1 2 3] hasm=1 and »n =3 andrank r = 1.

Two key facts

The row space is a line in R3. The nullspace is the plane Ax = x; + 2x, + 3x3 = 0. This
plane has dimension 2 (which is 3 — 1). The dimensions addto 1 +2 = 3.

The columns of this 1 by 3 matrix are in R!! The column space is all of R!. The left

nullspace contains only the zero vector. The only solution to ATy = 0is y = 0, no other
multiple of [1 2 3] gives the zero row. Thus N (A7) is Z, the zero space with dimension
0 (which is m — r). In R™ the dimensions addto1 + 0 = 1.
1 2 3
2 4 6
The row space is the same line through (1,2, 3). The nullspace must be the same plane
X1 + 2x2 + 3x3 = 0. Their dimensions still add to 1 4+ 2 = 3.

All columns are multiples of the first column (1,2). Twice the first row minus the
second row is the zero row. Therefore A”y = 0 has the solution y = (2, —1). The column
space and left nullspace are perpendicular lines in R%. Dimensions 1 + 1 = 2.

Example 2 Az[ ] has m = 2 with n =3 andrank r = 1.

Column space = line through [ ;] Left nullspace = line through [_%] .
If A has three equal rows, its rank is . What are two of the y’s in its left nullspace?

The y’s in the left nullspace combine the rows to give the zero row.
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Matrices of Rank One

That last example had rank r = 1—and rank one matrices are special. We can describe
them all. You will see again that dimension of row space = dimension of column space.
When r = 1, every row is a multiple of the same row:

1 2 3 1
A=uv? A= _g _g _g| equals _§ times [1 2 3]=v".
0 0 O 0

A column times a row (4 by 1 times 1 by 3) produces a matrix (4 by 3). All rows are multi-
ples of the row (1,2,3). All columns are multiples of the column (1,2,-3,0).
The row space is a line in R”?, and the column space is a line in R™.

The columns are multiples of u. The rows are multiples of v™. The nuilspace is the plane
perpendicular to v. (Ax = 0 means that u(v"x) = 0 and then v"x = 0.) It is this
perpendicularity of the subspaces that will be Part 2 of the Fundamental Theorem.

® 'REVIEW OF THE KEY IDEAS =

The r pivot rows of R are a basis for the row spaces of R and A (same space).
The r pivot columns of A (!) are a basis for its column space.
The n — r special solutions are a basis for the nullspaces of 4 and R (same space).

The last m — r rows of I are a basis for the left nullspace of R.

A S L

The last m — r rows of E are a basis for the left nullspace of A.

Note about the four subspdbes The Fundamental Theorem looks like pure algebra, but it
has very important applications. My favorites are the networks in Chapter 8 (often
I go there for my next lecture). The equation for y in the left nullspace is ATy = 0:

Flow into a node equals flow out. Kirchhoff’s Current Law is the “balance equation”.

This is (in my opinion) the most important equation in applied mathematics. All models in
science and engineering and economics involve a balance—of force or heat flow or charge
or momentum or money. That balance equation, plus Hooke’s Law or Ohm’s Law or some
law connecting “potentials” to “flows”, gives a clear framework for applied mathematics.

My textbook on Computational Science and Engineering develops that framework,
together with algorithms to solve the equations: Finite differences, finite elements,
spectral methods, iterative methods, and multigrid.
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® WORKED EXAMPLES =

3.6 A Find bases and dimensions for all four fundamental subspaces if you know that

1 00 1 305
A=]2 10 0 01 6 |=LU=E"'R.
5 0 1 0 0 00

By changing only one number in R, change the dimensions of all four subspaces.

Solution  This matrix has pivots in columns 1 and 3. Its rank is r = 2.

Row space Basis (1, 3,0, 5) and (0,0, 1, 6) from R. Dimension 2.
Column space Basis (1,2, 5) and (0, 1,0) from E~! (and 4). Dimension 2.
Nullspace Basis (—3,1,0,0) and (—5,0,—6, 1) from R. Dimension 2.

Nullspace of AT  Basis (=5, 0, 1) from row 3 of E. Dimension 3 — 2 = 1.

We need to comment on that left nullspace N (AT). EA = R says that the last row of E
combines the three rows of A into the zero row of R. So that last row of E is a basis vector
for the left nullspace. If R had two zero rows, then the last fwo rows of E would be a basis.
(Just like elimination, yT4 = 0T combines rows of A4 to give zero rows in R.)

To change all these dimensions we need to change the rank r. One way to do that is to
change an entry (any entry) in the zero row of R.

3.6 B Put four 1’s into a 5 by 6 matrix of zeros, keeping the dimension of its row space
as small as possible. Describe all the ways to make the dimension of its column space as
small as possible. Describe all the ways to make the dimension of its nullspace as small as
possible. How to make the sum of the dimensions of all four subspaces small?

Solution  The rank is 1 if the four 1’s go into the same row, or into the same column.
They can also go into two rows and two columns (so a;; = a;; = aji = ajj = 1).
Since the column space and row space always have the same dimensions, this answers the
first two questions: Dimension 1.

The nullspace has its smallest possible dimension 6 — 4 = 2 when the rank is r = 4.
To achieve rank 4, the 1’s must go into four different rows and columns.

You can’t do anything aboutthe sumr + (n —r) +r + (m —r) = n 4+ m. It will be
6 + 5 = 11 no matter how the 1’s are placed. The sum is 11 even if there aren’t any 1’s...

If all the other entries of A are 2’s instead of 0’s, how do these answers change?

Problem Set 3.6

1 (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces?
What is the sum of all four dimensions?
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(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

2 Find bases and dimensions for the four subspaces associated with A and B:
1 2 4 1 2 4
A—[z 4 8] and B—[z 5 8]'

3 Find a basis for each of the four subspaces associated with A:

01 2 3 4 1 0 0jJ|O0 1 2 3 4
A=101 2 4 6|=(1 1 0|0 O 0 1 2
0 0 01 2 0 1 1 0 00 00

4 Construct a matrix with the required property or explain why this is impossible:
. 1 0 . 1 2
(a) Column space contains 1|, 0|, row space contains [3].[2]

(b) Column space has basis [;], nulispace has basis [z]

(c) Dimension of nullspace = 1 + dimension of left nullspace.
(d) Left nullspace contains [} ], row space contains [ }].
(e) Row space = column space, nullspace # left nullspace.
5 If V is the subspace spanned by (1,1,1) and (2,1,0), find a matrix A that has
V as its row space. Find a matrix B that has V as its nullspace.

6 Without elimination, find dimensions and bases for the four subspaces for

A= and B =

OO O
—_— O W
OO W
—_ O W
wn o=

7 Suppose the 3 by 3 matrix 4 is invertible. Write down bases for the four subspaces
for A, and also for the 3 by 6 matrix B = [A4 A].

8 What are the dimensions of the four subspaces for 4, B, and C, if I is the 3 by 3
identity matrix and 0 is the 3 by 2 zero matrix?

I I

A=[1 0] and Bz[OT oT

] and € =[0].

9 Which subspaces are the same for these matrices of different sizes?

(@) [A] and [ﬁ] (b) [ﬂ and [j ﬁ]'

Prove that all three of those matrices have the same rank r.
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If the entries of a 3 by 3 matrix are chosen randomly between O and 1, what are the
most likely dimensions of the four subspaces? What if the matrix is 3 by 57

(Important) A is an m by » matrix of rank r. Suppose there are right sides b for
which Ax = b has no solution.

(a) What are all inequalities (< or <) that must be true between m, n, and r?

(b) How do you know that ATy = 0 has solutions other than y = 0?

Construct a matrix with (1,0,1) and (1,2,0) as a basis for its row space and its
column space. Why can’t this be a basis for the row space and nullspace?

True or false (with a reason or a counterexample):

(a) If m = n then the row space of A equals the column space.
(b) The matrices A and —A share the same four subspaces.

(c) If A and B share the same four subspaces then A4 is a multiple of B.

Without computing A, find bases for its four fundamental subspaces:

1 00 1 2 3 4
A=1]|6 1 0|0 1 2 3
9 8 1 0 01 2

If you exchange the first two rows of A, which of the four subspaces stay the same?
Ifv = (1,2, 3, 4) is in the left nullspace of A, write down a vector in the left nullspace
of the new matrix.

Explain why v = (1,0, —1) cannot be a row of A and also in the nulispace.

Describe the four subspaces of R associated with

A= and I +A4=

oo o
oo~
S - O
SO~
O =
—_—

(Left nullspace) Add the extra column b and reduce A to echelon form:

1 2 3 by 1 2 3 b
[A B]l=[4 5 6 b| — [0 =3 —6 by—4b
7 8 9 b3 0 0 0 b3—2b+b

A combination of the rows of A has produced the zero row. What combination is it?
(Look at b3 — 2b, + by on the right side.) Which vectors are in the nullspace of AT
and which are in the nullspace of A?
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Following the method of Problem 18, reduce A to echelon form and look at zero
rows. The & column tells which combinations you have taken of the rows:

1 2 b ;%2‘
(@ |3 4 b, (b) 2
46 b 2 4 by
3 2 5 by

From the b column after elimination, read off m —r basis vectors in the left nullspace.
Those y’s are combinations of rows that give zero rows.

(a) Check that the solutions to Ax = 0 are perpendicular to the rows:

= ER.

OO N

1
A= 2
3

- O
—_— 0 O
OO B
S = O
O W

(b) How many independent solutionsto ATy = 0? Why is yT the last row of E~1?
Suppose A is the sum of two matrices of rank one: 4 = uvT + wzT.

(a) Which vectors span the column space of A?

(b) Which vectors span the row space of 4?

(¢) Therankislessthan2if _ orif

(d) Compute A and itsrank if u = z = (1,0,0) and v = w = (0,0, 1).

Construct A = uv' + wz' whose column space has basis (1,2,4),(2,2,1) and
whose row space has basis (1,0), (1, 1). Write 4 as (3 by 2) times (2 by 2).

Without multiplying matrices, find bases for the row and column spaces of A:

1 2
P ]
2 7

How do you know from these shapes that A cannot be invertible?

(Important) ATy = d is solvable when d is in which of the four subspaces? The
solution y is unique when the contains only the zero vector.

True or false (with a reason or a counterexample):

(a) A and AT have the same number of pivots.
(b) A and AT have the same left nullspace.
(c) If the row space equals the column space then AT = A.

(d) If AT = —A then the row space of A equals the column space.
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(Rank of AB) If AB = C, the rows of C are combinations of the rows of .
So the rank of C is not greater than the rank of . Since BTAT = CT, the rank
of C is also not greater than the rank of

If a, b, ¢ are given with a % 0, how would you choose d so that [g 3 ] has rank 1?
Find a basis for the row space and nullspace. Show they are perpendicular!

Find the ranks of the 8 by 8 checkerboard matrix B and the chess matrix C:

1 0101010 r nb g k b n r’]

01010101 p p p p ppPp
B={101 01010 and C = four zero rows

- . . . . . e . p p p p p p p p

|01 01 010 1] r n b g k b n r]

The numbers r,n,b,q,k, p are all different. Find bases for the row space and left
nullspace of B and C. Challenge problem: Find a basis for the nullspace of C.

Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank (4) = 2 but
neither side passed up a winning move?

Challenge Problems

If A = uvT is a 2 by 2 matrix of rank 1, redraw Figure 3.5 to show clearly the Four
Fundamental Subspaces. If B produces those same four subspaces, what is the exact
relation of B to A?

M is the space of 3 by 3 matrices. Multiply every matrix X in M by

1 0 -1 0
A= -1 1 O |. Notice: 4|1 ]| =10
0 -1 1 1 0

(a) Which matrices X lead to AX = zero matrix?

(b) Which matrices have the form AX for some matrix X?

(a) finds the “nullspace” of that operation AX and (b) finds the “column space”.
What are the dimensions of those two subspaces of M? Why do the dimensions add
to(n—r)+r=9?

Suppose the m by n matrices A and B have the same four subspaces. If they are both
in row reduced echelon form, prove that F must equal G:

=lo o] e=[0 0]
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Orthogonality

4.1 Orthogonality of the Four Subspaces

Two vectors are orthogonal when their dot product is zero: v - w = 0 or v*w = 0. This
chapter moves to orthogonal subspaces and orthogonal bases and orthogonal matrices.
The vectors in two subspaces, and the vectors in a basis, and the vectors in the columns,
all pairs will be orthogonal Thlnk of a? F+ b2 = c2 for a rzght trzangle with sxdes v and w.

 Orthogonal el el = ot wl?

T

The nght 31de is ('v —I— w)T(v -+ w) ThlS equals vTv + wlw when viw =wlv = O

Subspaces entered Chapter 3 to throw light on Ax = 5. Right away we needed the
column space (for #) and the nullspace (for x). Then the light turned onto AT, uncovering
two more subspaces. Those four fundamental subspaces reveal what a matrix really does.

A matrix multiplies a vector: A times x. At the first level this is only numbers. At
the second level Ax is a combination of column vectors. The third level shows subspaces.
But I don’t think you have seen the whole picture until you study Figure 4.2. It fits the
subspaces together, to show the hidden reality of A times x. The 90° angles between
subspaces are new—and we have to say what those right angles mean.

The row space is perpendicular to the nullspace. Every row of A is perpendicular to
every solution of Ax = 0. That gives the 90° angle on the left side of the figure. This
perpendicularity of subspaces is Part 2 of the Fundamental Theorem of Linear Algebra.

The column space is perpendicular to the nullspace of AT. When b is outside the
column space—when we want to solve Ax = b and can’t do it—then this nullspace of
AT comes into its own. It contains the error e = b — Ax in the “least-squares” solution.
Least squares is the key application of linear algebra in this chapter.

Part 1 of the Fundamental Theorem gave the dimensions of the subspaces. The row
and column spaces have the same dimension r (they are drawn the same size). The two
nullspaces have the remaining dimensions n — r and m — r. Now we will show that
the row space and nullspace are orthogonal subspaces inside R,

195
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DEFINITION Two subspaces V and W of a vector space are orthogonal if every vector v
in V is perpendicular to every vector w in W:

Orthogonal subspaces: ~~ v"w =0 forallvinV andallwin W.

Example 1 The floor of your room (extended to infinity) is a subspace V. The line where
two walls meet is a subspace W (one-dimensional). Those subspaces are orthogonal. Every
vector up the meeting line is perpendicular to every vector in the floor.

Example 2 Two walls look perpendicular but they are not orthogonal subspaces! The
meeting line is in both ¥ and W —and this line is not perpendicular to itself. Two planes
(dimensions 2 and 2 in R?) cannot be orthogonal subspaces.

When a vector is in two orthogonal subspaces, it must be zero. It is perpendicular to
itself. It is v and it is w, so ¥Tv = 0. This has to be the zero vector.

i / \
l 'vAw

orthogonal line and plane non-orthogonal planes

Figure 4.1: Orthogonality is impossible when dim ¥V +dim W > dimension of whole space.

The crucial examples for linear algebra come from the fundamental subspaces. Zero is
the only point where the nullspace meets the row space. More than that, the nullspace and
row space of A meet at 90°. This key fact comes directly from Ax = 0:

ow 1 1 o7

row m 0] ¢ (row m) - x is zero © T
The first equation says that row 1 is perpendicular to x. The last equation says that row m is
perpendicular to x. Every row has a zero dot product with x. Then x is also perpendicular
to every combination of the rows. The whole row space C (AT) is orthogonal to N (4).
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Here is a second proof of that orthogonality for readers who like matrix shorthand.
The vectors in the row space are combinations ATy of the rows. Take the dot product
of ATy with any x in the nullspace. These vectors are perpendicular:

Nullspace and Row space xT(ATy) = (4x)Ty =0Ty = 0. (2)

We like the first proof. You can see those rows of A multiplying x to produce zeros in
equation (1). The second proof shows why A and A are both in the Fundamental Theorem.
AT goes with y and A goes with x. At the end we used Ax = 0.

Example 3 The rows of A are perpendicular to x = (1, 1, —1) in the nullspace:

1+3—-4=0

1
Ax:[l 3 4] _1 =[8] gives the dot products 542-7=0

5271

Now we turn to the other two subspaces. In this example, the column space is all of R2.
The nullspace of AT is only the zero vector (orthogonal to every vector). The columns of
A and nullspace of AT are always orthogonal subspaces.

Every vector y in: the nullspace of AT is pet endlcular“ tOt‘ﬁ every column of A
The left nullspace AT) and the column space C(A),,are orthogonal m R"z

Apply the original proof to AT. Its nullspace is orthogonal to its row space—and the row
space of AT is the column space of 4. Q.E.D.
For a visual proof, look at ATy = 0. Each column of A multiplies y to give O:

(column 1)T 0
C(A)LN@ADH ATy = yl=1" 1. 3)
(column n)T 0

The dot product of y with every column of A is zero. Then y in the left nullspace is
perpendicular to each column—and to the whole column space.

\ Orthogonal Complements
Important The fundamental subspaces are more than just orthogonal (in pairs).
Their dimensions are also right. Two lines could be perpendicular in R3, but those lines
could not be the row space and nullspace of a 3 by 3 matrix. The lines have dimensions 1
and 1, adding to 2. The correct dimensions r and n — r must add ton = 3.

The fundamental subspaces have dimensions 2 and 1, or 3 and 0. Those subspaces are
not only orthogonal, they are orthogonal complements.

DEFINITION The orthogonal complement of a subspace V contains every vector that is
perpendicular to V. This orthogonal subspace is denoted by y (pronounced “V perp”).

By this definition, the nullspace is the orthogonal complement of the row space.
Every x that is perpendicular to the rows satisfies Ax = 0,
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dimension
=y

dimension
=r

nullspace

nullspace of AT

of A

dimension
=m-r

dimension
=n-r

Figure 4.2: Two pairs of orthogonal subspaces. The dimensions add to » and add to m.
This is an important picture—one pair of subspaces is in R” and one pair is in R™.

The reverse is also true. If v is orthogonal to the nullspace, it must be in the row
space. Otherwise we could add this v as an extra row of the matrix, without changing its
nullspace. The row space would grow, which breaks the law r + (n —r) = n. We conclude
that the nullspace complement N (4)* is exactly the row space C (AT).

The left nullspace and column space are orthogonal in R™, and they are orthogonal
complements. Their dimensions r and m — r add to the full dimension m.

" Fundamental Theorem of Linear Algebra, Part 2

Part 1 gave the dimensions of the subspaces. Part 2 gives the 90° angles between them.
The point of “complements” is that every x can be split into a row space component x »
and a nullspace component x,. When A multiplies x = x + x,, Figure 4.3 shows what
happens:

The nullspace component goes to zero: Ax, = 0.
The row space component goes to the column space: Ax, = Ax.

Every vector goes to the column space! Multiplying by A cannot do anything else.
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column
Ax,=b b Space
- ®
Ax
O R™

nullspace
of AT

dim m —r

Figure 4.3: This update of Figure 4.2 shows the true action of 4 on x = x, + x5.
Row space vector x» to column space, nullspace vector x;, to zero.

More than that: Every vector b in the column space comes from one and only one vector
in the row space. Proof: If Ax, = Ax/, the difference x, — x/. is in the nullspace.
It is also in the row space, where x, and x). came from. This difference must be the zero
vector, because the nullspace and row space are perpendicular. Therefore x, = x..

There is an r by r invertible matrix hiding inside A, if we throw away the two nullspaces.
From the row space to the column space, A is invertible. The “pseudoinverse” will invert
it in Section 7.3.

Example 4 Every diagonal matrix has an r by r invertible submatrix:

30 0 0 O 3 0
A=|0 5 0 0 O contains the submatrix [0 5:| .
0 0 0 0 O

The other eleven zeros are responsible for the nullspaces. The rank of B is also r = 2:

1

>
I
I NI

3 45 1 3
4 5 6 contains [ ] in the pivot rows and columns.
4 5 6 L4

Every A becomes a diagonal matrix, when we choose the right bases for R and R™.
This Singular Value Decomposition has become extremely important in applications.
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Combining Bases from Subspaces

What follows are some valuable facts about bases. They were saved until now—when we
are ready to use them. After a week you have a clearer sense of what a basis is (linearly
independent vectors that span the space). Normally we have to check both of these proper-
ties. When the count is right, one property implies the other:

Starting with the correct number of vectors, one property of a basis produces the other.
This is true in any vector space, but we care most about R”, When the vectors go into the
columns of an n by n square matrix A, here are the same two facts:

Uniqueness implies existence and existence implies uniqueness. Then A is invertible. If
there are no free variables, the solution x is unique. There must be 7 pivots. Then back
substitution solves Ax = b (the solution exists).

Starting in the opposite direction, suppose Ax = b can be solved for every b
(existence of solutions). Then elimination produced no zero rows. There are n pivots and
no free variables. The nullspace contains only x = 0 (uniqueness of solutions).

With bases for the row space and the nullspace, we have r + (n — r) = n vectors,
This is the right number. Those n vectors are independent.? Therefore they span R™.

Each x is the sum x, + x5, of a row space vector x, and a nullspace vector x .

s

The splitting in Figure 4.3 shows the key point of orthogonal complements—the dimen-
sions add to n and all vectors are fully accounted for.

1 2 : 4 1. 2 2
Example 5 ForA=[3 6]Sphtx—[3 ]1ntoxr+xn—|:4]+[_l ]

The vector (2, 4) is in the row space. The orthogonal vector (2, —1) is in the nullspace.
The next section will compute this splitting for any A and x, by a projection.

2If a combination of all n vectors gives xp + xp = 0, then xp = —xj is in both subspaces.
Soxr = xn = 0. All coefficients of the row space basis and nullspace basis must be zero—which
proves independence of the 1 vectors together.
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m REVIEW OF THE KEY IDEAS =

1. Subspaces V and W are orthogonal if every v in V is orthogonal to every w in W.

2. V and W are “orthogonal complements” if W contains all vectors perpendicular to
V (and vice versa). Inside R", the dimensions of complements V and W add to n.

3. The nullspace N (A) and the row space C (AT) are orthogonal complements, from
Ax = 0. Similarly N (AT) and C (A4) are orthogonal complements.

4. Any n independent vectors in R” will span R”.

5. Every x in R” has a nullspace component x, and a row space component X .

= WORKED EXAMPLES =

41 A Suppose § is a six-dimensional subspace of nine-dimensional space R®.
(a) What are the possible dimensions of subspaces orthogonal to S ?
(b) What are the possiblé dimensions of the orthogonal complement S of 2
(c) What is the smallest possible size of a matrix 4 that has row space S?

(d) What is the shape of its nullspace matrix N ?

Solution
(a) If S is six-dimensional in R?, subspaces orthogonal to S can have dimensions 0, 1,2, 3.
(b) The complement S L is the largest orthogonal subspace, with dimension 3.
(c) The smallest matrix A 1s 6 by 9 (its six rows are a basis for S).
(d) Its nullspace matrix N is 9 by 3. The columns of N contain a basis for st

If a new row 7 of B is a combination of the six rows of A, then B has the same row
space as A. It also has the same nullspace matrix N. The special solutions §1, §2, 53 will
be the same. Elimination will change row 7 of B to all zeros.

41B  The equation x — 3y — 4z = 0 describes a plane P in R3 (actually a subspace).

(a) The plane P is the nullspace N (A) of what 1 by 3 matrix A?

(b) Find a basis s, s, of special solutions of x — 3y — 4z = 0 (these would be the
columns of the nullspace matrix N).
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(c) Also find a basis for the line P that is perpendicular to P.
(d) Splitv = (6, 4, 5) into its nullspace component vy, in P and its row space component
Vr in pPt.
Solution
(a) The equation x —3y —4z = 0is Ax =0 forthe 1 by 3matrix 4 = [1 —3 —4].

(b) Columns 2 and 3 are free (the only pivot is 1). The special solutions with free vari-
ables 1 and O are s; = (3,1,0) and s, = (4,0, 1) in the plane P = N (4).

(c) The row space of A is the line P~ in the direction of the row z = (1,-3,—4).

(d) To split v into v, + vy = (c151 + €252) + c3z,50lveforcy = 1,¢c, = 1,03 = —1.
6 3 4 1 1 vp =51 +82=(7,1,1) isin P = N(A)
4 |=|1 0 =3 1 vr = —s3=(—1,3,4) isin P+ =cC4D).
5 0 1 —4 -1 v = (6,4,5) equals (7,1,1)+ (-1,3,4)

This method used a basis for each subspace combined into an overall basis s1, 52, .
Section 4.2 will also project v onto a subspace S. There we will not need a basis for the
perpendicular subspace S i,

Problem Set 4.1

Questions 1-12 grow out of Figures 4.2 and 4.3 with four subspaces.

1 Construct any 2 by 3 matrix of rank one. Copy Figure 4.2 and put one vector in each
subspace (two in the nullspace). Which vectors are orthogonal?

2 Redraw Figure 4.3 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R? is x, = .

3 Construct a matrix with the required property or say why that is impossible:

. 2 .
(a) Column space contains [ é] and [—g], nullspace contains [i]

(b) Row space contains [ %] and [—g], nullspace contains [i]

(c) Ax = H] has a solution and AT [é] = [g]

(d) Every row is orthogonal to every column (A4 is not the zero matrix)
(e) Columns add up to a column of zeros, rows add to a row of 1’s.

4 If AB = 0 then the columns of B are in the of A. The rows of A are in the
of B. Why can’t A and B be 3 by 3 matrices of rank 2?
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5

10

11

12

(a) If Ax = b has a solutionand ATy =0, is (yTx = 0) or (yTh = 0)?
(b) If ATy = (1,1, 1) has a solution and Ax = 0, then .

This system of equations Ax = b has no solution (they lead to 0 = 1):

x+2y+2z =
2x +2y+3z = 5
3x+4y+5z2 = 9

Find numbers yi, y2, y3 to multiply the equations so they add to 0 = 1. You have
found a vector y in which subspace? Its dot product y T4 is 1, so no solution x.

Every system with no solution is like the one in Problem 6. There are numbers
¥1,-- -, Ym that multiply the m equations so they add up to 0 = 1. This is called
Fredholm’s Alternative:

Exactly one of these problems has a solution
Ax=b OR ATy =0 with yTh=1.
If b is not in the column space of A, it is not orthogonal to the nullspace of AT,

Multiply the equations x; — x2 = 1 and x, — x3 = 1 and x; — x3 = 1 by numbers
Y1, ¥2, ¥3 chosen so that the equations add up to 0 = 1.

In Figure 4.3, how do we know that Ax, is equal to Ax? How do we know that this
vector is in the column space? If A = [} 1] and x = [}] whatis x,?

If ATAx = 0then Ax = 0. Reason: Ax is in the nullspace of AT and also in the
of A and those spaces are . Conclusion: AT A has the same nullspace
as A. This key fact is repeated in the next section.

Suppose A is a symmetric matrix (4T = A).

(a) Why is its column space perpendicular to its nullspace?

(b) If Ax = 0 and 4z = 5z, which subspaces contain these “eigenvectors” x
and z? Symmetric matrices have perpendicular eigenvectors xTz = 0.

(Recommended) Draw Figure 4.2 to show each subspace correctly for

1 2 1 0
A=[3 6] and B=[3 O]'

Find the pieces x and x, and draw Figure 4.3 properly if

1 -1 )
A=10 0 and x=[0].
0O O
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Questions 13-23 are about orthogonal subspaces.

13  Putbases for the subspaces V and W into the columns of matrices ¥V and W. Explain
why the test for orthogonal subspaces can be written VTW = zero matrix. This
matches vTw = 0 for orthogonal vectors.

14  The floor V and the wall W are not orthogonal subspaces, because they share a
nonzero vector (along the line where they meet). No planes ¥ and W in R> can be
orthogonal! Find a vector in the column spaces of both matrices:

I 2 5 4
A=|1 3 and B=]6 3
1 2 5 1

This will be a vector Ax and also B%. Think 3 by 4 with the matrix [4 B].

15 Extend Problem 14 to a p-dimensional subspace V and a g-dimensional subspace
W of R". What inequality on p + ¢ guarantees that V intersects W in a nonzero
vector? These subspaces cannot be orthogonal.

16  Prove thatevery y in N (A7) is perpendicular to every Ax in the column space, using
the matrix shorthand of equation (2). Start from ATy = 0.

17 If S is the subspace of R? containing only the zero vector, what is SL2 If 8§ is
spanned by (1, 1, 1), what is S+ 72If S is spanned by (1,1, 1) and (1, 1, —1), what is
a basis for S+ ?

18  Suppose S only contains two vectors (1,5, 1) and (2,2, 2) (not a subspace). Then
S is the nullspace of the matrix 4 = . 8 is a subspace even if § is not.

19  Suppose L is a one-dimensional subspace (a line) in R>. Its orthogonal complement
Lt is the perpendicular to L. Then (L)1 isa perpendicular to L+
In fact (L)L is the same as

20 Suppose V is the whole space R*. Then VL contains only the vector . Then
VHtis . So (V1)1 is the same as

21  Suppose S is spanned by the vectors (1,2,2,3) and (1, 3, 3,2). Find two vectors
that span S, This is the same as solving Ax = 0 for which A4?

22 If P is the plane of vectors in R* satisfying x; + x2 + x3 + x4 = 0, write a basis
for P+. Construct a matrix that has P as its nullspace.

23 If a subspace S is contained in a subspace V, prove that S+ contains V.
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Questions 24-30 are about perpendicular columns and rows.

24

25
26

27

28

29

30

31

32

33

Suppose an n by n matrix is invertible: AA~! = I. Then the first column of A™! is
orthogonal to the space spanned by which rows of 4?7

Find AT 4 if the columns of 4 are unit vectors, all mutually perpendicular.

Construct a 3 by 3 matrix 4 with no zero entries whose columns are mutually per-
pendicular. Compute ATA. Why is it a diagonal matrix?

The lines 3x + y = b; and 6x + 2y = b, are . They are the same line
if . In that case (b}, b,) is perpendicular to the vector . The nullspace
of the matrix is the line 3x + y = . One particular vector in that nullspace is

1.there may be vectors other than given ones, which may be common to
both the spaces. (1,-1,0) resides in both the plane
2.Total dimension of the space is 5.Need one more vector to completely

Why is each of these statements false? |span the orthogonal space.

3.That may be true for disjoint subspaces, not orthogonal ones.Two line
may intersect at 0, without subtending 90 degree in between them.

(a) (1,1,1)is perpendicularto (1,1, —2)sothe planesx +y+z =0andx + y —
2z = 0 are orthogonal subspaces.

(b) The subspace spanned by (1, 1,0, 0,0) and (0, 0,0, 1, 1) is the orthogonal com-
plement of the subspace spanned by (1,—1,0,0,0) and (2,-2, 3,4, —4).

(c) Two subspaces that meet only in the zero vector are orthogonal.

Find a matrix with v = (1,2, 3) in the row space and column space. Find another
matrix with v in the nullspace and column space. Which pairs of subspaces can v
not be in?

Challenge Problems

Suppose A is 3 by 4 and B is 4 by 5and AB = 0. So N(A) contains C(B).
Prove from the dimensions of N (A4) and C (B) that rank(A) + rank(B) < 4.

The command N = null(A) will produce a basis for the nullspace of A. Then the
command B = null(N’) will produce a basis for the of A.

Suppose I give you four nonzero vectors r, n, ¢, I in R2.

(a) What are the conditions for those to be bases for the four fundamental sub-
spaces C(AT), N(4), C(A), N(AT) of a 2 by 2 matrix?

(b) What is one possible matrix A?
Suppose I give you eight vectors r1, 72,11, #2,€1,¢2,L1,15 in R*.

(a) What are the conditions for those pairs to be bases for the four fundamental
subspaces of a 4 by 4 matrix?

(b) What is one possible matrix A?


Franklin
文字框
1.there may be vectors other than given ones, which may be common to both the spaces. (1,-1,0) resides in both the plane
2.Total dimension of the space is 5.Need one more vector to completely span the orthogonal space.
3.That may be true for disjoint subspaces, not orthogonal ones.Two line may intersect at 0, without subtending 90 degree in between them.
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4.2 Projections

May we start this section with two questions? (In addition to that one.) The first ques-
tion aims to show that projections are easy to visualize. The second question is about
“projection matrices”—symmetric matrices with P2 = P. The projection of b is Pb.

1 What are the projections of b = (2, 3, 4) onto the z axis and the xy plane?
2 What matrices produce those projections onto a line and a plane?

When b is projected onto a line, its projection p is the part of b along that line.
If & is projected onto a plane, p is the part in that plane. The projection p is Pb.

The projection matrix P multiplies b to give p. This section finds p and P.

The projection onto the z axis we call p;. The second projection drops straight down to
the xy plane. The picture in your mind should be Figure 4.4. Start with b = (2, 3,4).
One projection gives p; = (0,0, 4) and the other gives p, = (2, 3, 0). Those are the parts
of b along the z axis and in the xy plane.

The projection matrices P; and P, are 3 by 3. They multiply » with 3 components
to produce p with 3 components. Projection onto a line comes from a rank one matrix.
Projection onto a plane comes from a rank two matrix:

00 0 1 0 0

Ontothezaxis: Py=|(0 0 O Onto the xy plane: P, = |0 1 O
0 0 1 | 0 00O

P, picks out the z component of every vector. P; pick\s out the x and y components.
To find the projections p; and p, of b, multiply » by P; and P, (small p for the vector,
capital P for the matrix that produces it):

0 0 O X 0 1 0 O X X
Pp1=Pib={0 0 O(|y|=]|0 Pr=Pb=(0 1 O0liy|=1{vy
0 0 1 z z 0 0 O z 0

In this case the projections p; and p, are perpendicular. The xy plane and the z axis
are orthogonal subspaces, like the floor of a room and the line between two walls.

o
N

Figure 4.4: The projections p; = P1b and p, = P,b onto the z axis and the xy plane.

N OO
| I

Projection py = |:
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More than that, the line and plane are orthogonal complements. Their dimensions add
to 1 +2 = 3. Every vector b in the whole space is the sum of its parts in the two subspaces.
The projections p, and p, are exactly those parts:

The vectors give p; + p, = b. The matrices give P; + P, = 1. (D

This is perfect. Our goal is reached—for this example. We have the same goal for any line
and any plane and any n-dimensional subspace. The object is to find the part p in each
subspace, and the projection matrix P that produces that part p = Pb. Every subspace
of R™ has its own m by m projection matrix. To compute P, we absolutely need a good
description of the subspace that it projects onto.

The best description of a subspace is a basis. We put the basis vectors into the columns
of A. Now we are projecting onto the column space of A! Certainly the z axis is the
column space of the 3 by 1 matrix A;. The xy plane is the column space of A,. That plane
is also the column space of A3 (a subspace has many bases):

Ay = and A, =

_—0 O
lan Rl an
QO = O

1
and Az =2
0

O W

Our problem is to project.any b onto the column space of any m by n matrix.
Start with a line (dimension n = 1). The matrix A has only one column. Call it a.

Projection Onto a Line

A line goes through the origin in the direction of @ = (a;,. . ., a,;). Along that line, we
want the point p closest to b = (b1,. . .,b,). The key to projection is orthogonality:
The line from b to p is perpendicular to the vector a. This is the dotted line marked
e for error in Figure 4.5—which we now compute by algebra.

The projection p is some multiple of @. Call it p = X¥a = “x hat” times a. Computing
this number X will give the vector p. Then from the formula for p, we read off the projec-
tion matrix P. These three steps will lead to all projection matrices: find X, then find the
vector p, then find the matrix P.

The dotted line b — p is e = b — Xa. It is perpendicular to a—this will determine X.
Use the fact that b — p is perpendicular to @ when their dot product is zero:

Projecting b onto @, errore = b —Xa

_.;_,_"‘;a-(b—ia)=0 or a*b—xa-a=0 f

N~
Lo
L'Q

The multiplication a™d is the same as @ - . Using the transpose is better, because it
applies also to matrices. Our formula ¥ = a”b/a’a gives the projection p = ¥a.
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T

Spemal case l: If b =a then X = 1 The prOJectlon of a onto a is 1tself Pa = q. |

quecml case 2: If b is perpendicular toa then a’h = 0. The projection is p = 0. g

1 1
Example1 Projectb=| 1 |ontoa=| 2 {tofind p = Xa in Figure 4.5.
1 2

Solution The number ¥ is the ratio of a™h = 5 to a’a = 9. So the projection is p = %a.
The error vector between b and p is ¢ = b — p. Those vectors p and e will add to
b=(1,1,1):

S _(Sl10y o (41 1)
P=3=\99' 7 =0T PE Ty Ty )

The error e should be perpendicularto @ = (1,2,2) anditis: eTa = § -2 - 2 =

Look at the right triangle of b, p, and e. The vector b is split into two parts—its
component along the line is p, its perpendicular part is e. Those two sides of a right
triangle have length ||b|| cos 6 and ||b|| sin . Trigonometry matches the dot product:

a'b al| ||1b)| cos 8
p = ——a has length ||pl| lal ||| ::2

ata
The dot product is a lot simpler than getting involved with cos@ and the length of 5.
The example has square roots in cos§ = 5/3+/3 and ||b]] = +/3. There are no square
roots in the projection p = 5a/9. The good way to 5/9is bTa/a"a.

lall = JB]lcost.. 3)

Now comes the projection matrix. In the formula for p, what matrix is multiplying b?
You can see the matrix better if the number X is on the right side of a:
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P is a column times a row! The column is a, the row is aT. Then divide by the number
a'a. The projection matrix P is m by m, but its rank is one. We are projecting onto a
one-dimensional subspace, the line through a. That is the column space of P.

T

aa
Example 2 Find the projection matrix P = a onto the line through a = [
a

Solution Multiply column a times row a’ and divide by aTa = 9:

| SIS T

ad® 1! 1 122
Projection matrix =~ P = —— = 5 2([1 22]==]2 4 4
a’a 2 212 4 4

This matrix projects any vector b onto a. Check p = Pb for b = (1,1, 1) in Example 1:

1 1 2 2 1 1 5
-12 4 4 1l=-=110 which is correct.

992 4 4|1 9l10

If the vector a is doubled, the matrix P stays the same. It still projects onto the same line.
If the matrix is squared, P2 equals P. Projecting a second time doesn’t change anything,
so PZ = P. The diagonal entries of P addupto 5(1 +4+4) = 1.

The matrix / — P should be a projection too. It produces the other side e of the
triangle—the perpendicular part of b. Note that (I — P)b equals b — p which is e in the
left nullspace. When P projects onto one subspace, I — P projects onto the perpendicular
subspace. Here I — P projects onto the plane perpendicular to a.

Now we move beyond projection onto a line. Projecting onto an n-dimensional
subspace of R” takes more effort. The crucial formulas will be collected in equations
(5)—(6)—(7). Basically you need to remember those three equations.

Projection Onto a Subspace

Start with n vectors ap,...,a, in R™. Assume that these a’s are linearly independent.

Problem: Find the combination p = X1a; + -+ + X,a, closest to a given vector b.
We are projecting each b in R™ onto the subspace spanned by the a’s, to get p.

With n = 1 (only one vector a;) this is projection onto a line. The line is the column space
of A, which has just one column. In general the matrix A has n columns a,...,a,.

The combinations in R™ are the vectors Ax in the column space. We are looking for
the particular combination p = AX (the projection) that is closest to b. The hat over ¥
indicates the best choice X, to give the closest vector in the column space. That choice is
a"b/a%a whenn = 1. Forn > 1, the best X is to be found now.

We compute projections onto n-dimensional subspaces in three steps as before:
Find the vector X, find the projection p = AX, find the matrix P.

The key is in the geometry! The dotted line in Figure 4.5 goes from b to the near-
est point AX in the subspace. This error vector b — AX is perpendicular to the subspace.
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The error b — AX makes a right angle with all the vectors a;,...,a,. The n right angles
give the n equations for X
al(b—Ax) =0 —al —
: or : b—Ax|=]0]. @)
ay(b— A%) =0 —a, —

The matrix with those rows a] is AT. The n equations are exactly AT(b — AX) = 0.
Rewrite AT(b — AX) = 0 in its famous form ATAX = ATb. This is the equation for X,
and the coefficient matrix is ATA. Now we can find ¥ and p and P, in that order:

Those formulas are identical with (5) and (6) and (7). The number a”a becomes the
matrix ATA. When it is.a number, we divide by it. When it is a matrix, we invert it.
The new formulas contain (ATA)™! instead of 1/aTa. The linear independence of the
columns ay, ..., a, will guarantee that this inverse matrix exists.

The key step was AT(h — AX) = 0. We used geometry (e is perpendicular to all the
a’s). Linear algebra gives this “normal equation” too, in a very quick way:

1. Our subspace is the column space of A.
2. The error vector b — AX is perpendicular to that column space.
3. Therefore b — AX is in the nullspace of AT. This means AT(b — A%) = 0.

The left nullspace is important in projections. That nullspace of AT contains the error vector
e = b — AX. The vector b is being split into the projection p and the error e = b — p.
Projection produces a right triangle (Figure 4.5) with sides p, e, and b.
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10 6 -

Example3 IfA = [{ ;] and b =[3] find ¥ and p and P.

Solution Compute the square matrix AT A4 and also the vector ATh:

1 0 6
r, 111 3 3 o[l 11 _[6
AA'[01215—35a“dA”‘“o128_0'

Now solve the normal equation ATAX = A"b to find X

B IS EY R - A

The combination p = AX is the projection of b onto the column space of A:

1 0 5 1
p=5|1]=-3[{1]=]| 2|. Theerroris e=b—p=|-2]. %)
1 2 -1 1

Two checks on the calculation. First, the error e = (1, —2, 1) is perpendicular to both
columns (1,1, 1) and (0, 1,2). Second, the final P times b = (6,0,0) correctly gives
P = (5,2, —1). That solves the problem for one particular b.

To find p = Pb for every b, compute P = A(ATA)~! AT. The determinant of ATA is
15— 9 = 6; then (ATA)™! is easy. Multiply A times (AT A)™! times AT to reach P:

5 2 -1

1 - 1
(ATA) == > B3 ad P=2| 2 2 2. (10)
613 ¢l-1 2 s

We must have P2 = P, because a second projection doesn’t change the first projection.

Warning The matrix P = A(ATA)!AT is deceptive. You might try to split (4T 4)~!
into A7 times (AT)™!. If you make that mistake, and substitute it into P, you will find
P = AA™1(AT)"1 AT, Apparently everything cancels. This looks like P = I, the identity
matrix. We want to say why this is wrong.

The matrix A is rectangular. It has no inverse matrix. We cannot split (ATA4)™! into
A~ times (AT)™! because there is no A~ in the first place.

In our experience, a problem that involves a rectangular matrix almost always leads to
AT A. When A has independent columns, AT A is invertible. This fact is so crucial that we
state it clearly and give a proof.

Proof ATA is a square matrix (n by n). For every matrix A, we will now show that
AT A has the same nullspace as A. When the columns of 4 are linearly independent, its
nullspace contains only the zero vector. Then AT A, with this same nullspace, is invertible.
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Let A be any matrix. If x is in its nullspace, then Ax = 0. Multiplying by AT gives
ATAx = 0. So x is also in the nullspace of ATA.

Now start with the nullspace of ATA. From ATAx = 0 we must prove Ax = 0. We
can’t multiply by (AT)~!, which generally doesn’t exist. Just multiply by xT:

(x)ATAx =0 or (Ax)T(A4x) =0 or |Ax|?*=0.

This says: If ATAx = 0 then Ax has length zero. Therefore Ax = 0. Every vector x in
one nullspace is in the other nullspace. If AT A has dependent columns, so has 4. If ATA
has independent columns, so has A. This is the good case:

When A has independent columns, A™ A is square, symmetric, and invertible.

To repeat for emphasis: ATA is (n by m) times (m by n). Then ATA is square (n by n).
It is symmetric, because its transpose is (ATA)T = AT(AT)T which equals ATA. We just
proved that ATA is invertible—provided A has independent columns. Watch the difference
between dependent and independent columns:

AT A ATA AT A ATA
[110]13_[24] [110]:3_[24]
2 20 0 0 4 8 2 21 0 1 4 9

dependent singular indep. invertible

Very brief summary To find the projection p = X1a1 + -+ + Xpa,, solve ATAY = ATb.
This gives X. The projection is AX and the erroris e = b — p = b — AX. The projection
matrix P = A(ATA)"1 47T gives p = Pb.

This matrix satisfies P2 = P.The distance from b to the subspace is ||e|].

n lREVlEW OF THE KEY IDEAS =

1. The projection of b onto the line through a is p = aX = a(aTs/a"a).

2. The rank one projection matrix P = aa’/a'a multiplies b to produce p.

3. Projecting b onto a subspace leaves ¢ = b — p perpendicular to the subspace.
4. When A4 has full rank n, the equation ATAX = ATb leads to ¥ and p = AX.

5. The projection matrix P = A(ATA) 'A" has PT = P and P? = P.
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= WORKED EXAMPLES =

4.2 A Project the vector b = (3,4,4) onto the line through @ = (2,2, 1) and then
onto the plane that also contains a* = (1,0,0). Check that the first error vector b — p
is perpendicular to a, and the second error vector e* = b — p* is also perpendicular to a*.

Find the 3 by 3 projection matrix P onto that plane of & and @*. Find a vector whose
projection onto the plane is the zero vector.

Solution  The projection of b = (3, 4, 4) onto the line througha = (2,2,1) is p = 2a:

a’h 18
i =—a=—(2,2,1)=(4,4,2).
Onto a line P aTaa 5 (2,2,1) =( 2)

The error vectore = b — p = (—1, 0, 2) is perpendicular to a. So p is correct,
The plane of a = (2,2, 1) and a* = (1,0, 0) is the column space of A = [a a*]:

2 1 1 0 0
A=|[2 0 ATA:B f] (ATA)”‘=1[_; "é] P=|0 8 .4
10 > 0 4 2

Then p* = Pb = (3,4.8,2.4). Theerrore™ = b — p* = (0,-.8, 1.6) is perpendicular
to @ and a*. This e* is in the nullspace of P and its projection is zero! Note P? = P.

4.2 B Suppose your pulse is measured at x = 70 beats per minute, then at x = 80,
then at x = 120. Those three equations Ax = b in one unknown have AT = {1 1 1] and
b = (70,80, 120). The best X is the of 70, 80, 120. Use calculus and projection:

1. Minimize E = (x — 70)? + (x — 80)% + (x — 120)? by solving dE /dx = 0.
2. Project b = (70,80, 120)ontoa = (1,1,1) to find X = a"h/a"a.

Solution The closest horizontal line to the heights 70, 80, 120 is the average X = 90:

dE 70 + 80 + 120
E=2(x—70)+2(x—80)+2(x—120)=0 gives X = + 3+

T 1,1, N7(70,80,120) 70 120
Projection: %= 20 - (11,1 (70.80,120) 70 +380+120 _ o

aTe  (1,1,DT(A, 1,1 3

4.2 C In recursive least squares, a fourth measurement 130 changes X,jq t0 Xpew-
Compute Xpew and verify the update formula Xpew = Xq + %(130 - Xold)-

Going from 999 to 1000 measurements, Xpew = X¢jd + ﬁ (b1000 —Xo1q) Would only
need Xg1q and the latest value byg00. We don’t have to average all 1000 numbers!
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Solution The new measurement b4 = 130 adds a fourth equation and X is updated to 100.
You can average by, by, b3, by or combine the average of by, b, b3 with by:

70 + 80 + 120 + 130
4

~ 1 . 1
=100 isalso Foiq + 5(bs = Tola) = 90+ 7(40).

The update from 999 to 1000 measurements shows the gam matrix” 1000 1n a Kalman
filter multiplying the prediction error bpew — X)q. Notice —:= :

1000 = 995 — 999000
2 _b1+°°'+b1ooo_b1+---+b999+ 1 _b1+"'+b999)
new = 1000 - 999 1000 \ 1000 999 '
Problem Set 4.2

Questions 1-9 ask for projections onto lines. Also errors ¢ = b — p and matrices P.

1 Project the vector 4 onto the line through a. Check that e is perpendicular to a:

1 1 1 -1
(@ b=|2 and a= 11 b) b=|3 and a=] -3
21 1 1 -1

2 Draw the projection of b onto a and also compute it from p = Xa:

()b_[cl‘fg] and a:[é] ) bz[i] and a=[_i].

3 In Problem 1, find the projection matrix P = aa’/a’a onto the line through each
vector a. Verify in both cases that P2 = P. Multiply P in each case to compute
the projection p.

4 Construct the projection matrices P; and P, onto the lines through the a’s in Prob-
lem 2. Is it true that (P; + P;)? = P; + P,? This would be true if Py P, = 0.

5 Compute the projection matrices aa/a'a onto the lines througha; = (—1,2,2) and
a; = (2,2,—1). Multiply those projection matrices and explain why their product
P1 P, is what it is.

6 Project b = (1,0, 0) onto the lines through a; and @, in Problem 5 and also onto
a3 = (2,—1,2). Add up the three projections p, + p, + ps.

7 Continuing Problems 5-6, find the projection matrix P3 onto as = (2, —1, 2). Verify
that P; 4+ P, + P3 = I. The basis a1, a,, as is orthogonal!

8 Project the vector & = (1, 1) onto the lines through a; = (1,0) and a, = (1,2).
Draw the projections p, and p, and add p, + p,. The projections do not add to b
because the a’s are not orthogonal.
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Questions 5-6-7 Questions 8-9-10

9 In Problem 8, the projection of b onto the plane of a; and a, will equal . Find
P =AATA) AT for A =[a; az]=[}1]

10 Project a; = (1,0) onto a; = (1,2). Then project the result back onto ;. Draw
these projections and multiply the projection matrices P; P,: Is this a projection?

Questions 11-20 ask for projections, and projection matrices, onto subspaces.

11 Project b onto the column space of A by solving ATAX = ATd and p = AX:

1 1 2 1 1 4
(a) A=1}10 1 and b=|3 by A=|1 1 and b= |4
0 0 4 0 1 6

Find e = b — p. It should be perpendicular to the columns of A.

12  Compute the projection matrices P; and P, onto the column spaces in Problem 11.
Verify that P1b gives the first projection p,. Also verify P7 = P;.

13  (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last
column removed. 4 is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of A.
What shape is the projection matrix P and what is P?

14  Suppose b equals 2 times the first column of A. What is the projection of b onto
the column space of A? Is P = [ for sure in this case? Compute p and P when
b = (0,2, 4) and the columns of A are (0, 1,2) and (1, 2, 0).

15 If A isdoubled, then P = 2A(4ATA)"12A4T. This is the same as A(ATA) "' AT. The
column space of 24 is the same as . Is X the same for A and 24?

16  What linear combination of (1,2, —1) and (1,0, 1) is closestto b = (2,1, 1)?

17 (Important) If P2 = P show that (I — P)? = I — P. When P projects onto the
column space of A, I — P projects onto the
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18

19

20
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(a) If P is the 2 by 2 projection matrix onto the line through (1, 1), then I — P is
the projection matrix onto

(b) If P is the 3 by 3 projection matrix onto the line through (1,1, 1),then I — P
is the projection matrix onto

To find the projection matrix onto the plane x — y — 2z = 0, choose two vectors in
that plane and make them the columns of A. The plane should be the column space.
Then compute P = A(ATA4)1AT.

To find the projection matrix P onto the same plane x — y — 2z = 0, write down a
vector e that is perpendicular to that plane. Compute the projection Q = ee/eTe
andthen P =1 — Q.

Questions 21-26 show that projection matrices satisfy P2 =P and PT= P.

21

22

23

24

25

26
27

28

29

Muitiply the matrix P = A(ATA) 1 AT by itself. Cancel to prove that P2 = P,
Explain why P (P b) always equals Pb: The vector Pb is in the column space so its
projection is

Prove that P = A(ATA)"1AT is symmetric by computing PT. Remember that the
inverse of a symmetric matrix is symmetric.

If A is square and invertible, the warning against splitting (4T A)~! does not apply.
It is true that AA™1(ATY"1AT = I. When A is invertible, why is P = I? What is
the errore?

The nullspace of AT is to the column space C(A4). So if ATh = 0, the
projection of b onto C(A) should be p = . Check that P = A(ATA) 14T
gives this answer.

The projection matrix P onto an n-dimensional subspace has rank r = n.
Reason: The projections P b fill the subspace S. So S is the of P,

If an m by m matrix has A% = A and its rank is m, prove that A = I.

The important fact that ends the section is this: If ATAx = 0 then Ax = 0.
New Proof: The vector Ax is in the nullspace of . Ax is always in the column
space of . To be in both of those perpendicular spaces, Ax must be zero.

Use PT = P and P? = P to prove that the length squared of column 2 always
equals the diagonal entry Pa,. This number is % = % + % + % for

-1

5
P = 2
-1

N NN

1
6 5

If B has rank m (full row rank, independent rows) show that BBT is invertible.
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Challenge Problems

30 (a) Find the projection matrix P¢c onto the column space of A (after looking closely

at the matrix!)
3 6 6
A= [ 4 8 8 ]

(b) Find the 3 by 3 projection matrix Pg onto the row space of A. Multiply B =
Pc APpg. Your answer B should be a little surprising—can you explain it?

31 In R™, suppose I give you b and p, and p is a combination of a;,...,a,. How
would you test to see if p is the projection of & onto the subspace spanned by the
a’s?

32 Suppose P; is the projection matrix onto the 1-dimensional subspace spanned by
the first column of A. Suppose P, is the projection matrix onto the 2-dimensional
column space of 4. After thinking a little, compute the product P, P;.

1 0
A= 2 1
0 1

33 P; and P, are projections onto subspaces S and 7. What is the requirement on
those subspaces to have Py P, = P, P;?

34 If A hasr independent columns and B has r independent rows, A B is invertible.
Proof: When A is m by r with independent columns, we know that AT 4 is invertible.
If B is r by n with independent rows, show that BBT is invertible. (Take 4 = B™.)

Now show that AB has rank r. Hint: Why does AT ABBT have rank r? That matrix
multiplication by AT and BT cannot increase the rank of A B, by Problem 3.6:26.
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4.3 Least Squares Approximations

It often happens that Ax = b has no solution. The usual reason is: t0o many equations.
The matrix has more rows than columns. There are more equations than unknowns
(m is greater than n). The n columns span a small part of m-dimensional space. Unless all
measurements are perfect, b is outside that column space. Elimination reaches an
impossible equation and stops. But we can’t stop just because measurements include noise.

To repeat: We cannot always get the error e = b — Ax down to zero. When e is zero,
x is an exact solution to Ax = b. When the length of e is as small as possible, X is a
least squares solution. Our goal in this section is to compute X and use it. These are real
problems and they need an answer.

The previous section emphasized p (the projection). This section emphasizes X (the
least squares solution). They are connected by p = AX. The fundamental equation is still
ATAX = A"h. Here is a short unofficial way to reach this equation:

Example 1 A crucial application of least squares is fitting a straight line to m points.
Start with three points: Find the closest line to the points (0, 6), (1,0), and (2, 0).

No straight line » = C + Dt goes through those three points. We are asking for two
numbers C and D that satisfy three equations. Here are the equations at ¢ = 0,1,2 to
match the given values b = 6,0, 0:

t =0  The first pointison the line b = C + Dr if
t=1 The second point is on the line b = C + Dt if
t =2  The third point is on the line b = C + Dt if

This 3 by 2 system has ro solution: b = (6,0,0) is not a combination of the columns
(1,1,1) and (0, 1, 2). Read off A4, x, and b from those equations:

1 0 c 6
A=1|1 1 X = [ ] b=10 Ax = b is not solvable.
1 2 0

The same numbers were in Example 3 in the last section. We computed ¥ = (5,—3).
Those numbers are the best C and D, so 5 — 3¢ will be the best line for the 3 points.
We must connect projections to least squares, by explaining why ATAX = ATb.

In practical problems, there could easily be m = 100 points instead of m = 3. They
don’t exactly match any straight line C 4+ D¢. Our numbers 6, 0, 0 exaggerate the error so
you can see e, e, and e3 in Figure 4.6.

Minimizing the Error

How do we make the error e = b — Ax as small as possible? This is an important question
with a beautiful answer. The best x (called X) can be found by geometry or algebra or
calculus: 90° angle or project using P or set the derivative of the error to zero.
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By geometry Every Ax lies in the plane of the columns (1,1, 1) and (0, 1,2). In that
plane, we look for the point closest to &. The nearest point is the projection p.

The best choice for AX is p. The smallest possible error is e = b — p. The three points at
heights (p,, p2, p3) do lie on a line, because p is in the column space. In fitting a straight
line, X gives the best choice for (C, D).

By algebra Every vector b splits into two parts. The part in the column space is p.
The perpendicular part in the nullspace of AT is e. There is an equation we cannot solve
(Ax = b). There is an equation AX = p we do solve (by removing e):

Ax = b = p + e isimpossible; AX = p is solvable. (D)
The solution to AX = p leaves the least possible error (which is e):
Squared length for any x |Ax —B||? = ||[Ax — p||*> + |le||*. (2)

This is the law ¢? = a? + b? for a right triangle. The vector Ax — p in the column space is
perpendicular to e in the left nulispace. We reduce Ax — p to zero by choosing x to be X
That leaves the smallest possible error e = (e, €2, €3).

Notice what “smallest” means. The squared length of Ax — b is minimized:

The least squares solution X makes E = ||Ax — b||? as small as possible.

column space

a

errors = vertical distances to line e=(1,-2,1

Figure 4.6: Best line and projection: Two pictures, same problem. The line has heights
p = (5,2,—1) witherrors e = (1,—2, 1). The equations ATAX = ATd give X = (5, -3).
The best line is » = 5 — 3¢ and the projection is p = 5a; — 3a,.

Figure 4.6a shows the closest line. It misses by distances ej,ez,e3 = 1,-2,1.
Those are vertical distances. The least squares line minimizes £ = e? + €3 + €2.
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Figure 4.6b shows the same problem in 3-dimensional space (b p e space). The vector
b is not in the column space of A. That is why we could not solve Ax = b. No line goes
through the three points. The smallest possible error is the perpendicular vector e. This is
= b — AX, the vector of errors (1, —2, 1) in the three equations. Those are the distances
from the best line. Behind both figures is the fundamental equation ATAX = ATh.
Notice that the errors 1, —2, 1 add to zero. The error e = (e, ez, e3) is perpendicular
to the first column (1, 1, 1) in A. The dot product gives e; + e; + e3 = 0.

By calculus Most functions are minimized by calculus! The graph bottoms out and the
derivative in every direction is zero. Here the error function £ to be minimized is a sum of
squares e} + e3 + e2 (the square of the error in each equation):

E=|Ax—b*=(C+D-0-6>+(C+D-1)*+(C+D-2)2 (3)

The unknowns are C and D. With two unknowns there are two derivatives—both zero
at the minimum. They are “partial derivatives” because dE /dC treats D as constant and
0E /0D treats C as constant:

dE/3C =2(C+D-0-6) +2(C+D-1) +2(C+D-2) =0
dE/3D =2(C + D -0—6)(0) +2(C + D - 1)(1) +2(C + D - 2)(2) = 0.

0E /0D contains the extra factors 0,1, 2 from the chain rule. (The last derivative from
(C + 2D)? was 2 times C + 2D times that extra 2.) In the C derivative the corresponding
factors are 1, 1, 1, because C is always multiplied by 1. It is no accident that 1, 1, 1 and
0, 1, 2 are the columns of A.

Now cancel 2 from every term and collect all C’s and all D’s:

The C derivative is zero: 3C +3D =6

The D derivative is zero: 3C +5D =0

. . 3 3
This matrix [ 3 5

] isATA (&)

These equations are identical with ATAX = A"b. The best C and D are the components
of ¥. The equations from calculus are the same as the “normal equations” from linear
algebra. These are the key equations of least squares:

The partial derivatives of ||Ax — b|> are zero when ATAZ = A",

The solution is C = 5 and D = —3. Therefore b = 5 — 3¢ is the best line—it comes
closest to the three points. At ¢ = 0, 1, 2 this line goes through p = 5, 2, —1.
It could not go through b = 6, 0, 0. The errors are 1, —2, 1. This is the vector e!

The Big Picture

The key figure of this book shows the four subspaces and the true action of a matrix. The
vector x on the left side of Figure 4.3 went to 5 = Ax on the right side. In that figure x
was split into x, + x,. There were many solutions to Ax = b.
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column space
inside R

solvable

Tow space P is in the column space

is R

AX =p
bestx Ax = _
not solvable _(\
b not in the column space \\

0

Independent columns

nullspace
Nullspace = {0}

of AT

Figure 4.7: The projection p = AX is closest to b, so X minimizes E = [[p — Ax |2

In this section the situation is just the opposite. There are no solutions to Ax = b.
Instead of splitting up x we are splitting up b. Figure 4.3 shows the big picture for least
squares. Instead of Ax = b we solve AX = p. The error e = b — p is unavoidable.

Notice how the nullspace N(A) is very small—just one point. With independent
columns, the only solution to Ax = 0is x = 0. Then AT 4 is invertible. The equation
AT AX = ATb fully determines the best vector X¥. The error has ATe = 0.

Chapter 7 will have the complete picture—all four subspaces included. Every x splits
into x, + x5, and every b splits into p + e. The best solution is ¥, in the row space. We
can’t help e and we don’t want x ,—this leaves AX = p.

Fitting a Straight Line

Fitting a line is the clearest application of least squares. It starts with m > 2 points,
hopefully near a straight ling. At times f#1,...,!, those m points are at heights
by,...,by. The best line C + Dt misses the points by vertical distances ey, ..., en.
No line is perfect, and the least squares line minimizes £ = €2 + --- + e2.

The first example in this section had three points in Figure 4.6. Now we allow m points
(and m can be large). The two components of X are still C and D.

A line goes through the m points when we exactly solve Ax = b. Generally we can’t
do it. Two unknowns C and D determine a line, so 4 has only n = 2 columns. To fit the
m points, we are trying to solve m equations (and we only want two!):

C + Dty = by 1

C + Dty = by 1 o

Ax =b is with A=1. . 1. &)




222 Chapter 4. Orthogonality

The column space is so thin that almost certainly & is outside of it. When & happens to lie
in the column space, the points happen to lie on a line. In that case b = p. Then Ax = b
is solvable and the errors are e = (0,...,0).

The closest line C + Dt has heights py, ..., pm with errors ey, ..., em.
Solve ATAY = ATb for ¥ = (C, D). The errors are e; = b; — C — Dt;.

Fitting points by a straight line is so important that we give the two equations ATAX =
ATh, once and for all. The two columns of A are independent (unless all times #; are the
same). So we turn to least squares and solve ATAX = ATb.

5
5 =[m Zt"] ©)

Dot-product matrix A'A4 = [1 1] L St 1t}
m

ty o I,
On the right side of the normal equation is the 2 by 1 vector ATb:

by
o [1 o 17| _[Za
Ab_[tl tm:l b: —I:thbfjl. @

m

In a specific problem, these numbers are given. The best X = (C, D) is in equation (9).

G e e 5

50 Eil[5]-(5a)

The vertical errors at the m points on the line are the components of e = b — p. This
error vector (the residual) b — AX is perpendicular to the columns of A (geometry). The
error is in the nullspace of AT (linear algebra). The best ¥ = (C, D) minimizes the total
error E, the sum of squares:

E(x) = |[Ax — b|> = (C + Dt; — by)* + -+ + (C + Dt — bm)*.

When calculus sets the derivatives dE/3C and 9E /9D to zero, it produces ATAx = AT5.

Other least squares problems have more than two unknowns. Fitting by the best parabola
has n = 3 coefficients C, D, E (see below). In general we are fitting m data points
by n parameters xi,...,X,. The matrix A has n columns and n < m. The derivatives
of ||[Ax — b||? give the n equations ATAX = ATh. The derivative of a square is linear.
This is why the method of least squares is so popular.

Exampie 2 A has orthogonal columns when the measurement times #; add to zero.
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Suppose b = 1,2,4 at times t = —2,0,2. Those times add to zero. The columns of A
have zero dot product:

C+D(-2)=1 1 -2 C 1

C+ DO)=2 or Ax=|1 O [D:,= 2

C+ D2)=4 1 2 4

Look at the zeros in AT A:

T 4o _ 4T ) 3 0j1C | _ 7
A Ax = A°b is [O 8][D =16l

Main point: Now AT A is diagonal. We can solve separately for C = % and D = %. The
zeros in ATA are dot products of perpendicular columns in 4. The diagonal matrix AT A,
with entries m = 3 and 17 + 13 + 13 = 8, is virtually as good as the identity matrix.

Orthogonal columns are so helpful that it is worth moving the time origin to produce
them. To do that, subtract away the average time f = (f; + -+ + )/ m. The shifted times
T, = t; —tTadd to 3. T; = mt —mt = 0. With the columns now orthogonal, AT 4 is
diagonal. Its entries are m and T2 + - -- + T,2. The best C and D have direct formulas:

b]+"'+bm —b1T1+"’+mem

Tist -1 C = and D= 5
m T1+"’+Tn21

9)

The best lineis C + DT or C + D(t —7). The time shift that makes AT 4 diagonal is an
example of the Gram-Schmidt process: orthogonalize the columns in advance.

Fitting by a Parabola

If we throw a ball, it would be crazy to fit the path by a straight line. A parabola b =
C + Dt + Et? allows the ball to go up and come down again (b is the height at time ¢).
The actual path is not a perfect parabola, but the whole theory of projectiles starts with that
approximation.

When Galileo dropped a stone from the Leaning Tower of Pisa, it accelerated.
The distance contains a quadratic term % gt?. (Galileo’s point was that the stone’s mass
is not involved.) Without that, t? term we could never send a satellite into the right or-
bit. But even with a nonlinear function like ¢, the unknowns C, D, E appear linearly!
Choosing the best parabola is still a problem in linear algebra.

Problem Fit heights by, ..., b, at times ¢;,. .., &, by a parabola C + Dt + Er2.

Solution With m > 3 points, the m equations for an exact fit are generally unsolvable:

: has the m by 3 matrix A=1. + < |. (@10)
2
C + Dty + Et2 = by, 1 tm 1,

Least squares The closest parabola C + Dt + Et? chooses ¥ = (C,D,E) to
satisfy the three normal equations ATAX = ATb.
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May I ask you to convert this to a problem of projection? The column space of A has
dimension . The projection of & is p = AX, which combines the three columns
using the coefficients C, D, E. The error at the first data pointis e; = b; —C — Dt; — Etlz.
The total squared error is e:f + . If you prefer to minimize by calculus, take the
partial derivatives of E with respect to , , . These three derivatives will
be zero when ¥ = (C, D, E) solves the 3 by 3 system of equations

Section 8.5 has more least squares applications. The big one is Fourier series—
approximating functions instead of vectors. The function to be minimized changes from a

sum of squared errors e2 + --- 4 €2 to an integral of the squared error.
q 1 m g q

Example 3 Fora parabola b = C + Dt + Et? to go through the three heights b = 6, 0,0
whent = 0, 1, 2, the equations are

C+D-0+E-0°=6
C+D.1+E-12=0 (11)
C+D-2+E.22=0.

This is Ax = b. We can solve it exactly. Three data points give three equations and a
square matrix. The solution is x = (C, D, E) = (6,—9,3). The parabola through the
three points in Figure 4.8ais b = 6 — 9 + 3¢2.

What does this mean for projection? The matrix has three columns, which span the
whole space R>. The projection matrix is the identity. The projection of b is b. The error
is zero. We didn’t need ATAX = ATb, because we solved Ax = b. Of course we could
multiply by AT, but there is no reason to do it.

Figure 4.8 also shows a fourth point b4 at time #4. If that falls on the parabola, the new
Ax = b (four equations) is still solvable. When the fourth point is not on the parabola, we
turn to ATAX = ATh. Will the least squares parabola stay the same, with all the error at
the fourth point? Not likely!

The smallest error vector (e, ez, e3, e4) is perpendicular to (1, 1, 1, 1), the first column
of A. Least squares balances out the four errors, and they add to zero.

6 9 0
. 1
6 4
2
b==6—9+ 32 0. . Re 71
0 0
b4 1
2
b4 1 s
1
1
1

0 — —
4 v

Figure 4.8: From Example 3: An exact fit of the parabola at 1 = 0, 1,2 means that p = b
and e = 0. The point b4 off the parabola makes m > n and we need least squares.
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= REVIEW OF THE KEY IDEAS =

1. The least squares solution ¥ minimizes E = ||Ax — b||%. This is the sum of squares
of the errors in the m equations (m > n).

2. The best X comes from the normal equations ATAX = ATb.
3. To fit m points by a line b = C + D¢, the normal equations give C and D.

4. The heights of the best line are p = (p1,..., pm). The vertical distances to the data
points are the errors ¢ = (e1,...,€m).

5. If we try to fit m points by a combination of # < m functions, the m equations
Ax = b are generally unsolvable. The n equations ATAX = ATh give the least
squares solution—the combination with smallest MSE (mean square error).

= WORKED EXAMPLES =

4.3 A  Start with nine measurements by to bg, all zero, at times t = 1,...,9. The
tenth measurement ;9 = 40 is an outlier. Find the best horizontal line y = C to fit
the ten points (1,0),(2,0),...,(9,0),(10,40) using three measures for the error E:

2

(1) Least squares E, = e? + --- + e2, (then the normal equation for C is linear)
q 1 10

(2) Least maximum error Eo = Jemax| (3) Least sum of errors £y = |eg| +--- + |eyol.
Solution (1) The least squares fit to 0,0,...,0,40 by a horizontal line is C = 4:

A=columnofl’s ATA =10 A" = sumofb; = 40. So 10C = 40.

(2) The least maximum error requires C = 20, halfway between 0 and 40.

(3) The least sum requires C = 0 (1!). The sum of errors 9|C| + |40 — C| would increase
if C moves up from zero.

The least sum comes from the median measurement (the median of 0, . .., 0, 40 is zero).
Many statisticians feel that the least squares solution is too heavily influenced by outliers
like b1p = 40, and they prefer least sum. But the equations become nonlinear.

Now find the least squares straight line C + Dt through those ten points.

A= [gn }%Z‘"] - [;(5) 332] A% = [ZZ:’;] ) [44000]

Those come from equation (8). Then ATAX = ATh gives C = —8 and D = 24/11.

What happens to C and D if you multiply the b; by 3 and then add 30 to get
baew = (30, 30,...,150)? Linearity allows us to rescale b = (0,0, ..., 40). Multiplying
b by 3 will multiply C and D by 3. Adding 30 to all b; will add 30to C.
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4.3B  Find the parabola C + Dt + Et? that comes closest (least squares error) to the val-
ues b = (0,0,1,0,0) at the times ¢ = —2,—1,0, 1, 2. First write down the five equations
Ax = b in three unknowns x = (C, D, E) for a parabola to go through the five points. No
solution because no such parabola exists. Solve ATAX = ATh.

I would predict D = 0. Why should the best parabola be symmetric around ¢ = (0?
In ATAX = A™b, equation 2 for D should uncouple from equations 1 and 3.

Solution  The five equations Ax = b have a rectangular “Vandermonde” matrix A:

C+D(=2)+ E(-2?>=0 1 -2 4]
C+D(E1)+ED?*=0 1 -1 1 5 0 10
C+D OO+E 02=1 4=|1 0 0 ATA=] 0 10 0
C+D (H)+E (D2=0 1 11 10 0 34
C+D Q+E 22=0 1 2 4]

Those zeros in AT A mean that column 2 of 4 is orthogonal to columns 1 and 3. We see this
directly in A (the times —2,—1,0, 1,2 are symmetric). The best C, D, E in the parabola
C + Dt + Et? come from ATAX = Ah, and D is uncoupled:

5 0 10 C 1 C =34/70

0 10 O D |=|0 leadsto D =0 as predicted

10 0 34 E 0 E =-10/70
Problem Set 4.3

Problems 1-11 use four data points & = (0, 8, 8, 20) to bring out the key ideas.

1 With b = 0,8,8,20 at + = 0,1,3,4, set up and solve the normal equations
ATAX = ATh. For the best straight line in Figure 4.9a, find its four heights p;
and four errors ¢;. What is the minimum value E = e? + €2 + 3 + 2?7

2 (Line C + Dt does go through p’s) With » = 0,8, 8,20 at times r = 0,1, 3,4,
write down the four equations Ax = b (unsolvable). Change the measurements to
p = 1,5,13,17 and find an exact solution to AX = p.

3 Check thate = b — p = (—1,3,-5,3) is perpendicular to both columns of the
same matrix A. What is the shortest distance |le[| from b to the column space of A?

4 (By calculus) Write down E = ||Ax — b||? as a sum of four squares—the last one
is (C + 4D — 20)2. Find the derivative equations dE/9dC = 0 and dE/3D = 0.
Divide by 2 to obtain the normal equations AT AX = A7b.

5 Find the height C of the best Aorizontal line to fit b = (0, 8, 8,20). An exact fit
would solve the unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the
4 by 1 matrix A in these equations and solve ATAX = ATh. Draw the horizontal line
at height ¥ = C and the four errors in e.
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6

10

1

by=20 T

Project b = (0, 8, 8, 20) onto the line through a = (1,1,1,1). Find X = ab/a"a
and the projection p = Xa. Check that e = b — p is perpendicular to a, and find the
shortest distance ||e|| from b to the line through a.

Find the closest line b = Dt, through the origin, to the same four points. An exact
fit wouldsolve D -0 =0,D-1=28,D .3 =28, D -4 = 20. Find the 4 by 1 matrix
and solve ATAX = ATh. Redraw Figure 4.9a showing the best line » = Dt and the
e’s.

Project b = (0, 8, 8, 20) onto the line through @ = (0,1,3,4). Find X = D and
p = xa. The best C in Problems 5-6 and the best D in Problems 7-8 do not agree

with the best (C, D) in Problems 1—4. That is because (1, 1,1, 1) and (0, 1, 3, 4) are
perpendicular.

For the closest parabola b = C + Dt + Et2 to the same four points, write down the
unsolvable equations Ax = b in three unknowns x = (C, D, E). Set up the three
normal equations AT AX = ATb (solution not required). In Figure 4.9a you are now
fitting a parabola to 4 points—what is happening in Figure 4.9b7

For the closest cubic b = C + Dt + Et% + Ft3 to the same four points, write down
the four equations Ax = b. Solve them by elimination. In Figure 4.9a this cubic
now goes exactly through the points. What are p and e?

The average of the four times is 7 = %(O + 1+ 3+ 4) = 2. The average of the
four b’sish = 1(0+8+ 8 +20) = 9.

(a) Verify that the best line goes through the center point (7, 7;) = (2,9).
(b) Explain why C + Dt = b comes from the first equation in ATAX = ATh.

b = (0,8,8,20)

N
N
e ~

\

\p=Ca1+Da2

a; =(0,1,3,4)

o =(1,1,1,1)

Figure 4.9: Problems 1-11: The closest line C 4+ D¢ matches Ca; + Das in R*.
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Questions 12-16 introduce basic ideas of statistics—the foundation for least squares.

12  (Recommended) This problem projects b = (b1, ..., b;y) onto the line through a =
(1,...,1). We solve m equations ax = b in 1 unknown (by least squares).

(a) Solve a'aX = a™h to show that X is the mean (the average) of the b’s.

(b) Find e = b — aX and the variance ||e||?

(c) The horizontal line b = 3 is closest to b = (1,2,6). Check that p = (3,3,3)
is perpendicular to e and find the 3 by 3 projection matrix P.

and the standard deviation | e||.

13  First assumption behind least squares: Ax = b— (noise e with mean zero). Multiply
the error vectors e = b—Ax by (ATA)~!1 AT to get ¥ —x on the right. The estimation
errors X — x also average to zero. The estimate X is unbiased.

14  Second assumption behind least squares: The m errors e; are independent with vari-
ance 02, so the average of (b — Ax)(b — Ax)T is 021. Multiply on the left by
(ATA)"'AT and on the right by A(ATA)™! to show that the average matrix
(X — x)(X — x)T is 62(ATA) ™. This is the covariance matrix P in section 8.6.

15 A doctor takes 4 readings of your heart rate. The best solutionto x = b;,...,x = by
is the average X of by,...,bs. The matrix 4 is a column of 1’s. Problem 14 gives
the expected error (X — x)? as 02(ATA)~! = . By averaging, the variance

drops from ¢ to 6% /4.

16  If you know the average X9 of 9 numbers by, ..., bg, how can you quickly find the
average X1o0 with one more number b1o ? The idea of recursive least squares is to
avoid adding 10 numbers. What number multiplies X¢ in computing X1¢?

o~

X10 = 5b1o + 9 = {5(b1 + -+ + b1g) asin Worked Example 4.2 C.

Questions 17-24 give more practice with X and p and e.

17  Write down three equations for the line b = C 4 Dt to go throughb = 7at¢ = —1,
b=7Tatt =1,and b = 21 att = 2. Find the least squares solution ¥ = (C, D)
and draw the closest line.

18  Find the projection p = AX in Problem 17. This gives the three heights of the closest
line. Show that the error vectoris e = (2, —6,4). Why is Pe = 0?

19  Suppose the measurements at ¢ = —1, 1,2 are the errors 2,—6,4 in Problem 18.
Compute X and the closest line to these new measurements. Explain the answer:
b = (2,6, 4) is perpendicular to so the projection is p = 0.

20  Suppose the measurements at ¢ = —1, 1,2 are b = (5,13, 17). Compute ¥ and the

closest line and e. The error is ¢ = 0 because this b is

21 Which of the four subspaces contains the error vector ¢? Which contains p? Which
contains X? What is the nullspace of A?
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Find the bestline C + Dt tofith =4,2,—1,0.0 at timest = -2,—-1,0,1, 2.

Is the error vector e orthogonal to b or p or e or X7 Show that |le||? equals eTd
which equals 5Td — pTh. This is the smallest total error E.

The partial derivatives of || Ax||? with respect to xj,...,x, fill the vector 24T Ax.
The derivatives of 2b” Ax fill the vector 24Td. So the derivatives of ||Ax — b||? are
zero when

Challenge Problems

What condition on (t1,b;). (t2, b2).(t3, b3) puts those three points onto a straight
line? A column space answer is: (by, b2, b3) must be a combination of (1, 1, 1) and
(1., 12, t3). Try to reach a specific equation connecting the 7°s and 4’s. I should have
thought of this question sooner!

Find the plane that gives the best fit to the 4 values b = (0, 1, 3,4) at the corners
(1,0) and (0, 1) and (—1,0) and (0, —1) of a square. The equations C + Dx+ Ey =
b at those 4 points are Ax = b with 3 unknowns x = (C, D, E). What is A?
At the center (0, 0) of the square, show that C + Dx + E'y = average of the b’s.

(Distance between lines) The points P = (x,x,x) and Q = (y,3y,—1) are on two
lines in space that don’t meet. Choose x and y to minimize the squared distance
| P — Q. The line connecting the closest P and Q is perpendicular to .

Suppose the columns of A are not independent. How could you find a matrix B so
that P = B(BTB)~! BT does give the projection onto the column space of A? (The
usual formula will fail when AT A4 is not invertible.)

Usually there will be exactly one hyperplane in R” that contains the n given points
x = 0,a,,...,a,-;. (Example for n = 3: There will be one plane containing
0,a;, as unless .) What is the test to have exactly one plane in R"?
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4.4 Orthogonal Bases and Gram-Schmidt

This section has two goals. The first is to see how orthogonality makes it easy to find X and
p and P. Dot products are zero—so AT A becomes a diagonal matrix. The second goal
is to construct orthogonal vectors. We will pick combinations of the original vectors to
produce right angles. Those original vectors are the columns of A, probably not orthogonal.
The orthogonal vectors will be the columns of a new matrix Q.

From Chapter 3, a basis consists of independent vectors that span the space.
The basis vectors could meet at any angle (except 0° and 180°). But every time we visu-
alize axes, they are perpendicular. In our imagination, the coordinate axes are practically
always orthogonal. This simplifies the picture and it greatly simplifies the computations.

The vectors ¢, ..., q, are orthogonal when their dot products ¢; - g ; are zero. More
exactly g7 ¢ j = 0 whenever i # j. With one more step—just divide each vector by its
length—the vectors become orthogonal unit vectors. Their lengths are all 1. Then the
basis is called orthonormal.

The matrix Q is easy to work with because QT Q = I. This repeats in matrix language
that the columns ¢,, ..., ¢,, are orthonormal. Q is not required to be square.

When row i of QT multiplies column j of Q, the dot product is ¢} ¢ ;. Off the diagonal
(i # j) that dot product is zero by orthogonality. On the diagonal (i = j) the unit vectors
give g7 ¢q; = ||q;||*> = 1. Often Q is rectangular (m > n). Sometimes m = n.

When Q is square, QT Q = I means that Q"= Q~1: transpose = inverse.

If the columns are only orthogonal (not unit vectors), dot products still give a diagonal
matrix (not the identity matrix). But this matrix is almost as good. The important thing is
orthogonality—then it is easy to produce unit vectors.
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To repeat: QTQ = I even when Q is rectangular. In that case Q7 is only an inverse
from the left. For square matrices we also have Q QT = I, so Q7 is the two-sided in-
verse of 0. The rows of a square Q are orthonormal like the columns. The inverse is the
transpose. In this square case we call Q an orthogonal matrix.!

Here are three examples of orthogonal matrices—rotation and permutation and reflec-
tion. The quickest test is to check 0TQ = I.

Example 1 (Rotatlon) Q rotates every vector in the plane clockwise by the angle 6:

e B

( 0 = [cos@ —smB] '

sinf@ cosf

| Q- Q_H I: cos@ sme]

sinf cos@

The columns of Q are orthogonal (take their dot product). They are unit vectors because
sin @ + cos2 @ = 1. Those columns give an orthonormal basis for the plane R®. The
standard basis vectors i and j are rotated through 8 (see Figure 4.10a). Q ! rotates vectors
back through —6. It agrees with QT, because the cosine of —6 is the cosine of 6, and
sin(—0) = —sin@. Wehave QTQ = I and QQT = I.

Example 2 (Permutation) These matrices change the order to (y, z, x) and (y, x):

010 x y
00 t||y|l=|z]| and [(1) é”"}=[i]
10 0f]: X Y

All columns of these Qs are unit vectors (their lengths are obviously 1). They are also
orthogonal (the 1’s appear in different places). The inverse of a permutation matrix is its
transpose. The inverse puts the components back into their original order:

0 0 1 X 0 1 X
Inverse = transpose: 1 00 z | =1y and [1 0] lii ] = I: ] .
010 z Y

Example 3 (Reflection) If # is any unit vector, set Q = [ — 2uu’. Notice that
uuT is a matrix while #Tu is the number ||u||? = 1. Then Q7 and Q! both equal Q:

and 070 =1 —4uu™ + 4un"uu™ = 1. (2)

Reflection matrices / — 2uu’ are symmetric and also orthogonal. If you square them, you
get the identity matrix: Q2 = QTQ = I. Reflecting twice through a mirror brings back
the original. Notice #Tu = 1 inside 4uuTuu" in equation (2).

1“Orthonormal matrix” would have been a better name for Q, but it’s not used. Any matrix with
orthonormal columns has the letter O, but we only call it an orthogonal matrix when it is square.
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—sind
cos

Figure 4.10: Rotation by 0 = [§ ™% ] and reflection across 45° by Q@ = [¢1].

As examples choose two unit vectors, # = (1,0) and then # = (1//2,-1//2).
Compute 2uu" (column times row) and subtract from I to get reflections Q; and Q5:

ool o[ 1) e omraL £ [0 1)

Q reflects (x,0) across the y axis to (—x,0). Every vector (x, y) goes into its image
(—x, y), and the y axis is the mirror. Q is reflection across the 45° line:

v [ 4J1-5) = [ 001

When (x, y) goes to (y, x), a vector like (3, 3) doesn’t move. It is on the mirror line.
Figure 4.10b shows the 45° mirror.

Rotations preserve the length of a vector. So do reflections. So do permutations. So
does multiplication by any orthogonal matrix—Ilengths and angles don’t change.

| Qx| = [|x|| for every vector x.

t5: (Qx)"(Qy) =

Proof ||Qx|? equals |x||* because (Ox)T(Qx) = xT0T0x = xTIx = xTx.
Orthogonal matrices are excellent for computations—numbers can never grow too large
when lengths of vectors are fixed. Stable computer codes use Q’s as much as possible.

Projections Using Orthogonal Bases: O Replaces A

This chapter is about projections onto subspaces. We developed the equations for X and
p and the matrix P. When the columns of A were a basis for the subspace, all formulas
involved AT A. The entries of ATA are the dot products a’a ;.
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Suppose the basis vectors are actually orthonormal. The a’s become ¢’s. Then ATA
simplifies to QTQ = I. Look at the improvements in X and p and P. Instead of QT Q we
print a blank for the identity matrix:

__ X¥=Q0" and p=Qx and P=0Q or. )
The least squares solution of Qx = b is X = Q"b. The projection matrixis P = QQ".

There are no matrices to invert. This is the point of an orthonormal basis. The best ¥ =
Q7b just has dot products of q4,...,q, with 5. We have n 1-dimensional projections!
The “coupling matrix” or “correlation matrix” ATA4 is now QTQ = I. There is no cou-
pling. When 4 is Q, with orthonormal columns, here is p = 0% = QQ7b:

Projection
onto q’s

&)

ql(q1b> + +q,,(q};b)

Important case: When Q is square and m = n, the subspace is the whole space. Then
07" = Q0 landX = Qb isthe sameas x = Q~'b. The solution is exact! The projection
of b onto the whole space is b itself. In thiscase P = Q QT = I.

You may think that projection onto the whole space is not worth mentioning. But when
p = b, our formula assembles b out of its 1-dimensional projections. If ¢,,...,¢, is an
orthonormal basis for the whole space, so Q is square, then every b = Q QTb is the sum
of its components along the ¢’s:

(6)

That is Q QT = I. It is the foundation of Fourier series and all the great “transforms” of
applied mathematics. They break vectors or functions into perpendicular pieces. Then by
adding the pieces, the inverse transform puts the function back together.

Example 4 The columns of this orthogonal Q are orthonormal vectors ¢,¢5,¢3:

-2 2
O==| 2 -1 2| has Q0T0=00T=
31 2 2 41

The separate projections of b = (0,0,1) onto ¢, and g, and ¢5 are p,; and p, and p,:

q:1(q1b) = 2q, and q,(q3b) = %24, and gqs(g3d) = —1q,.

The sum of the first two is the projection of b onto the plane of ¢, and ¢,. The sum of all
three is the projection of b onto the whole space—which is b itself:

~2+4-2 0

+2¢,-1¢;=1| 4-2-2|=]0|=0b
b=P1+P2+P3 341 3q2 393 ? 44441 1

Reconstruct
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The Gram-Schmidt Process

The point of this section is that “orthogonal is good.” Projections and least squares
always involve ATA. When this matrix becomes QTQ = I, the inverse is no problem.
The one-dimensional projections are uncoupled. The best X is OTd (just n separate dot
products). For this to be true, we had to say “If the vectors are orthonormal”.
Now we find a way to create orthonormal vectors.

Start with three independent vectors a, b, c. We intend to construct three orthogonal
vectors A, B, C. Then (at the end is easiest) we divide 4, B, C by their lengths. That
produces three orthonormal vectors ¢, = A/||A|[, ¢, = B/|B|, ¢; = C/|C]|.

Gram-Schmidt Begin by choosing A = a. This first direction is accepted. The next
direction B must be perpendicular to A. Start with b and subtract its projection along A.
This leaves the perpendicular part, which is the orthogonal vector B:

First Gram-Schmidt step (7)

A and B are orthogonal in Figure 4.11. Take the dot product with A to verify that ATB =
ATh — ATh = 0. This vector B is what we have called the error vector e, perpendicular
to A. Notice that B in equation (7) is not zero (otherwise a and b would be dependent).
The directions A and B are now set.

The third direction starts with ¢. This is not a combination of A and B (because ¢ is
not a combination of @ and b). But most likely ¢ is not perpendicular to A and B. So
subtract off its components in those two directions to get C':

Next Gram-Schmidt step (®)
[y C N . _ C
Subtract ¢ 3= 3Cy
projection
to get B

t
: Unit vectors
I
|

N

.p
a omedl 141

Figure 4.11: First project b onto the line through @ and find the orthogonal B as b — p.
Then project ¢ onto the A B plane and find C as ¢ — p. Divide by | A}, | B, |IC]|.



4.4. Orthogonal Bases and Gram-Schmidt 235

This is the one and only idea of the Gram-Schmidt process. Subtract from every new
vector its projections in the directions already set. That idea is repeated at every step.”
If we had a fourth vector d, we would subtract three projections onto A, B, C to get D.
At the end, or immediately when each one is found, divide the orthogonal vectors A, B,
C, D by their lengths. The resulting vectors ¢, 45, ¢ 3, § 4 are orthonormal.

Example 5 Suppose the independent non-orthogonal vectors a, b, ¢ are

1 2 3
a=|-—1 and b = 0 and ¢=|-3
0 -2 3

Then A = a has ATA = 2. Subtract from b its projection along A = (1, —1,0):

1
ATh

First step B=b—ATAA=b—-’;lA= 1

-2

Check: ATB = 0 as required. Now subtract two projections from ¢ to get C:

ATc B¢ 1
Next step C=c—ATAA—BTBB=c—gA+gB= }

Check: C = (1,1, 1) is perpendicular to A and B. Finally convert A, B, C to unit vectors
(length 1, orthonormal). The lengths of A, B, C are +/2 and +/6 and /3. Divide by those
lengths, for an orthonormal basis:

1 1 1
= I —1 and = L 1 and = L 1
ql ‘\/5 0 q2 \/8 > q3 —\/§ i

Usually 4, B, C contain fractions. Almost always ¢, ¢, g5 contain square roots.

The Factorization A = QR

We started with a matrix A, whose columns were a,b,c. We ended with a matrix O,
whose columns are ¢, 45, g5. How are those matrices related? Since the vectors a, b, ¢
are combinations of the ¢’s (and vice versa), there must be a third matrix connecting A
to Q. This third matrix is the triangular R in 4 = QR.

The first step was g; = a/|a| (other vectors not involved). The second step was
equation (7), where b is a combination of A and B. At that stage C and ¢ were not
involved. This non-involvement of later vectors is the key point of Gram-Schmidt:

2] think Gram had the idea. I don’t really know where Schmidt came in.
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e The vectors a and A and ¢, are all along a single line.
e The vectorsa, b and 4, B and ¢, g, are all in the same plane.

e The vectorsa,b,c and A, B, C and q,, q,, g5 are in one subspace (dimension 3).

At every step ai,...,a; are combinations of ¢q,,...,q;. Later ¢’s are not involved.
The connecting matrix R is friangular, and we have A = QR:

9)

A = OR is Gram-Schmidt in a nutshell. Multiply by Q7 to see why R = QT A.

Here are the a’s and ¢’s from the example. The i, j entry of R = QT A isrow i of QT
times column j of A. This is the dot product of ¢; with a:

1 2 3 1/v2 16 1/V3[vV2 v2 V18
A=|-1 0 =3|=|[-1/+2 1/4/6 1/4/3|]| 0 6 —/6|=0R.
0 -2 3 0 -=2/v/6 1/4/3]1L0 0 3

The lengths of A, B, C are the numbers +/2, 4/6, /3 on the diagonal of R. Because of the
square roots, QR looks less beautiful than LU . Both factorizations are absolutely central
to calculations in linear algebra.

Any m by n matrix A with independent columns can be factored into QR. The m by
n matrix Q has orthonormal columns, and the square matrix R is upper triangular with
positive diagonal. We must not forget why this is useful for least squares: ATA equals
RTQTQR = RTR. The least squares equation AT A¥ = ATb simplifies to Rx = Q7b:

Instead of solving Ax = b, which is impossible, we solve RX = QTb by back substitu-
tion—which is very fast. The real cost is the mn? multiplications in the Gram-Schmidt
process, which are needed to construct the orthogonal Q and the triangular R.

Below is an informal code. It executes equations (11) and (12), fork = 1 then k = 2 and
eventually k = n. The last line of that code normalizes to unit vectors ¢;:

Divide by length = 172 Vi _
qj =uni’trvec%or Tii = (thzJ) and g¢;; = i for i=1,...,m. (11)
i=1
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The important lines subtract from v = a; its projection onto each ¢;:
m
Tkj = Z‘b’kvij and v = vij —qikTk;- (12)
i=1
Starting from a, b, ¢ = a;, a;, a3 this code will construct q,, B, q,, C, q5:
q: = ar/|lail B =a;—(q1a2)q, q, = B/||B||
C*=a3—-(qia3)q, C=C"-(q;C")q, 4¢3=C/|C]|
Equation (12) subtracts off projections as soon as the new vector ¢, is found. This

change to “subtract one projection at a time” is called modified Gram-Schmidt. That is
numerically more stable than equation (8) which subtracts all projections at once.

NERSVAE WS TR S O RIS L BT AT

forj = 1:n
v=A(GJ);
fori =1:j-1

..? R@, j) = Q(,i) xv;
4 v=v—R(,j)*0(,i);
" end .
) R(j, j) = norm(v);
QC,j) =v/R(,j)

+ end

To recover column j of A, undo the last step and the middle steps of the code:
j-1
R(J, j)q;j = (v minus its projections) = (column j of A) — Z R@,j)g:. (13)

i=1
Moving the sum to the far left, this is column j in the multiplication A = QR.

Confession Good software like LAPACK, used in good systems like MATLAB and
Octave and Python, will not use this Gram-Schmidt code. There is now a better way.
“Householder reflections” produce the upper triangular R, one column at a time, exactly as
elimination produces the upper triangular U.

Those reflection matrices I — 2uuT will be described in Chapter 9 on numerical linear
algebra. If A is tridiagonal we can simplify even more to use 2 by 2 rotations. The result
is always A = QR and the MATLAB command is [Q, R] = gr(A). I believe that Gram-
Schmidt is still the good process to understand, even if the reflections or rotations lead to a
more perfect Q.
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® REVIEW OF THE KEY IDEAS =

1. If the orthonormal vectors ¢, ..., ¢, are the columns of Q, then ¢qq ; = 0and
g7q; = 1 translate into QTQ = I.

If Q is square (an orthogonal matrix) then QT = Q~!: transpose = inverse.
The length of Qx equals the length of x: || Qx| = || x|
The projection onto the column space spanned by the ¢’sis P = Q0 Q7.

If Q issquare then P = I andevery b = q,(¢10) + --- + q,(q1b).

LA O S i o

Gram-Schmidt produces orthonormal vectors ¢, ¢,, 45 from independent a, b, c.
In matrix form this is the factorization A = QR = (orthogonal Q)(triangular R).

= WORKED EXAMPLES =

44 A Add two more columns with all entries 1 or —1, so the columns of this 4 by 4
“Hadamard matrix” are orthogonal. How do you turn Hy into an orthogonal matrix Q7

1 1 x =x

1 1 1 -1 x x
HZ‘[l —1} He=11 1 x and Q4=

1 -1 x x

The block matrix Hy = [H4 H4] is the next Hadamard matrix with 1’s and —1’s.

Hy —H,| Whatis the product HJ Hg?

The projection of b = (6,0,0,2) onto the first column of Hy is p; = (2,2,2,2). The
projection onto the second column is p, = (1,—1, 1,—1). What is the projection p, , of
b onto the 2-dimensiondl space spanned by the first two columns?

Solution  Hj4 canbe built from H> just as Hg is built from Hy:

1 1 1 1

_|H, H| |1 -1 1 -1
Hy = [ H, - Hz] =11 1 -1 -1 has orthogonal columns.

1 -1 -1 1

Then Q = H/2 has orthonormal columns. Dividing by 2 gives unit vectors in Q. Orthog-
onality for 5 by 5 is impossible because the dot product of columns would have five 1’s
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and/or —1’s and could not add to zero. Hg has orthogonal columns of length V3.

HTH—HT HYV|[H H] _ [2HTH 0 |8 O Q_Zf_s

Y8 = |HT —HT||H -H|™| o 2HTH| |0 8I| *%" g
Key point of orthogonal columns: We can project (6,0,0,2) onto (1,1,1,1) and
(1,—1,1,—1) and add. There is no AT 4 matrix to invert:

Add p’s Projection p; , = p; + po, = (2,2,2,2) + (1,-1,1,-1) = (3, 1,3, 1).

Check that columns a; and a; of H are perpendicular to the errore = b — p; — p,:

arb azb T T, @b g T
e=b— s—a———a> and aje =a;h——s—aja; =0 andalso aze =0.

So p; + p, is in the space of a; and a,, and its error e is perpendicular to that space.

The Gram-Schmidt process on those orthogonal columns a; and a, would not change
their directions. It would only divide by their lengths. But if @y and a, are not orthogonal,
the projection p, , is not generally p, + p,. For example, if b is the same as a;, then
py=>band p,, =bbut p, #0.

Problem Set 4.4

Problems 1-12 are about orthogonal vectors and orthogonal matrices.

1 Are these pairs of vectors orthonormal or only orthogonal or only independent?

1 -1 6 4 cos 6 —sin 6
@) [0] and [ 1] ®) [8] and [—.3] © [sin@] and [ cos 9] )
Change the second vector when necessary to produce orthonormal vectors.

2 The vectors (2,2, —1) and (-1, 2, 2) are orthogonal. Divide them by their lengths to
find orthonormal vectors ¢, and g,. Put those into the columns of Q and multiply

QTQ and Q Q7.
3 (a) If A has three orthogonal columns each of length 4, what is ATA?
(b) If A has three orthogonal columns of lengths 1,2, 3, what is ATA?

4 Give an example of each of the following:

(a) A matrix O that has orthonormal columns but Q Q7 # I.
(b) Two orthogonal vectors that are not linearly independent.
(c) An orthonormal basis for R?, including the vector q; =(1,1,1)/ V3.

5 Find two orthogonal vectors in the plane x + y + 2z = 0. Make them orthonormal.
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6 If 0, and @, are orthogonal matrices, show that their product 0 Q> is also an
orthogonal matrix. (Use QTQ = 1.)

7 If O has orthonormal columns, what is the least squares solution ¥ to Qx = 5?

8 If ¢, and ¢, are orthonormal vectors in R, what combination
is closest to a given vector b?

q;+ q2

9 (a) Compute P = QQT whenq, = (.8,.6,0) and ¢, = (—.6,.8,0). Verify that
P2 =P,

(b) Prove that always (QQ™)2 = QQT by using 0TQ = I. Then P = QQT s
the projection matrix onto the column space of Q.
10 Orthonormal vectors are automatically linearly independent.
(a) Vectorproof: When ¢4 +c2g,+c3g5 = 0, whatdot product leads to ¢ = 0?
Similarly ¢; = 0 and ¢3 = 0. Thus the ¢’s are independent.
(b) Matrix proof: Show that Qx = 0 leads to x = 0. Since ¢ may be rectangular,
you can use QT but not 0!,
11 (a) Gram-Schmidt: Find orthonormal vectors ¢; and ¢, in the plane spanned by
a=(1,3,4,57)and b = (—6,6,8,0, 8).
(b) Which vector in this plane is closest to (1,0, 0,0, 0)?

12 Ifay,as,a; is a basis for R3, any vector b can be written as

X1
b = x1a1 + x2a2 + x3a3 or a ar as x2 | = b.
X3
(a) Suppose the a’s are orthonormal. Show that x; = alb.
(b) Suppose th¢ a’s are orthogonal. Show that x; = afb / a'fal.

(c) If the a’s are independent, x; is the first component of times b.

Problems 13-25 are about the Gram-Schmidt process and 4 = OR.

13 What multiple of @ = [1] should be subtracted from & = [ § | to make the result B
orthogonal to a? Sketch a figure to show «, b, and B.

14  Complete the Gram-Schmidt process in Problem 13 by computing ¢; = a/| a|| and
g, = B/||B|| and factoring into QR:

[i 3]=[ql 42”"‘5” n;n]'
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20
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(a) Find orthonormal vectors g, 45, 45 such that ¢, ¢, span the column space of

(b) Which of the four fundamental subspaces contains q,?

(c) Solve Ax = (1,2,7) by least squares.

What multiple of @ = (4,5,2,2) is closest to & = (1,2,0,0)? Find orthonormal
vectors ¢, and ¢, in the plane of & and b.

Find the projection of b onto the line through a:

1
a=|1 and b= |3 and p=? and e=b—p="?
1 5

Compute the orthonormal vectors ¢, = a/||a|| and g, = ¢/||e]|.

(Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c:
a=(1,-1,0,0) b=(0,1-1,0) ¢ =(0,0,1,-1).

A, B,C and a, b, ¢ are bases for the vectors perpendiculartod = (1,1,1,1).

If A = QR then ATA = RTR = triangular times triangular.
Gram-Schmidt on A corresponds to elimination on ATA. The pivots for AT A must
be the squares of diagonal entries of R. Find Q and R by Gram-Schmidt for this A:

-1 1
3 T, [9 9] _T[1 0][9 11
4= g i and AA_[9 18]_[1 1][ 9][0 1]'

True or false (give an exémple in either case):

(a) Q7! is an orthogonal matrix when Q is an orthogonal matrix.

(b) If O (3 by 2) has orthonormal columns then || Qx| always equals {|x]||.

Find an orthonormal basis for the column space of 4:

1 =2 —4
1 0 -3
A= 1 1 and b= 3
1 3 0

Then compute the projection of b onto that column space.
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22  Find orthogonal vectors 4, B, C by Gram-Schmidt from

1 1 1
a=|1 and b= |-1 and ¢c=|0
2 0 4

23 Find ¢,,¢,,q3 (orthonormal) as combinations of a, b, ¢ (independent columns).
Then write A as QR:

A=

O -
W oON
N U

24 (a) Find a basis for the subspace § in R* spanned by all solutions of
X1+ x2+x3—x4=0.

(b) Find a basis for the orthogonal complement S
(c) Findb,in S and b, in St sothat by + b, = b = (1,1,1, 1).

25 Ifad —bc > 0,theentriesin A = QR are
a —c|[a*>+c* ab+cd
[a b]_ c a 0 ad — bc
¢ d]T V@i JEre

Write A = QR when a,b,c,d = 2,1,1,1 and also 1,1, 1, 1. Which entry of R
becomes zero when the columns are dependent and Gram-Schmidt breaks down?

Problems 26-29 use the QR code in equations (11-12). It executes Gram-Schmidt.
26  Show why C (found via C* in the steps after (12)) is equal to C in equation (8).

27  Equation (8) subtracts from c¢ its components along A and B. Why not subtract the
components along a and along 57

28  Where are the mn? multiplications in equations (11) and (12)?

29  Apply the MATLAB grcodetoa = (2,2,-1), 5 = (0,-3,3),¢c = (1,0,0). What
are the ¢’s?

Problems 30-35 involve orthogonal matrices that are special.

30 The first four wavelets are in the columns of this wavelet matrix W':

1 1 V2 0
oLl 1 -v2 0
T2l1 -1 0 V2
1 —1 0 —v2

What is special about the columns? Find the inverse wavelet transform W1,
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31

32

33
34

35

36

37

(a) Choose c so that Q is an orthogonal matrix:

1 —1 —1 —1

1 1 =1 -1
Q=cl | 1 1 -1
-1 -1 -1 1

Project & = (1,1, 1, 1) onto the first column. Then project & onto the plane of the
first two columns.

If u is a unit vector, then Q = I —2uu" is a reflection matrix (Example 3). Find 0,
from u = (0, 1) and Q5 from u = (0, v/2/2, +/2/2). Draw the reflections when Q,
and O, multiply the vectors (1, 2) and (1, 1, 1).

Find all matrices that are both orthogonal and lower triangular.

O = I — 2uu” is a reflection matrix when u u = 1. Two reflections give 0% = I.

(a) Show that Qu = —u. The mirror is perpendicular to u.

(b) Find Qv when #Tv = 0. The mirror contains v. It reflects to itself.

Challenge Problems

(MATLAB) Factor [ Q, R] = qr(A) for A = eye(4) — diag([1 1 1],—1). You
are orthogonalizing the columns (1,—1,0,0) and (0, 1,—1,0) and (0,0, 1, —1) and
(0,0,0,1) of A. Can you scale the orthogonal columns of Q to get nice integer
components?

If A is m by n with rank n, qr(A) produces a square (J and zeros below R:
The factors from MATLAB are (m by m)(m by n) A=[01 @] l:lé] .
The n columns of O, afe an orthonormal basis for which fundamental subspace?

The m —n columns of Q5 are an orthonormal basis for which fundamental subspace?

We know that P = Q QT is the projection onto the column space of Q(m by n).
Now add another column a to produce A = [Q a]. What is the new orthonormal
vector ¢ from Gram-Schmidt: start with a, subtract , divide by ;
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Chapter 5

Determinants

5.1 The Properties of Determinants

The determinant of a square matrix is a single number. That number contains an amazing
amount of information about the matrix. It tells immediately whether the matrix is invert-
ible. The determinant is zero when the matrix has no inverse. When A is invertible, the
determinant of A™! is 1/(det A). If det A = 2 thendet A~} = % In fact the determinant
leads to a formula for every entry in A~L.

This is one use for determinants—to find formulas for inverse matrices and pivots and
solutions A~15. For a large matrix we seldom use those formulas, because elimination is
faster. For a 2 by 2 matrix with entries a, b, ¢, d, its determinant ad — bc shows how A™!
changes as A changes:

_ a b . -1 _ 1 d —b
A—[c d] has inverse A _ad—bc[—c a]' (1)

Multiply those matrices to get /. When the determinant is ad — b¢c = 0, we are asked to
divide by zero and we can’t—then A4 has no inverse. (The rows are parallel when a/c =
b/d. This gives ad = bc and det A = 0). Dependent rows always lead to det A = 0.

The determinant is also connected to the pivots. For a 2 by 2 matrix the pivots are a
and d — (c/a)b. The product of the pivots is the determinant:

Product of pivots a(d — -Z—b) = ad —bc whichis detA.

After a row exchange the pivots change to ¢ and b — (a/c)d. Those new pivots multiply to
give bc — ad. The row exchange to [ ¢ 8 ] reversed the sign of the determinant.
Looking ahead The determinant of an n by n matrix can be found in three ways:

1 Multiply the # pivots (times 1 or —1) This is the pivot formula.
2 Add up n! terms (times 1 or —1) This is the “big” formula.
3 Combine n smaller determinants (times 1 or —1)  This is the cofactor formula.

244
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You see that plus or minus signs—the decisions between 1 and —1-—play a big part in
determinants. That comes from the following rule for n by # matrices:

The determinant changes sign when two rows (or two columns) are exchanged.

The identity matrix has determinant +1. Exchange two rows and det P = —1. Exchange
two more rows and the new permutation has det P = +1. Half of all permutations are
even (det P = 1) and half are odd (det P = —1). Starting from I, half of the P’s involve
an even number of exchanges and half require an odd number. In the 2 by 2 case, ad has a
plus sign and bc¢ has minus—coming from the row exchange:

1 O 0 1
det[o 1]=1 and det[1 0]——1.

The other essential rule is linearity—but a warning comes first. Linearity does not mean
that det(A + B) = det A+det B. This is absolutely false. That kind of linearity is not even
true when A = I and B = I. The false rule would say thatdet(/ + /) =14+ 1 = 2. The
true rule is det2] = 2”. Determinants are multiplied by 2" (not just by 2) when matrices
are multiplied by 2.

We don’t intend to define the determinant by its formulas. It is better to start with
its properties—sign reversal and linearity. The properties are simple (Section 5.1). They
prepare for the formulas (Section 5.2). Then come the applications, including these three:

(1) Determinants give A~! and A~ b (this formula is called Cramer’s Rule).
(2) When the edges of a box are the rows of A, the volume is | det A|.

(8) For n special numbers A, called eigenvalues, the determinants of A — Al is zero.
This is a truly important application and it fills Chapter 6.

The Properties of the Determinant

Determinants have three basic properties (rules 1, 2, 3). By using those rules we can
compute the determinant of any square matrix A. This number is written in two ways,
det A and |A|. Notice: Brackets for the matrix, straight bars for its determinant. When 4
is a 2 by 2 matrix, the three properties lead to the answer we expect:

a b

d

The determinant of [a b]
c d

\=ad—bc.

The last rules are det(AB) = (det A)(det B) and det AT = det A. We will check all rules
with the 2 by 2 formula, but do not forget: The rules apply to any n by # matrix. We will
show how rules 4 — 10 always follow from 1 — 3.

Rule 1 (the easiest) matches det / = 1 with the volume = 1 for a unit cube.
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1 The determinant of the n by n identity matrix is 1.

1
I=1 and = ].

|10
1

0 1

2 The determinant changes sign when two rows are exchanged (sign reversal);

c d a b
b d

Check: (both sides equal bc — ad).

Because of this rule, we can find det P for any permutation matrix. Just exchange rows
of I until you reach P. Then det P = +1 for an evern number of row exchanges and
det P = —1 for an odd number.

The third rule has to make the big jump to the determinants of all matrices.

3 Thedeterminantis alinear function of each row separately (all other rows stay fixed).
If the first row is multiplied by ¢, the determinant is multiplied by z. If first rows are added,
determinants are added. This rule only applies when the other rows do not change! Notice
how ¢ and d stay the same:
“lta th

c d

In the first case, both sides are tad —tbc. Then ¢ factors out. In the second case, both sides
are ad + a’d — bc — b’c. These rules still apply when A is n by », and the last n — 1 rows
don’t change. May we emphasize rule 3 with numbers:

4 8 8 1 2 2 4 8 8 4 0 O 0 8 8
01 1{=4{0 1 1| and (0 I 1|=|0 1 1|+|0 1 1
0 0 1 0 0 1 0 01 0 0 1 0 0 1

By itself, rule 3 does not say what those determinants are (the first one is 4).

Combining multiplication and addition, we get any linear combination in one row
(the other rows must stay the same). Any row can be the one that changes, since rule 2
for row exchanges can put it up into the first row and back again.

This rule does not mean that det2] = 2det /. To obtain 2/ we have to multiply both
rows by 2, and the factor 2 comes out both times:

2 0
0 2

t O
0 ¢

2

=22=4 and =1-.

This is just like area and volume. Expand a rectangle by 2 and its area increases by 4.
Expand an n-dimensional box by ¢ and its volume increases by ¢”. The connection is no
accident—we will see how determinants equal volumes.
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Pay special attention to rules 1-3. They completely determine the number det A. We
could stop here to find a formula for n by n determinants. (a little complicated) We prefer
to go gradually, with other properties that follow directly from the first three. These extra
rules 4 — 10 make determinants much easier to work with.

4 Iftwo rows of A are equal, then det A = 0.

a b

Equal rows Check 2 by 2 : b

-o.

Rule 4 follows from rule 2. (Remember we must use the rules and not the 2 by 2 formula.)
Exchange the two equal rows. The determinant D is supposed to change sign. But also D
has to stay the same, because the matrix is not changed. The only number with —D = D
is D = 0—this must be the determinant. (Note: In Boolean algebra the reasoning fails,
because —1 = 1. Then D is defined by rules 1, 3, 4.)

A matrix with two equal rows has no inverse. Rule 4 makes det A = 0. But matrices
can be singular and determinants can be zero without having equal rows! Rule 5 will be
the key. We can do row operations without changing det A.

5 Subtracting a multiple of one row from another row leaves det A unchanged.

{ times row 1
from row 2

Rule 3 (linearity) splits the left side into the right side plus another term —{ [ ab|
This extra term is zero by rule 4. Therefore rule 5 is correct (not just 2 by 2).

Conclusion The determinant is not changed by the usual elimination steps from A to U.
Thus det A equals detU. If we can find determinants of triangular matrices U, we can
find determinants of all matrices A. Every row exchange reverses the sign, so always
det A = *det U. Rule 5 has narrowed the problem to triangular matrices.

6 A matrix with a row of zeros has det A = 0.

4

0 0
¢ d

a b

Row of zeros 0 0

l=0 and

[ ~0.
For an easy proof, add some other row to the zero row. The determinant is not changed

(rule 5). But the matrix now has two equal rows. So det A = 0 by rule 4.

7 If A istriangular then det A = ajj1a2;3 + - ap, = product of diagonal entries.

a b
0 d

a 0

Triangular d

’ = ad and also

‘=ad.

Suppose all diagonal entries of A are nonzero. Eliminate the off-diagonal entries by the
usual steps. (If A is lower triangular, subtract multiples of each row from lower rows. If A
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is upper triangular, subtract from higher rows.) By rule 5 the determinant is not changed—
and now the matrix is diagonal:

ailg 0

a2
Diagonal matrix det ) =da11Q22 - Ann.

0 Aun

Factor a;; from the first row by rule 3. Then factor a;, from the second row. Eventually
factor a,, from the last row. The determinant is a;; times a»» times -« times a,, times
det I. Then rule 1 (used at last!) isdet/ = 1.

What if a diagonal entry a;; is zero? Then the triangular A is singular. Elimination
produces a zero row. By rule 5 the determinant is unchanged, and by rule 6 a zero row
means det A = 0. Triangular matrices have easy determinants.

8 If A issingularthen det A = 0. If A is invertible then det A # 0.

Singular [ﬁ Z] is singular if and only if ad — bc = 0.
Proof Elimination goes from A to U. If A is singular then U has a zero row. The rules
givedetA = detU = 0. If A is invertible then U has the pivots along its diagonal. The
product of nonzero pivots (using rule 7) gives a nonzero determinant:

et A = £detU =+ (product of the pivots).

The pivots of a 2 by 2 matrix (if @ # 0) are « and d — (bc/a):

a b

0 d—(bc/a) = ad — bc.

The determinant is ’ a b l:
c d

This is the first formula for the determinant. MATLAB uses it to find det A from the
pivots. The sign in +detu depends on whether the number of row exchanges is even
or odd. In other words, +1 or —1 is the determinant of the permutation matrix P that
exchanges rows. With no row exchanges, the number zeroisevenand P = [ anddet 4 =
detU = product of pivots. Always det L = 1, because L is triangular with 1’s on the
diagonal. What we have is this:

If PA=LU then detP detA = detl detlU. 3)

Again,det P = 1 and det A = +det U. Equation (3) is our first case of rule 9.
9 The determinant of AB is det A timesdet B: |[AB| = |A] |B|.

a b
c d

ap + br aq + bs
cp+dr cq+ds|’

p g
ros

Product rule
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When the matrix B is A7, this rule says that the determinant of A~ is 1/det A:

A times A1

50 (detA)(detA™") =det] =1.
This product rule is the most intricate so far. Even the 2 by 2 case needs some algebra:

|A||B| = (ad — bc)(ps —gqr) = (ap + br)(cq + ds) — (aq + bs)(cp +dr) = |AB|.

For the n by n case, here is a snappy proof that |AB| = |A||B|. When |B] is not zero,
consider the ratio D(A) = |AB|/|B|. Check that this ratio has properties 1,2,3. Then
D(A) has to be the determinant and we have |A| = |AB|/|B|: good.

Property 1 (Determinant of I) If A = I then the ratio becomes |B|/|B| = 1.

Property 2 (Sign reversal) When two rows of A are exchanged, so are the same two
rows of AB. Therefore |4 B| changes sign and so does the ratio [A B|/|B]|.

Property 3 (Linearity) When row 1 of A is multiplied by ¢, so is row 1 of AB. This
multiplies | A B| by ¢ and multiplies the ratio by #—as desired.
Add row 1 of A to row 1 of A’. Then row 1 of AB adds to row 1 of A’B.
By rule 3, determinants add. After dividing by | B/, the ratios add—as desired.

Conclusion This ratio |4 B|/|B| has the same three properties that define |A|. Therefore
it equals |A|. This proves the product rule |AB| = |A||B]|. The case | B| = 0 is separate
and easy, because A B is singular when B is singular, Then |AB| = |A||B|is 0 = 0.

10 The transpose A" has the same determinant as A.

a b a ¢ . .
Transpose lc dl=1p 4| since both sides equal ad — bc.
The equation |AT| = |A4| becomes 0 = 0 when A is singular (we know that AT is also

singular). Otherwise A has the usual factorization PA = LU. Transposing both sides
gives ATPT = UTLT. The proof of | 4| = |AT| comes by using rule 9 for products:

Compare detPdetA =detLdetU with detA”det PT =detU det L.

First, det L = det LT = 1 (both have 1’s on the diagonal). Second, det U = det U™ (those
triangular matrices have the same diagonal). Third, det P = det PT (permutations have
PTP = 1,50 |PT||P| = 1 by rule 9; thus | P} and | PT| both equal 1 or both equal —1).
So L, U, P have the same determinants as LT, UT, PT and this leaves det A = det AT.

Important comment on columns Every rule for the rows can apply to the columns (just
by transposing, since |A| = |AT|). The determinant changes sign when two columns are
exchanged. A zero column or two equal columns will make the determinant zero. 1If a
column is multiplied by ¢, so is the determinant. The determinant is a linear function of
each column separately.

It is time to stop. The list of properties is long enough. Next we find and use an explicit
formula for the determinant.
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® REVIEW OF THE KEY IDEAS =

1. The determinant is defined by det I = 1, sign reversal, and linearity in each row.
2. After elimination det 4 is & (product of the pivots).
3. The determinant is zero exactly when A is not invertible.

4. Two remarkable properties are det AB = (det A)(det B) and det AT = det A.

® WORKED EXAMPLES =

5.1 A Apply these operations to A and find the determinants of My, My, M3, My:
In M, multiplying each a;; by (—1)**/ gives a checkerboard sign pattern.
In M5, rows 1,2, 3 of A are subtracted from rows 2, 3, 1.
In M3, rows 1,2,3 of A are added to rows 2, 3, 1.

How are the determinants of My, M5, M3 related to the determinant of A?

ap;; —dip Q13 row 1 —row 3 row 1 4+ row 3
—a1 Azy —az3 row 2 —row 1 row 2 4+ row 1
az; —dasp; ass row 3 —row 2 row 3 4+ row 2

Solution  The three determinants are det A, 0, and 2 det A. Here are reasons:

1 ain a2 auis | |1
M, = -1 dz1 Qzx a3 —1 so det My = (—1)(det A)(—1).
1] a3 a3 ass 1

M, is singular because its rows add to the zero row. Its determinant is zero.
M3 can be split into eight matrices by Rule 3 (linearity in each row seperately):

row 1 +row 3 row 1 row 3 row 1 row 3
row2+row]l |=|row2 |4+ |row2 |+ |[row ]l |4 -+ | row 1
row 3 + row 3 row 3 row 3 row 3 row 2

All but the first and last have repeated rows and zero determinant. The first is 4 and the
last has two row exchanges. Sodet M3 =detA +detd. My A=1.)



5.1. The Properties of Determinants 251

5.1 B Explain how to reach this determinant by row operations:

l-a 1 1
det 1 1—a 1 = a*(3 —a). 4)
1 I 1—a

Solution Subtract row 3 from row 1 and then from row 2. This leaves

—a 0 a
det 0 —a a
1 1 1—a

Now add column 1 to column 3, and also column 2 to column 3. This leaves a lower
triangular matrix with —a, —a, 3 — a on the diagonal: det = (—a)(—a)(3 — a).

The determinant is zero if @ = 0 or a = 3. For a = 0 we have the all-ones matrix—
certainly singular. For a = 3, each row adds to zero - again singular. Those numbers 0
and 3 are the eigenvalues of the all-ones matrix. This example is revealing and important,
leading toward Chapter 6.

Problem Set 5.1

Questions 1-12 are about the rules for determinants.
1 If a 4 by 4 matrix has det 4 = 3, find det(24) and det(—A) and det(4?) and det(A™1).

2 If a 3 by 3 matrix has detA = —1, find det(3A) and det(—A) and det(42) and
det(A~Y).

3 True or false, with a reason if true or a counterexample if false:

(a) The determinantof I + A is 1 + det A.
(b) The determinant of ABC is |A]|B||C].
(c) The determinant of 44 is 4|A|.

(d) The determinant of AB — BA is zero. Try an example with 4 = [ 8 (1) ] .

4 Which row exchanges show that these “reverse identity matrices” J3 and J4 have
|J3] = —1but |Jy| = +17

det but det

_—0 O
O -
OO -

|

|

—
—_0 O O
o - O O
oo =0
= elaell S

5 Forn = 5,6,7, count the row exchanges to permute the reverse identity J, to the
identity matrix I,. Propose a rule for every size n and predict whether Jyo; has
determinant +1 or —1.
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6 Show how Rule 6 (determinant = 0 if a row is all zero) comes from Rule 3.

7 Find the determinants of rotations and reflections:

_[cosf —siné i O~= 1—2cos?8 —2cosfsinf
Q= sinf cos6 and Q= —2cosfsinf 1—2sin?8 |

8 Prove that every orthogonal matrix (QTQ = I) has determinant 1 or —1.

(a) Use the product rule |AB| = |A||B| and the transpose rule |Q| = |QT|.

(b) Use only the product rule. If |det Q| > 1 then det 0" = (det Q)" blows up.
How do you know this can’t happen to Q"7

9 Do these matrices have determinant 0, 1, 2, or 3?

0 0 1 0 1 1 1 1
A=1|1 0 O B=|1 0 1 C=]|111
0190 1 10 11

10  If the entries in every row of A add to zero, solve Ax = 0 to prove det4 = 0. If
those entries add to one, show that det(4 — I') = 0. Does this meandet 4 = 1?

11 Suppose that CD = —DC and find the flaw in this reasoning: Taking determinants
gives |C||D| = —|D||C|. Therefore |C| = 0 or |D] = 0. One or both of the
matrices must be singular. (That is not true.)

12  The inverse of a 2 by 2 matrix seems to have determinant = 1:

1 [d—b]_ad—bc_l

det A~ = det = =
© ead—bc — a ad — bc

What is wrong with this calculation? What is the correct det 4A™1?
Questions 13-27 use the rules to compute specific determinants.

13  Reduce A4 to U and find det A = product of the pivots:

1 1 1 1 2 3
A=1|1 2 2 A=12 2 3
1 2 3 3 33

14 By applying row operations to produce an upper triangular U, compute

1 2 3 0 2 -1 0 O

2 6 6 1 -1 2 -1 0

det 10 0 3 and det 0 —1 7 —1
2 0 7 60 0 -1 2
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15

16

17

18

19

20

21

22

Use row operations to simplify and compute these determinants:

101 201 301 1 ¢t ¢?
det | 102 202 302 and det| ¢
103 203 303 t?

Find the determinants of a rank one matrix and a skew-symmetric matrix:

1 0O 1 3
A=|2|[1 -45] ad K=|-1 0 4
3 -3 -4 0
A skew-symmetric matrix has KT = —K. Insert a, b, ¢ for 1,3, 4 in Question 16

and show that | K| = 0. Write down a 4 by 4 example with |K| = 1.

Use row operations to show that the 3 by 3 “Vandermonde determinant” is

1 a a?
det|{1 b b%2| =(b—-a)c—a)c-Db).
1 ¢ ¢?
Find the determinants of U and U1 and U2:
1 4 6 4 b
U=|0 2 5 and U = |:0 d]'
0 0 3

Suppose you do two row operations at once, going from
a b to a—Lc b—-Ld
¢ d c—la d-1b |’

Find the second determinant. Does it equal ad — bc?

Row exchange: Add row 1 of A to row 2, then subtract row 2 from row 1. Then add
row 1 to row 2 and multiply row 1 by —1 to reach B. Which rules show

a b
d

c

det B = ?

cbz’ ‘ equals —detd = —

Those rules could replace Rule 2 in the definition of the determinant.

From ad — bc, find the determinants of A and A~ and A — A[:

21 12 = C2-2 1
dm[ 1] e w22 0] e a0

Which two numbers A lead to det(A — A7) = 0? Write down the matrix A — A/ for
each of those numbers A—it should not be invertible.
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23

24

25
26
27

28

29

30

31

32

33
34
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From A = [41] find A2 and A~ and A — AI and their determinants. Which two
numbers A lead to det(4A — A7) =0 ?

Elimination reduces A to U. Then A = LU:

3 3 4 1 0 03 3 4
A= 6 8 7|=|12 1 0|0 2 —-1]|=LU
-3 5 =9 -1 4 1 0 0 -1

Find the determinants of L, U, A, UL}, and U7 L1 4.
If the i, j entry of A isi times j, show that det A = 0. (Exception when A = [1].)
If the i, j entry of A isi + j, show that det A = 0. (Exception whenn = 1 or2.)

Compute the determinants of these matrices by row operations:

0 a 0 0
0 a 0 00 b 0 a a a
A=10 0 b and B = and C=\|a b b
c 0 O 0 0 0 ¢ a b ¢

d 0 0 0

True or false (give a reason if true or a 2 by 2 example if false):

(a) If A is not invertible then A B is not invertible.

(b) The determinant of A is always the product of its pivots.
(c) The determinant of A — B equals det A — det B.

(d) AB and BA have the same determinant.

What is wrong with this proof that projection matrices have det P = 1?
1
|AT]14]
(Calculus question) Show that the partial derivatives of In(det A) give 4™1!

P = A(ATA) AT so  |P|=|A| |AT| = 1.

f(a,b,c,d) =In(ad — bc) leads to [3{42‘2 gjf,//g:;] =A"1

(MATLAB) The Hilbert matrix hilb(n) has i, j entry equal to 1/(i + j — 1). Print
the determinants of hilb(1), hilb(2), .. ., hilb(10). Hilbert matrices are hard to work
with! What are the pivots of hilb (5)?

(MATLAB) What is a typical determinant (experimentally) of rand(n) and randn(n)
for n = 50, 100, 200, 400? (And what does “Inf” mean in MATLAB?)

(MATLAB) Find the largest determinant of a 6 by 6 matrix of 1’s and —1’s.

If you know that det A = 6, what is the determinant of B?

row 1 row 3 4+ row 2 + row 1
From det A = [row 2| = 6 find det B = row 2 + row 1
row 3 row 1
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5.2 Permutations and Cofactors

A computer finds the determinant from the pivots. This section explains two other ways
to do it. There is a “big formula” using all »! permutations. There is a “cofactor formula™
using determinants of size n — 1. The best example is my favorite 4 by 4 matrix:

2 -1 0 O
-1 2 -1 0
A= 0 -1 2 —1 has detA =5.
0O 0 -1 2
We can find this determinant in all three ways: pivots, big formula, cofactors.
1. The product of the pivotsis 2- 2 - § - 2. Cancellation produces 5.

2. The “big formula” in equation (8) has 4! = 24 terms. Only five terms are nonzero:
detA=16—4—-4—-4+41=>5.

The 16 comes from 2 -2 - 2 - 2 on the diagonal of A. Where do —4 and 41 come
from? When you can find those five terms, you have understood formula (8).

3. The numbers 2, —1,0, 0 in the first row multiply their cofactors 4,3, 2,1 from the
other rows. That gives 2+4 — 1 -3 = 5. Those cofactors are 3 by 3 determinants.
Cofactors use the rows and columns that are nof used by the entry in the first row.
Every term in a determinant uses each row and column once!

The Pivot Formula

Elimination leaves the pivots dy, . . ., d, on the diagonal of the upper triangular U. If no
row exchanges are involved, multiply those pivots to find the determinant:
det A = (det L)(detU) = (1)(d1dz -+~ dn). (1)

This formula for det A appeared in the previous section, with the further possibility of row
exchanges. The permutation matrix in PA = L U has determinant —1 or 41. This factor
det P = %1 enters the determinant of A:

detA = +(didy -+ dy). - @

When A has fewer than n pivots, det A = 0 by Rule 8. The matrix is singular.

Example 1 A row exchange produces pivots 4, 2, 1 and that important minus sign:

0 01 4 5 6
A=10 2 3 PA=|0 2 3 detA = —-(4)(2)(1) = 8.
4 5 6 0 0 1
The odd number of row exchanges (namely one exchange) means that det P = —1.

The next example has no row exchanges. It may be the first matrix we factored into
L U (when it was 3 by 3). What is remarkable is that we can go directly to n by #n. Pivots
give the determinant. We will also see how determinants give the pivots.
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Example 2  The first pivots of this tridiagonal matrix 4 are 2, 2 —. The next are % and

727

z % and eventually 2t1 "’H . Factoring this n by n matrix reveals its determinant:
[ 2 -1 1 1 172 -1 ]
1 3
-1 2 -1 -3 21 3 —}
. R | .
— -1 +1
! 2] | -5 1L ra

The pivots are on the diagonal of U (the last matrix). When 2 and % and % and % are
multiplied, the fractions cancel. The determinant of the 4 by 4 matrix is 5. The 3 by 3
determinant is 4. The n by n determinant isn + 1:

—1, 2, —1 matrix detA = (2) (%) (g) . (“+l) =n-+1

Important point: The first pivots depend only on the upper left corner of the original
matrix A. This is a rule for all matrices without row exchanges.

The first k pivots come from the k by k& matrix Ay in the top left corner of A.
The determinant of that corner submatrix Ay is did,--- dy.

The 1 by 1 matrix A; contains the very first pivot d;. This is det A;. The 2 by 2 matrix in
the corner has det A, = d;d,. Eventually the # by n determinant uses the product of all n
pivots to give det 4,, which is det A.

Elimination deals with the corner matrix Az while starting on the whole matrix. We
assume no row exchanges—then A = LU and A = L, Ug. Dividing one determinant
by the previous determinant (det A divided by det Ax_,) cancels everything but the latest
pivot di. This gives a ratio of determinants formula for the pivots:

det A | : 3)
det Ay i
In the —1, 2, —1 matrices this ratio correcily gives the pivots 2,3, 2, ..., 2+L The Hilbert

matrices in Problem 5.1.31 also build from the upper left comner.
We don’t need row exchanges when all these corner submatrices have det Ay # 0.

The Big Formula for Determinants

Pivots are good for computing. They concentrate a lot of information—enough to find the
determinant. But it is hard to connect them to the original a;;. That part will be clearer if
we go back to rules 1-2-3, linearity and sign reversal and det/ = 1. We want to derive a
single explicit formula for the determinant, directly from the entries a;;.

The formula has n! terms. Its size grows fast because n! = 1,2,6,24,120,.... For
n = 11 there are about forty million terms. For n = 2, the two terms are ad and bc. Half
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the terms have minus signs (as in —bc¢). The other half have plus signs (as in ad). For
n = 3 there are 3! = (3)(2)(1) terms. Here are those six terms:

+a11a22a33 + a12a23a31 + a13a21a32
. T@11423432 — 412021433 — d13322431.

“4)

Notice the pattern. Each product like a1;a23a32 has one entry from each row. 1t also has
one entry from each column. The column order 1, 3, 2 means that this particular term
comes with a minus sign. The column order 3, 1, 2 in aj3a2;a3, has a plus sign. It will be
“permutations” that tell us the sign.

The next step (n = 4) brings 4! = 24 terms. There are 24 ways to choose one entry
from each row and column. Down the main diagonal, a;;@;3a33a44 With column order
1,2, 3,4 always has a plus sign. That is the “identity permutation”.

To derive the big formula I start with n = 2. The goal is to reach ad —bc in a systematic
way. Break each row into two simpler rows:

[a b]z—-[a 0]+[0 b] and [c d]=[c 0]+[0 d].

Now apply linearity, first in row 1 (with row 2 fixed) and then in row 2 (with row 1 fixed):

ab_a0+0b
¢c d| |c d ¢ d
0 0 0 b 0 b ©)
a a
=le olJ’o d|te 0‘*“0 d|

The last line has 22 = 4 determinants. The first and fourth are zero because their rows are
dependent—one row is a multiple of the other row. We are left with 2! = 2 determinants
to compute:

= ad =ad—bc.

a0+0b 1 0 1
0 d ¢c 0 0 1 0

The splitting led to permutation matrices. Their determinants give a plus or minus sign.
The 1’s are multiplied by numbers that come from A. The permutation tells the column
sequence, in this case (1, 2) or (2, 1).

Now try n = 3. Each row splits into 3 simpler rows like [a;; 0 0]. Using linearity in
each row, det 4 splits into 33 = 27 simple determinants. If a column choice is repeated—
for example if we also choose [ap; 0 0]—then the simple determinant is zero. We pay
attention only when the nonzero terms come from different columns.

+ be ’(1)

aiz ars
ass + az3 | + |a21
ass asi asz

aiz 3 K]
azs |+ |az + az
asz ass asy
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There are 3! = 6 ways to order the columns, so six determinants. The six permuta-
tions of (1, 2, 3) include the identity permutation (1,2, 3) from P = I:

Column numbers = (1,2,3),(2,3,1),(3,1,2),(1,3,2),(2,1,3).(3,2,1). (6)

The last three are odd permutations (one exchange). The first three are even permutations
(0 or 2 exchanges). When the column sequence is (&, 8, ), we have chosen the entries
a10a2p8430b—and the column sequence comes with a plus or minus sign. The determinant
of A is now split into six simple terms. Factor out the a;;:

1 1 1
det A = ai1a22a33 1 + ai2asr3as 1|+ ayzarias |1
1 1 1
(7)
1 1 1
+ anazzasz 1|+ ajzpaziass il + ajzazzas; 1
1 1 1

The first three (even) permutations have det P = <1, the last three (odd) permutations

have det P = —1. We have proved the 3 by 3 formula in a systematic way.
Now you can see the n by n formula. There are n! orderings of the columns. The
columns (1,2,. . .,»n) go in each possible order (o, B,. . ., w). Taking a;, from row 1

and a,g from row 2 and eventually ay,, from row n, the determinant contains the product
A10028 *** Ang times +1 or —1. Half the column orderings have sign —1.

The complete determinant of A is the sum of these n! simple determinants, times 1
or —1. The simple determinants a1oa28 -+ ane choose one entry from every row and
column:

Z(det P)alozazﬁ "t lne

The 2 by 2 case is +ay1a22 — ajzaz1 (which is ad — be). Here P is (1,2) or (2, 1).

The 3 by 3 case has three products “down to the right” (see Problem 28) and three
products “down to the left”. Warning: Many people believe they should follow this pattern
in the 4 by 4 case. They only take 8 products—but we need 24.

Example 3 (Determinant of U) When U is upper triangular, only one of the n! products
can be nonzero. This one term comes from the diagonal: detU = Huqj1uz -+ Upy. All
other column orderings pick at least one entry below the diagonal, where U has zeros. As
soon as we pick a number like u3; = 0 from below the diagonal, that term in equation (8)
is sure to be zero.

Of course det I = 1. The only nonzero term is +(1)(1) --- (1) from the diagonal.
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Example 4 Suppose Z is the identity matrix except for column 3. Then

determinant of Z = =c. )

SO = O
QAU o o0
—_—0 OO

1
0
0
0

The term (1)(1)(c)(1) comes from the main diagonal with a plus sign. There are 23 other
products (choosing one factor from each row and column) but they are all zero. Reason: If
we pick a, b, or d from column 3, that column is used up. Then the only available choice
from row 3 is zero.

Here is a different reason for the same answer. If ¢ = 0, then Z has a row of zeros and
detZ = ¢ = 0is correct. If ¢ is not zero, use elimination. Subtract multiples of row 3
from the other rows, to knock out a, b, d. That leaves a diagonal matrix and det Z = c.

This example will soon be used for “Cramer’s Rule”. If we move a, b, ¢, d into the
first column of Z, the determinant is det Z = a. (Why?) Changing one column of [ leaves
Z with an easy determinant, coming from its main diagonal only.

Example 5 Suppose A has 1’s just above and below the main diagonal. Here n = 4:

01 0O 01 0 0
Ag = (1) (1) (1) (1) and Py = (1) g 8 (1) have determinant 1.
0 010 0O 0010

The only nonzero choice in the first row is column 2. The only nonzero choice in row 4 is
column 3. Then rows 2 and 3 must choose columns 1 and 4. In other words Py is the only
permutation that picks out nonzeros in A4. The determinant of P4 is +1 (two exchanges to
reach 2,1, 4, 3). Therefore det A4 = +1.

Determinant by Cofactors

Formula (8) is a direct definition of the determinant. It gives you everything at once—but
you have to digest it. Somehow this sum of #! terms must satisfy rules 1-2-3 (then all the
other properties follow). The easiest is det I = 1, already checked. The rule of linearity
becomes clear, if you separate out the factor ay; or a;; or a,, that comes from the first
row. For 3 by 3, separate the usual 6 terms of the determinant into 3 pairs:

(a22a33—a23a32) +a12 (A23a31—a21433) +dys (@21a32—a22a31).;; (10)
Those three quantities in parentheses are called “cofactors”. They are 2 by 2 determinants,
coming from matrices in rows 2 and 3. The first row contributes the factors a1, a12,d13.
The lower rows contribute the cofactors Cy1, C12, C13. Certainly the determinant a1 Cq1 +

a12Cy2 + a13Cy3 depends linearly on a1, @12, a13—this is rule 3.
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The cofactor of ay; is C11 = az2a33 — az3as;. You can see it in this splitting:

dil1 412 4ais ai aiz a3
a1 Qzz az3| = azy az3|+ |az azs |+ |az1 ax
aszy dsz ass aszy ass asi ass as] asz

We are still choosing one entry from each row and column. Since a;; uses up row 1 and
column 1, that leaves a 2 by 2 determinant as its cofactor.

As always, we have to watch signs. The 2 by 2 determinant that goes with a;, looks
like az3a33 — az3as;. But in the cofactor C2, its sign is reversed. Then a,2Cy, is the
correct 3 by 3 determinant. The sign pattern for cofactors along the first row is plus-minus-
plus-minus. You cross out row 1 and column j to get a submatrix My; of size n — 1.
Multiply its determinant by (—1)1 7/ to get the cofactor:

The cofactors along row 1 are Cy; = (=DM det M, je
The cofactor expansion is det 4 = a11Cy1 + a12C12 + - + 21,Cip. (1)

In the big formula (8), the terms that multiply a,; combine to give det My;. The sign
is (—1)'*!, meaning plus. Equation (11) is another form of equation (8) and also equa-
tion (10), with factors from row 1 multiplying cofactors that use the other rows.

Note Whatever is possible for row 1 is possible for row i. The entries a;; in that row also
have cofactors C;;. Those are determinants of order # — 1, multiplied by (—1)*/. Since
a;; accounts for row i and column j, the submatrix M;; throws out row i and column j .
The display shows a43 and M3 (with row 4 and column 3 removed). The sign (—1)4+3
multiplies the determinant of My; to give C43. The sign matrix shows the =+ pattern:

® ® [ ] + e + —

_|® ° - i + - +
A —_ e o 51gns ( 1) - -+ - <+ —_
as3 -+ - +

A determinant of order n is a combination of determinants of order n — 1. A recursive
person would keep going. Each subdeterminant breaks into determinants of order n — 2.
We could define all determinants via equation (12). This rule goes from order n ton — 1
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to n — 2 and eventually to order 1. Define the 1 by 1 determinant |a| to be the number a.
Then the cofactor method is complete.

We preferred to construct det A from its properties (linearity, sign reversal, det/ = 1).
The big formula (8) and the cofactor formulas (10)-(12) follow from those properties.
One last formula comes from the rule that det A = det AT. We can expand in cofactors,
down a column instead of across a row. Down column j the entries are ay; to a,;. The
cofactors are Cj; to C,;. The determinant is the dot product:

Cofactors down column j: detA = a;;Cyj +azjCoj + -+ anjCyj.  (13)
Cofactors are useful when matrices have many zeros—as in the next examples.

Example 6 The —1, 2, —1 matrix has only two nonzeros in its first row. So only two
cofactors C11 and Cj, are involved in the determinant. I will highlight C;,:

_f "; 1 2 -1 -1 -1
1 2 —pl=2-1 2 =D 2 -1f. (14)
-1 2 -1 2

-1 2

You see 2 times Cy; first on the right, from crossing out row 1 and column 1. This cofactor
has exactly the same —1, 2, —1 pattern as the original A—but one size smaller.

To compute the boldface Ciz, use cofactors down its first column. The only nonzero
is at the top. That contributes another —1 (so we are back to minus). Its cofactor is the
—1, 2, —1 determinant which is 2 by 2, two sizes smaller than the original 4.

Summary Each determinant D,, of order n comes from D,_, and D, _5:

D4y =2D3— D, and generally 4 (15)

Direct calculation gives D, = 3 and D3 = 4. Equation (14) has Dy = 2(4) -3 = 5.
These determinants 3, 4, 5 fit the formula D, = n + 1. That “special tridiagonal answer”
also came from the product of pivots in Example 2.

The idea behind cofactors is to reduce the order one step at a time. The determinants
D, = n + 1 obey the recursion formulan + 1 = 2n — (n — 1). As they must.

Example 7 This is the same matrix, except the first entry (upper left) is now 1:

1 -1
-1 2 -1
B, = -1 2 -1

-1 2

All pivots of this matrix turn out to be 1. So its determinant is 1. How does that come
from cofactors? Expanding on row 1, the cofactors all agree with Example 6. Just change
ajp=2tob;; =1:

det B4 = D3 — D, instead of det A4 = 2D3 — D,.

The determinant of By is 4 — 3 = 1. The determinant of every B, isn — (n — 1) = 1.
Problem 13 asks you to use cofactors of the last row. You still find det B,, = 1.
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= REVIEW OF THE KEY IDEAS =

1. With no row exchanges, det A = (product of pivots). In the upper left corner, det Ay
= (product of the first k pivots).

2. Every term in the big formula (8) uses each row and column once. Half of the n!
terms have plus signs (when det P = +1) and half have minus signs.

3. The cofactor C;; is (=1)*/ times the smaller determinant that omits row i and
column j (because a;; uses that row and column).

4. The determinant is the dot product of any row of A with its row of cofactors. When
arow of A has a lot of zeros, we only need a few cofactors.

= WORKED EXAMPLES =

5.2 A A Hessenberg matrix is a triangular matrix with one extra diagonal. Use cofactors
of row 1 to show that the 4 by 4 determinant satisfies Fibonacci’s rule | Hy| = |H3| + | Hz|.
The same rule will continue for all sizes, |H,| = |Hy—1| + |Hn—2|- Which Fibonacci
number is | Hy,|?

— e DD
T\
S I
LS )

Solution  The cofactor C;; for Hy is the determinant | H3|. We also need Cjy; (in bold-
face):

, 11
Cp=-—|1 2
11 2

Rows 2 and 3 stayed the same and we used linearity in row 1. The two determinants on the
right are —| H3| and +|H>|. Then the 4 by 4 determinant is

2 1
=—{1 2 1|+
1 1

N = O
e
—_ N O
[\ )

|Ha| = 2Cy1 + 1C12 = 2|H3| — |H3| + |H2| = |H3| + |Ha|.

The actual numbers are |Hz| = 3 and |H3| = 5 (and of course |H;| = 2). Since |H,|
follows Fibonacci’s rule |H,—1| + |Hy—2|, it must be |H,| = Fp42.

5.2B These questions use the & signs (even and odd P’s) in the big formula for det A4:

1. If A is the 10 by 10 all-ones matrix, how does the big formula give det 4 = 0?
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2. If you multiply all »! permutations together into a single P, is P odd or even?

3. If you multiply each a;; by the fraction i /j, why is det A unchanged?

Solution  In Question 1, with all @¢;; = 1, all the products in the big formula (8) will
be 1. Half of them come with a plus sign, and half with minus. So they cancel to leave
det A = 0. (Of course the all-ones matrix is singular.)

In Question 2, multiplying [ § 9][ 3 9] gives an odd permutation. Also for 3 by 3, the
three odd permutations multiply (in any order) to give odd. But for n > 3 the product of
all permutations will be even. There are n!/2 odd permutations and that is an even number
as soon as it includes the factor 4.

In Question 3, each a;; is multiplied by i/j. So each product ai4a3p - - - ane in the
big formula is multiplied by all the row numbers i = 1,2,...,n and divided by all the
column numbers j = 1,2,...,n. (The columns come in some permuted order!) Then
each product is unchanged and det A stays the same.

Another approach to Question 3: We are multiplying the matrix A by the diagonal
matrix D = diag(l : n) when row i is multiplied by i. And we are postmultiplying by
D! when column j is divided by j. The determinant of DAD™! is the same as det A
by the product rule.

Problem Set 5.2

Problems 1-10 use the big formula with n! terms: |A| = ) *a14a28 *** tpe.

1 Compute the determinants of 4, B, C from six terms. Are their rows independent?
1 2 3 1 2 3 1 1 1
A=13 1 2 B=1|4 4 4 C=|1120
3 2 1 5 6 7 1 0 0

2 Compute the determinants of 4, B, C, D. Are their columns independent?

1 10 1 2 3
A=|1 0 1 B={4 5 6 C=[13 /(1)] D=|:61 g:l
011 7 8 9

3 Show that det A = 0, regardless of the five nonzeros marked by x’s:
What are the cofactors of row 1?

What is the rank of A?
What are the 6 terms in det A?

A=

OO w
o o=
PER ST S
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4 Find two ways to choose nonzeros from four different rows and columns:

I 0 0 1 1 0 0 2
01 11 0 3 4 5

A= 110 1 B = 5 4 0 3 (B has the same zeros as A).
1 0 0 1 2 0 0 1

IsdetAequaltol +1orl1—1or—1— 17 What s det B?

5 Place the smallest number of zeros in a 4 by 4 matrix that will guarantee det 4 = 0.
Place as many zeros as possible while still allowing det A # 0.

6 (a) If a1 = azp = az3 = 0, how many of the six terms in det A will be zero?

(b) If a11 = az2 = az3 = a44 = 0, how many of the 24 products ay;a¢a3;a4m
are sure to be zero?

7 How many 5 by 5 permutation matrices have det P = +1? Those are even permuta-
tions. Find one that needs four exchanges to reach the identity matrix.

8 If det A is not zero, at least one of the #n! terms in formula (8) is not zero. Deduce
from the big formula that some ordering of the rows of A leaves no zeros on the
diagonal. (Don’t use P from elimination; that PA can have zeros on the diagonal.)

9 Show that 4 is the largest determinant for a 3 by 3 matrix of 1’s and —1’s.

10 How many permutations of (1,2,3,4) are even and what are they? Extra credit:
What are all the possible 4 by 4 determinants of / + Peyen?

Problems 11-22 use cofactors C;; = (—1)**J det M;;. Remove row i and column j.
11 Find all cofactors and put them into cofactor matrices C, D. Find AC and det B.

1 2 3
A=[“ b] B=|4
7

5 6
c d 0 0

12  Find the cofactor matrix C and multiply A times CT. Compare ACT with A~!:

2 -1 0 ([3 21
A=|-1 2 -1 Al=2-12 4 2
0 -1 2 411 2 3

13  The n by n determinant C, has 1’s above and below the main diagonal:

TR A I I
C1=|O| Cz’—“l 0| C3= 1 0 1 C4= 01 0 1l
0 10 0 010


Jason
高亮

Franklin
高亮
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14

15

16

17

(a) What are these determinants Cy, C3, C3, C4?

(b) By cofactors find the relation between C, and C,—; and C,_». Find Cyp.
The matrices in Problem 13 have 1°s just above and below the main diagonal. Going
down the matrix, which order of columns (if any) gives all 1’s? Explain why that

permutation is even forn = 4,8,12,... and odd forn = 2,6, 10,.... Then

Cn, = 0 (odd n) Ch=1(n=4,8,--+) Co=-1@n=26,-).

The tridiagonal 1, 1, 1 matrix of order » has determinant £,,:

: L1 o ERE
Ei=|l E;= E;=|1 1 1 Es= .
1 01 1 0 1 11
0 011
(a) By cofactors show that £, = E,_; — E,_».
(b) Starting from £y = 1and E; = 0 find E3, Ey4,.. ., Es.
(c) By noticing how these numbers eventually repeat, find Ejqo.
F, is the determinant of the 1, 1, —1 tridiagonal matrix of order 7:
1 -1 b=10 } _i -1
F, = =2 F=|1 1 -1|=3 FF= # 4.
1 1 1 1 -1
0 1 1
1 1
Expand in cofactors to show that F,, = F,_; 4+ F,—». These determinants are
Fibonacci numbers 1,2,3,5,8,13,. . .. The sequence usually starts 1, 1,2, 3 (with

two 1’s) so our F; is the.usual Fj, ;.

The matrix B, is the —1,2, —1 matrix A, except that b;; = 1 instead of a;; = 2.
Using cofactors of the last row of B4 show that |B4| = 2|B3| — |B;| = 1.

1 -1
1 -1
-1 2 -1 1 -1
Be = 12 1| Be=|d _f “; Bz_[—l 2]'
-1 2
The recursion |B,| = 2|B,—1| — |Bn-2| is satisfied when every |B,| = 1. This

recursion is the same as for the A’s in Example 6. The difference is in the starting
values 1, 1, 1 for the determinants of sizesn = 1,2, 3.
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18 Go back to B, in Problem 17. It is the same as A, except for b;; = 1. So use
linearity in the first row, where [l —1 O]equals [2 —1 O]minus[1 O 0]:

1 -1 0 2 -1 0 1 0 0
-1 -1 -1
B = = —_—
|8 An—1 Ap—y Ap—y
0 0 0

Linearity gives |B,| = |An| — |An-1| =

19  Explain why the 4 by 4 Vandermonde determinant contains x> but not x* or x°:

1 a a* a3
1 b b* b3
V4 = det
4 1 ¢ ¢ ¢3
1 x x%2 X3
The determinant is zero at x = , and . The cofactor of x3 is

=(b—-a)ic—a)(c—>b). ThenV, = (b a)(c—a)(c— b)(x a)(x—b)(x—c).
20 Find G; and G5 and then by row operations G4. Can you predict G, ?

O 1 1 1
0 1 1

a-|0 8] e[t o] an]ro
1 1 O

1 1 1 0

21 Compute S;, 5>, 53 for these 1, 3, 1 matrices. By Fibonacci guess and check S4.

1
3
1

(%]
[¥8]
i
O - W
W O

22  Change 3 to 2 in the upper left comer of the matrices in Problem 21. Why does
that subtract S,_; from the determinant S,,? Show that the determinants of the new
matrices become the Fibonacci numbers 2, 5, 13 (always Fa,+1).

Problems 23-26 are about block matrices and block determinants.

23  With 2 by 2 blocks in 4 by 4 matrices, you cannot always use block determinants:
\ A B

A B
o p|=lpl b |4 Bt ianpl - (cliB

(a) Why is the first statement true? Somehow B doesn’t enter.
(b) Show by example that equality fails (as shown) when C enters.
(c) Show by example that the answer det(AD — CB) is also wrong.


Jason
高亮
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24  With block multiplication, A = LU has Ay = L Uy in the top left comer:

4T

(a) Suppose the first three pivots of A are 2,3, —1. What are the determinants of
Ly, Ly, L3 (with diagonal 1’s) and U;, U, Us and Ay, A2, A3?

(b) If A;, A,, A3 have determinants 5, 6, 7 find the three pivots from equation (3).

25 Block elimination subtracts CA™! times the first row [A B ] from the second row
[C D). This leaves the Schur complement D — CA™! B in the corner:

I 0l[4 B] _[4 B
—cA™! 1|lc D|T|o D-calB|

Take determinants of these block matrices to prove correct rules if A™! exists:
l A B

c D[: |A||D = CA™'B| = |AD — CB| provided AC = CA.

26 If Aism byn and B is n by m, block multiplication gives det M = det AB:

-3 -2 1L 1)

If A is a single row and B is a single column what is det M ? If A is a column and B
is a row what is det M ? Do a 3 by 3 example of each.

27 (A calculus question) Show that the derivative of det A with respect to a;; is the
cofactor Cyj. The other entries are fixed—we are only changing aj;.

Problems 28-33 are about the ‘“‘big formula” with »! terms.
28 A 3 by 3 determinant has three products “down to the right” and three “down to the
left” with minus signs. Compute the six terms like (1)(5)(9) = 45tofind D.

Explain without determinants
why this particular matrix
is or is not invertible.

- -+ + +

29 For E, in Problem 15, five of the 4! = 24 terms in the big formula (8) are nonzero.
Find those five terms to show that £, = —1.

30 For the 4 by 4 tridiagonal second difference matrix (entries —1, 2, —1) find the five
terms in the big formula that givedetA = 16 -4 -4 —4 + 1.
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31 Find the determinant of this cyclic P by cofactors of row 1 and then the “big for-
mula”. How many exchanges reorder 4, 1,2,3 into 1,2,3,4? Is |P?| = 1 or —1?

0 0 0 1 0 010
100 0 »_ |00 0 1| [O I
F=lo100 P_IOOO_[IO]'

0O 010 01 0 O

Challenge Problems

32  Cofactors of the 1, 3, 1 matrices in Problem 21 give a recursion S, = 3S,—1 — Sp—2.
Amazingly that recursion produces every second Fibonacci number. Here is the chal-
lenge.

Show that Sy, is the Fibonacci number F»,45 by proving Fopys = 3F3, —~ Fa,_».
Keep using Fibonacci’s rule Fy = Fp—1 + Fy— starting with kK = 2n + 2.

33 The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n,n
entry, why does the determinant become zero? (Use rule 3 or cofactors.)

1 1 1 1 1 1 1 1

1 2 3 4 1 2 3 4 .
det 1 3 6 10| 1 (known) det 13 6 10| 0 (to explain).

1 4 10 20 1 4 10 19

34  This problem shows in two ways that det A = 0 (the x’s are any numbers):

b
fl
coox X

OO O R X
OO OR =
LR TR B
TR R - R S

(a) How do you know that the rows are linearly dependent?
(b) Explain why all 120 terms are zero in the big formula for det A.

35 If |[det(A)| > 1, prove that the powers A™ cannot stay bounded. But if |det(4)| < 1,
show that some entries of A™ might still grow large. Eigenvalues will give the right
test for stability, determinants tell us only one number.
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5.3 Cramer’s Rule, Inverses, and Yolumes

This section solves Ax = b—by algebra and not by elimination. We also invert A. In the
entries of A~?, you will see det A in every denominator—we divide by it. (If det4A = 0
then we can’t divide and A™! doesn’t exist.) Each entry in A~ and A~15 is a determinant
divided by the determinant of A4.

Cramer’s Rule solves Ax = b. A neat idea gives the first component x;. Replacing the
first column of I by x gives a matrix with determinant x;. When you multiply it by A, the
first column becomes Ax which is b. The other columns are copied from A:

x3 0 0 bi anx ais
Key idea A X2 I 0= bz dzy dz3 | = B1 . (1)
x3 0 1 by az asz;

We multiplied a column at a time. Take determinants of the three matrices:

det B;
Product rule (det A)(x1) = det By or Xy = Tetd (2)
This is the first component of x in Cramer’s Rule! Changing a column of A4 gives B;.
To find x,, put the vector x into the second column of the identity matrix:
1 x 1 0
Same idea a daz as 0 X2 Ol=|a b a3 | = Bz. (3)
0 X3 1

Take determinants to find (det A)(x;) = det B,. This gives x, in Cramer’s Rule:

Example 1 Solving 3x; 4+ 4x; = 2 and 5x; 4+ 6x, = 4 needs three determinants:

3 4 2 4 3 2
5 6 4 6 5 4

Those determinants are —2 and —4 and 2. All ratios divide by det A:

—4 2
Cramer’sRulex1=—2=2 x2=—2=—1 check[3 4][ 2:|=[2].

detA = ! i det By =

det B, =

5 6 -1 4

To solve an n by n system, Cramer’s Rule evaluates n + 1 determinants (of A and the
n different B’s). When each one is the sum of n! terms—applying the “big formula” with
all permutations—this makes a total of (n + 1)! terms. It would be crazy to solve equations
that way. But we do finally have an explicit formula for the solution x.
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Example 2 Cramer’s Rule is inefficient for numbers but it is well suited to letters. For
n = 2, find the columns of A~! by solving AA™! = I:

commmsor 1| ¢ G [0 )=[o] L2 2]l0]=[0]
Those share the same A. We need five determinants for x;, x2, y1, ya2:
a b 1 b a 1 0 b a 0
c d|a“dlo d] c ol ‘1 d’ c 1l
The last four are d, —c, —b, and a. (They are the cofactors!) Here is A™1:

d —c —b a 1 d —b
-, = —, = —, = —, dth A—1= .
Al 2T Ay T A 2T Ay ad—bc[—c a]

X1 =

I chose 2 by 2 so that the main points could come through clearly. The new idea is the
appearance of the cofactors. When the right side is a column of the identity matrix I, the
determinant of each matrix B; in Cramer’s Rule is a cofactor.

You can see those cofactors for n = 3. Solve AA~! = I (first column only):

. 1 a a a 1 a a a 1
Determinants 0 a12 al3 a“ 0 a13 all alz 5 .
= Cofactors of A 22 G423 21 23 21 422

0 asx as; a1 0 as;s azy aszy 0

That first determinant | B; | is the cofactor C;;. The second determinant | B, | is the cofactor
Cj2. Notice that the correct minus sign appears in —(@»1a33 — a23as1). This cofactor Cyo
goes into the 2, 1 entry of A~!—the first column! So we transpose the cofactor matrix, and
as always we divide by det A.

The i, j entry of A~ is the cofactor Cj; (not C;;) divided by det A:

£ (}A | )ij - detA | detd "N

The cofactors C;; go into the “cofactor matrix” C. Its transpose leads to A~!. To compute
the i, j entry of A™!, cross out row j and column i of A. Multiply the determinant by
(—=1)'*/ to get the cofactor, and divide by det A.

Check this rule for the 3, 1 entry of A~ Thisisin column 1 so we solve Ax = (1,0,0).
The third component x3 needs the third determinant in equation (5), divided by det A. That
third determinant is exactly the cofactor C13 = az1a33—as2a31. S0 (A~ 1)3; = Ci3/det A
(2 by 2 determinant divided by 3 by 3).

Summary In solving AA™! = I, the columns of I lead to the columns of A~!. Then
Cramer’s Rule using b = columns of I gives the short formula (6) for A™1.
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Direct proof of the formula A~! = C"/ det A The idea is to multiply A4 times C™:

(7

Row 1 of A times column 1 of the cofactors yields the first det A on the right:
a11C11 +a12C12 + a13Cy3 = det A by the cofactor rule.

Similarly row 2 of A times column 2 of CT(transpose) yields det A. The entries a,; are
multiplying cofactors C,; as they should, to give the determinant.

How to explain the zeros off the main diagonal in equation (7)? Rows of A are multi-
plying cofactors from different rows. Why is the answer zero?

Row2of A

Row 1 of C a21C11 + a2Cr2 + a23Ci13 = 0. 8)

Answer: This is the cofactor rule for a new matrix, when the second row of A4 is copied into
its first row. The new matrix A* has two equal rows, so det A* = 0 in equation (8). Notice
that A* has the same cofactors Ci1, C12, C13 as A—because all rows agree after the first
row. Thus the remarkable multiplication (7) is correct:

CT
= detd

Example 3 The “sum matrix” A has determinant 1. Then A~ contains cofactors:

ACT = (detA)] or A7!

1 0 0 O . 1 0 O 0

|1 100 ) -1 _ C -1 1 0 O
A= {110 has inverse A~ = - = 0 —1 1 o0
1 1 1 1 0 0 -1 1

Cross out row 1 and column ] of A4 to see the 3 by 3 cofactor Cy; = 1. Now cross out row
1 and column 2 for C15. The 3 by 3 submatrix is still triangular with determinant 1. But
the cofactor Cy5 is —1 because of the sign (—1)!*2, This number —1 goes into the (2, 1)
entry of A~!—don’t forget to transpose C.

The inverse of a triangular matrix is triangular. Cofactors give a reason why.

Example 4 If all cofactors are nonzero, is A sure to be invertible? No way.

Area of a Triangle

Everybody knows the area of a rectangle—base times height. The area of a triangle is half
the base times the height. But here is a question that those formulas don’t answer. If we
know the corners (x1, y1) and (x2, y2) and (x3, y3) of a triangle, what is the area?
Using the corners to find the base and height is not a good way.
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(x2,y2) (x2,y2)

(x1, 71) (x1, 1)
(x3,¥3)

Figure 5.1: General triangle; special triangle from (0, 0); general from three specials.

Determinants are much better. The square roots in the base and height cancel out in the
good formula. The area of a triangle is half of a 3 by 3 determinant. If one corner is at
the origin, say (x3, y3) = (0, 0), the determinant is only 2 by 2.

o 1| |
Area of triangle % x3 y2 1| Area= -;- ;1 ;’ 'l when (x3,y3) =(0,0).
; 2 2 e

X3 3 1 :' e

When you set x3 = y3 = 0 in the 3 by 3 determinant, you get the 2 by 2 determinant. These
formulas have no square roots—they are reasonable to memorize. The 3 by 3 determinant
breaks into a sum of three 2 by 2’s, just as the third triangle in Figure 5.1 breaks into three
special triangles from (0, 0):

x1 y 1 +3(x1y2 — x21)
X2 y2 1= +3(x2y3—x3y2) )
x3 y3 1 +3(x3y1 — x1y3)-

Cof: :
ofactors of Area = 1
column 3 2

If (0, 0) is outside the triangle, two of the special areas can be negative—but the sum is still
correct. The real problem is to explain the special area %(xl Y2 — X2)1)-

Why is this the area of a triangle? We can remove the factor % and change to a paral-
lelogram (twice as big, because the parallelogram contains two equal triangles). We now
prove that the parallelogram area is the determinant x; y» — x2y;. This area in Figure 5.2

is 11, and therefore the triangle has area 1}

Proof that a parallelogram starting from (0,0) has area = 2 by 2 determinant.
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(X2, ¥2) (1,3) Parallelogram
4 1
Area = ‘1 3| =11
©0.0) (X1, y1) ©0.0) (4,1) Triangle: Area = 1!

Figure 5.2: A triangle is half of a parallelogram. Area is half of a determinant.

There are many proofs but this one fits with the book. We show that the area has the same
properties 1-2-3 as the determinant. Then area = determinant! Remember that those three
rules defined the determinant and led to all its other properties.

1 When A = [, the parallelogram becomes the unit square. Its area is det I = 1.

2 When rows are exchanged, the determinant reverses sign. The absolute value (positive
area) stays the same—it is the same parallelogram.

3 If row 1 is multiplied by ¢, Figure 5.3a shows that the area is also multiplied by ¢. Sup-
pose a new row (x, y;) is added to (xi, y1) (keeping row 2 fixed). Figure 5.3b shows
that the solid parallelogram areas add to the dotted parallelogram area (because the two
triangles completed by dotted lines are the same).

Dotted area = Solid area=A + A

(X 30y))

(©,0) ©,0)
Figure 5.3: Areas obey the rule of linearity (keeping the side (x5, y2) constant).

That is an exotic proof, when we could use plane geometry. But the proof has a major
attraction—it applies in # dimensions. The n edges going out from the origin are given by
the rows of an n by n matrix. The box is completed by more edges, just like the parallelo-
gram.

Figure 5.4 shows a three-dimensional box—whose edges are not at right angles. The
volume equals the absolute value of det A. Our proof checks again that rules 1-3 for
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determinants are also obeyed by volumes. When an edge is stretched by a factor ¢, the
volume is multiplied by . When edge 1 is added to edge 1’, the new box has edge 1 +
I’. Its volume is the sum of the two original volumes. This is Figure 5.3b lifted into
three dimensions or n» dimensions. I would draw the boxes but this paper is only two-
dimensional.

(a31,a32,a33)

volume of box
=|determinant|

(@i1,amz,ap3)&” (az21,a22,a23)

Figure 5.4: Three-dimensional box formed from the three rows of A.

The unit cube has volume = 1, which is det /. Row exchanges or edge exchanges leave
the same box and the same absolute volume. The determinant changes sign, to indicate
whether the edges are a right-handed triple (det A > 0) or a left-handed triple (det 4 < 0).
The box volume follows the rules for determinants, so volume of the box = absolute value
of the determinant.

Example 5 Suppose a rectangular box (90° angles) has side lengths r, s, and ¢. Its
volume is r times s times . The diagonal matrix with entries r, s, and ¢ produces those
three sides. Then det A also equals r s ¢.

Example 6 In calculus, the box is infinitesimally small! To integrate over a circle, we
might change x and y to r and 6. Those are polar coordinates: x = r cosf@ and y = r sin 6.
The area of a “polar box” is a determinant J times dr d6:

cosf —rsinf

J = sinf rcosé

dx/dr dx/06
dy/or dy/o0

This determinant is the r in the small area dA = r dr df. The stretching factor J goes
into double integrals just as dx/du goes into an ordinary integral [ dx = [(dx/du) du.
For triple integrals the Jacobian matrix J with nine derivatives will be 3 by 3.
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The Cross Product

The cross product is an extra (and optional) application, special for three dimensions. Start
with vectors # = (u1,u3,u3) and v = (v, v3, v3). Unlike the dot product, which is a
number, the cross product is a vector—also in three dimensions. It is written # x v and
pronounced “u cross v.” The components of this cross product are just 2 by 2 cofactors.
We will explain the properties that make # x v useful in geometry and physics.

This time we bite the bullet, and write down the formula before the properties.

'DEFINITION The cross product of i = (u1, 15, us) and ¥ = (v1, V3, v3) is a vector

cuxv = ur up uz| = (uvs—usva)i H(usvr—usvs)j +@iva—usvi)k. (10)
v v w3 | L i R T - S

gt

‘This vector is perpes

wand v. The cross product vxuis ~(u x v):

Comment The 3 by 3 determinant is the easiest way to remember # X v. It is not especially
legal, because the first row contains vectors i, j,k and the other rows contain numbers.
In the determinant, the vector i = (1,0,0) multiplies u>v3 and —u3v,. The result is
(u2v3 — U332, 0,0), which displays the first component of the cross product.

Notice the cyclic pattern of the subscripts: 2 and 3 give component 1 of # X v, then 3
and 1 give component 2, then 1 and 2 give component 3. This completes the definition of
u X v. Now we list the properties of the cross product:

Property 1 v X u reverses rows 2 and 3 in the determinant so it equals —(z X v).

Property 2 The cross product # x v is perpendicular to # (and also to v). The direct proof
is to watch terms cancel. Perpendicularity is a zero dot product:

w- (uxv) =u(uz2vs —usvy) +uz(u3vy —ugvs) +us(uvy —ugvy) =0.  (11)

The determinant now has rows #, # and v so it is zero.

Property 3 The cross product of any vector with itself (two equal rows) is u x u = 0.

When u and v are parallel, the cross product is zero. When # and v are perpendicular, the
dot product is zero. One involves sin € and the other involves cos 9:

and fuvel = ul fofleostl. (12

Example 7 Since u = (3,2,0) and v = (1, 4,0) are in the xy plane, u x v goes up the
Z axis:

i j k
uxv=1|3 2 0|=10k. Thecrossproductisu xv = (0,0, 10).
1 4 0
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The length of u X v equals the area of the parallelogram with sides u and v. This will be
important: In this example the area is 10.

Example 8 The cross productof # = (1,1,1)and v = (1, 1,2) is (1, -1, 0):

i k

-t 4ol Hoel g
1 2

p— et Sy,

This vector (1, —1, 0) is perpendicular to (1, 1, 1) and (1, 1,2) as predicted. Area = /2.

Example 9 The cross product of (1,0, 0) and (0, 1, 0) obeys the right hand rule. It goes
up not down:

ixj=k
i j k Rule u x v points along
1 0 O0|=k your right thumb when the
01 O I v = fingers curl from u to v.

Thus i x j = k. The right hand rule also gives j xk =i and k x i = j. Note the cyclic
order. In the opposite order (anti-cyclic) the thumb is reversed and the cross product goes
the other way: k X j = —i andi xk = —j and j xi = —k. You see the three plus signs
and three minus signs from a 3 by 3 determinant.

The definition of # X v can be based on vectors instead of their components:

The cross product is a vector with length ||u]| ||v|| | sin 8].

“up:’ aow]

This definition appeals to physicists, who hate to choose axes and coordinates. They see
(u1,u2,u3) as the position of a mass and (Fx, Fy, F;) as a force acting on it. If F is
parallel to u, then u# x F* = 0—there is no turning. The cross product # X F is the turning
force or rorque. 1t points along the turning axis (perpendicular to # and F). Its length
le|| || F || sin & measures the “moment” that produces turning.

Triple Product = Determinant = Volume

Since # x v is a vector, we can take its dot product with a third vector w. That produces
the triple product (u x v) - w. It is called a “scalar” triple product, because it is a number.
In fact it is a determinant—it gives the volume of the u, v, w box:

wp W2 W3 [Z3] Uy Us
Ui Uy U3 | = |V Vg V3. (13)
Vi V2 U3 wy Wz w3

Triple product




5.3. Cramer’s Rule, Inverses, and Volumes 277

We can put w in the top or bottom row. The two determinants are the same because
row exchanges go from one to the other. Notice when this determinant is zero:

(u xv)-w =0 exactly when the vectors u, v, w lie in the same plane.
First reason u X v is perpendicular to that plane so its dot product with w is zero.
Second reason Three vectors in a plane are dependent. The matrix is singular (det = 0).

Third reason Zero volume when the u, v, w box is squashed onto a plane.

It is remarkable that (# x v) - w equals the volume of the box with sides u, v, w. This
3 by 3 determinant carries tremendous information. Like ad — bc for a 2 by 2 matrix, it
separates invertible from singular. Chapter 6 will be looking for singular.

= REVIEW OF THE KEY IDEAS =

1. Cramer’s Rule solves Ax = b by ratios like x; = |B1|/|A| = |baz---a,|/|A|.
When C is the cofactor matrix for A, the inverse is 47! = CT/ det A.
The volume of a box is | det A|, when the box edges are the rows of A.

Area and volume are needed to change variables in double and triple integrals.

moos W N

In R3, the cross product u x v is perpendicular to u and v.

= WORKED EXAMPLES =

53 A If A is singular, the equation ACT = (det A)/ becomes ACT = zero matrix.
Then each column of CT is in the nullspace of A. Those columns contain cofactors along
rows of A. So the cofactors quickly find the nullspace of a 3 by 3 matrix—my apologies
that this comes so late!

Solve Ax = 0 by x = cofactors along a row, for these singular matrices of rank 2:

Cofactors 1 4 7 2

give A= 2 3 9 A=11 1 1

Nullspace 2 2 8 111
Any nonzero column of CT will give the desired solution to Ax = 0. With rank 2,

A has at least one nonzero cofactor. If 4 has rank 1 we get x = 0 and the idea fails.
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Solution  The first matrix has these cofactors along its top row (note each minus sign):
3 9 2 9 2 3
’2 8‘_6 _|28“‘“2 ‘22’“‘_2

Then x = (6,2, —2) solves Ax = 0. The cofactors along the second row are (—18, —6, 6)
which is just —3x. This is also in the one-dimensional nullspace of A.
The second matrix has zero cofactors along its first row. The nullvector x = (0, 0,0)
is not interesting. The cofactors of row 2 give x = (1, —1, 0) which solves Ax = 0.
Every n by n matrix of rank n — 1 has at least one nonzero cofactor by Problem 3.3.12.
But for rank n — 2, all cofactors are zero and we only find x = 0.

53 B Use Cramer’s Rule with ratios det B;/ det A to solve Ax = b. Also find the
inverse matrix A~! = CT/det A. Why is the solution x for this b the same as column 3 of
A2 Which cofactors are involved in computing that column x?

2 6 2 X 0
5 9 0 z 1

Find the volumes of the boxes whose edges are columns of A and then rows of 471,

Solution  The determinants of the B; (with right side & placed in column j) are

0 6 2 2 0 2 2 6 0
Bil=|0 4 2 |=4 |[ByJ=|10 2|==2 [Bs|=|1 4 0]|=2
1 90 51 0 5 9 1

Those are cofactors C31, C33, C33 of row 3. Their dot product with row 3 is det A:
det A = a31C31 + a32C32 +a33C33 = (5,9,0) - (4,-2,2) = 2.
The three ratios det B;/ det A give the three components of x = (2, —1, 1). This x is the

third column of A~! because b = (0,0, 1) is the third column of I. The cofactors along
the other rows of A, divided by det A = 2, give the other columns of A™!:

o= detd 2 10 —10 —2 |. Multiplytocheck A4™! =1
ot 11 12 2

The box from the columns of A has volume = det A = 2 (the same as the box from the
rows, since |AT| = |A|). The box from A™! has volume 1/|4| = 3.
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Problem Set 5.3

Problems 1-5 are about Cramer’s Rule for x = 4~15.

1

Solve these linear equations by Cramer’s Rule x; = det B; / det A:

2x1+ xp =1

2 =
(@) i‘iii‘f:; )  x14+2x4 x3=0
! 2 X3 + 2x3 = 0.

Use Cramer’s Rule to solve for y (only). Call the 3 by 3 determinant D:

ax+by+ cz=1
®b) dx+ey+ fz=0
gx+hy+ iz =0.

ax +by =1
@ cx+dy =0
Cramer’s Rule breaks down when det A = 0. Example (a) has no solution while
(b) has infinitely many. What are the ratios x; = det B/ det 4 in these two cases?

2x1 +3x2 =1
dx1 4+ 6x2 =1

2x1+3x2 =1

(2) 4x1 + 6xy = 2

(parallel lines) (b) (same line)

Quick proof of Cramer’s rule. The determinant is a linear function of column 1. It is
zero if two columns are equal. When b = Ax = x1a; + x2a2 + x3a3 goes into the
first column of A, the determinant of this matrix By is

Ib as a3| = |x1a1 + x2a; + x3a3; a; aj|= xi|lay az a3| = xp det A.

(a) What formula for x; comes from left side = right side?
(b) What steps lead to the middle equation?

If the right side b is the first column of A, solve the 3 by 3 system Ax = b. How
does each determinant in Cramer’s Rule lead to this solution x?

Problems 615 are about A~! = CT/ det A. Remember to transpose C.

6

Find A~! from the cofactor formula CT/ det A. Use symmetry in part (b).

1 2 0] 2 -1 0
@A=[0 3 0 b A=|-1 2 -1
0 7 1 0 -1 2

If all the cofactors are zero, how do you know that A has no inverse? If none of the
cofactors are zero, is A4 sure to be invertible?

Find the cofactors of A and multiply ACT to find det A:

11 4 6 =3 0
A=|1 2 2 and C=|- - - and ACT =
1 2 5 . . .

If you change that 4 to 100, why is det A unchanged?
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9 Suppose det A = 1 and you know all the cofactors in C. How can you find A?
10  From the formula AC™T = (det A)I show that det C = (det 4)*~.

11 If all entries of A are integers, and det A = 1 or —1, prove that all entries of A™! are
integers. Give a 2 by 2 example with no zero entries.

12  If all entries of A and A~} are integers, prove that det A = 1 or —1. Hint: What is
det 4 times det A~1?

13 Complete the calculation of A~ by cofactors that was started in Example 5.

14 L is lower triangular and S is symmetric. Assume they are invertible:

To invert a 0 0 a b d
triangular L L=|b ¢ 0 S=1|b ¢ e
symmetric S d e f d e f

(a) Which three cofactors of L are zero? Then L™} is also lower triangular.
(b) Which three pairs of cofactors of S are equal? Then S~! is also symmetric.

(c) The cofactor matrix C of an orthogonal Q will be . Why?
18 Forn = 5 the matrix C contains cofactors. Each 4 by 4 cofactor contains
terms and each term needs multiplications. Compare with 5% = 125

for the Gauss-Jordan computation of A™! in Section 2.4.
Problems 16-26 are about area and volume by determinants.

16 (a) Find the area of the parallelogram with edges v = (3,2) and w = (1, 4).
(b) Find the area of the triangle with sides v, w, and v + w. Draw it.
(¢) Find the area of the triangle with sides v, w, and w — v. Draw it.
17 A box has edges from (0,0,0) to (3,1, 1) and (1,3, 1) and (1, 1, 3). Find its volume.
Also find the area of each parallelogram face using ||z x ||
18 (a) The comers of a triangle are (2, 1) and (3, 4) and (0, 5). What is the area?
(b) Add a corner at (—1, 0) to make a lopsided region (four sides). Find the area.

19  The parallelogram with sides (2, 1) and (2, 3) has the same area as the parallelogram
with sides (2, 2) and (1, 3). Find those areas from 2 by 2 determinants and say why
they must be equal. (I can’t see why from a picture. Please write to me if you do.)

20 The Hadamard matrix H has orthogonal rows. The box is a hypercube!

1 1 1 1
. 1 1 -1 -1 a
Whatis |H| = 1 -1 -1 17 volume of a hypercube in R*?

I -1 1 -1
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21  If the columns of a 4 by 4 matrix have lengths L, L,, L3, L4, what is the largest
possible value for the determinant (based on volume)? If all entries of the matrix are
1 or —1, what are those lengths and the maximum determinant?

22  Show by a picture how a rectangle with area x; y, minus a rectangle with area x,y;
produces the same area as our parallelogram.

23  When the edge vectors a, b, ¢ are perpendicular, the volume of the box is ||a|| times
|5| times ||c||. The matrix AT A4 is . Find det ATA and det A.

24  The box with edges i and j and w = 2i 4 3j + 4k has height . What is the
volume? What is the matrix with this determinant? Whatis i x j and what is its dot
product with w?

25 An n-dimensional cube has how many corners? How many edges? How many
(n — 1)-dimensional faces? The cube in R" whose edges are the rows of 2/ has
volume . A hypercube computer has parallel processors at the corners with
connections along the edges.

26  The triangle with corners (0, 0), (1, 0), (0, 1) has area —;— The pyramid in R? with four
corners (0,0,0),(1,0,0), (0,1,0), (0,0, 1) has volume . What is the volume
of a pyramid in R* with five comers at (0, 0, 0, 0) and the rows of 1?

Problems 27-30 are about areas dA and volumes dV in calculus.

27  Polar coordinates satisfy x = r cos@ and y = r sin 6. Polar area is J dr d0:

7= ox/or 0x/d6| |cosf —rsinf
~ |dy/dr 0dy/d6| |sin8 rcosf|’
The two columns are orthogonal. Their lengthsare _ . Thus J = ___

28  Spherical coordinates p, ¢, @ satisfy x = psingcos@ and y = psingsinf and
z = pcos¢. Find the 3 by 3 matrix of partial derivatives: dx/dp, 0x/d¢,dx/06 in
row 1. Simplify its determinant to J = p?sin¢. Then dV in spherical coordinates
is p? sin ¢ dp d¢d®f, the volume of an infinitesimal “coordinate box”.

29 The matrix that connects r, 6 to x, y is in Problem 27. Invert that 2 by 2 matrix:

or/ox dr/dy
ad/ax 06/dy

cosf ?

-1 _
J7 = ? 9

=7

It is surprising that dr/dx = dx/0dr (Calculus, Gilbert Strang, p. 501). Multiplying
the matrices J and J ! gives the chain rule 3% = £ 4 3288 —

— Br dx
30 The triangle with corners (0, 0), (6,0), and (1, 4) has area . When you rotate
it by 8 = 60° the area is . The determinant of the rotation matrix is
cosf —sinf L 9
J sin@ cosf ? 2 '
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Problems 31-38 are about the triple product (# x v) - w in three dimensions.

31 A box has base area ||u x v||. Its perpendicular height is ||w]|| cos 8. Base area times
height = volume = |lu x v|| ||w|| cos 8 which is (# x v) - w. Compute base area,
height, and volume for u = (2,4,0), v = (-1,3,0), w = (1, 2, 2).

32  The volume of the same box is given more directly by a 3 by 3 determinant. Evaluate
that determinant.

33 Expand the 3 by 3 determinant in equation (13) in cofactors of its row uy, ug, us.
This expansion is the dot product of u with the vector

34  Which of the triple products (# X w) - v and (w x ) - v and (v X w) - u are the same
as (u X v) - w? Which orders of the rows u, v, w give the correct determinant?

35 LetP =(1,0,—1)and Q = (1,1,1) and R = (2,2, 1). Choose S so that PQRS
is a parallelogram and compute its area. Choose 7, U, V so that OPQRSTUYV isa
tilted box and compute its volume,

36 Suppose (x, y,z) and (1,1,0) and (1, 2, 1) lie on a plane through the origin. What
determinant is zero? What equation does this give for the plane?

37  Suppose (x, y, z) is a linear combination of (2, 3, 1) and (1, 2, 3). What determinant
is zero? What equation does this give for the plane of all combinations?

38 (a) Explain from volumes why det2A4 = 2" det A for n by n matrices.
(b) For what size matrix is the false statement det A 4 det A = det(A4 + A) true?

Challenge Problems

39 If you know all 16 cofactors of a 4 by 4 invertible matrix A, how would you find A?

40 Suppose A4 is a 5 by 5 matrix. Its entries in row 1 multiply determinants (cofactors)
in rows 2-5 to give the determinant. Can you guess a “Jacobi formula” for det A
using 2 by 2 determinants from rows 1-2 times 3 by 3 determinants from rows 3—5?

Test your formula on the —1, 2, —1 tridiagonal matrix that has determinant = 6.

41 The 2 by 2 matrix AB =(2 by 3)(3 by 2) has a “Cauchy-Binet formula” for det AB:
det AB = sum of (2 by 2 determinants in 4) (2 by 2 determinants in B)

{a) Guess which 2 by 2 determinants to use from A and B.
(b) Test your formula when the rows of 4 are 1,2,3 and 1, 4,7 with B = AT.
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Chapter 6

Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

Linear equations Ax = b come from steady state problems. Eigenvalues have their greatest
importance in dynamic problems. The solution of du/dt = Au is changing with time—
growing or decaying or oscillating. We can’t find it by elimination. This chapter enters a
new part of linear algebra, based on Ax = Ax. All matrices in this chapter are square.

A good model comes from the powers 4, A2, A3, ... of amatrix. Suppose you need the
hundredth power A1%0, The starting matrix A becomes unrecognizable after a few steps,
and A% is very close to [.6 .6; .4 .4]:

8 3 70 45 .650 .525
2 .7 30 .55 350 475

A A? A3

A% was found by using the eigenvalues of A, not by multiplying 100 matrices. Those

eigenvalues (here they are 1 and 1/2) are a new way to see into the heart of a matrix.

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change di-
rection, when they are multiplied by A. Certain exceptional vectors x are in the same
direction as Ax. Those are the “eigenvectors”. Multiply an eigenvector by A, and the
vector Ax is a number A times the original x.

The basic equation is Ax = Ax. The number A is an eigenvalue of A.

The eigenvalue A tells whether the special vector x is stretched or shrunk or reversed or left
unchanged—when it is multiplied by A. We may find A = 2 or % or —1 or 1. The eigen-
value A could be zero! Then Ax = Ox means that this eigenvector x is in the nullspace.
If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of /.
All eigenvalues “lambda” are A = 1. This is unusual to say the least. Most 2 by 2 matrices
have two eigenvector directions and two eigenvalues. We will show that det(4 — A7) = 0.

283
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This section will explain how to compute the x’s and A’s. It can come early in the course
because we only need the determinant of a 2 by 2 matrix. Let me use det(4 — A1) = O to
find the eigenvalues for this first example, and then derive it properly in equation (3).

Example1 The matrix A has two eigenvalues A = 1 and A = 1/2. Look atdet(A—A1):

[8 3 8—1 3 2 3,1 1
=[5 3] w[i7 2 ]=r-Biei=a-n(a-3).

I factored the quadratic into A — 1 times A — %, to see the two eigenvalues A = 1 and
A= % For those numbers, the matrix A — A becomes singular (zero determinant). The

eigenvectors x; and x, are in the nullspaces of A — 7 and 4 — -21-1 .
(A—ID)x, = 0is Ax; = x; and the first eigenvector is (.6, .4).

(A—1D)x, =0is Axy = 1x, and the second eigenvector is (1, —1):
2 2

X; = [2] and Ax,; = [g 3] [2] =x1 (Ax = x meansthat A; = 1)

X2 = [_i] and Axj; = [2 ,37] [_}] = l:_g] (this is :21_‘362 50 Ay = %)'

If x, is multiplied again by A, we still get x;. Every power of A wiil give A”x; = x;.
Multiplying x 2 by A gave 3x2, and if we multiply again we get (3)? times x.

When A is squared, the eigenvectors stay the same. The eigenvalues are squared.

This pattern keeps going, because the eigenvectors stay in their own directions (Figure 6.1)
and never get mixed. The eigenvectors of A1%° are the same x; and x,. The eigenvalues
of 41% are 1'% = 1 and ()% = very small number.

.6] A2 =1 Ale = (1)2x1

Ax1=x1=[4

Ax = Ax

Xg = I:_}] A%x = A\%x

Figure 6.1: The eigenvectors keep their directions. AZ has eigenvalues 12 and (.5)2.

Other vectors do change direction. But all other vectors are combinations of the two
eigenvectors. The first column of A is the combination x1 + (.2)x5:

Separate into eigenvectors [2] =x1+(2xy = I:Z] + [_;] . (D)



6.1. Introduction to Eigenvalues 285

Multiplying by A gives (.7, .3), the first column of A2. Do it separately for x; and (.2)x,.
Of course Ax1 = x1. And 4 multiplies x5 by its eigenvalue %:

- 8] [.7 . 1 _ |6 1
Multiply each x; by A; A [2] = [3] Is x;+ 5(.2)x2 = [4] + [_.1] .

Each eigenvector is multiplied by its eigenvalue, when we multiply by A. We didn’t need
these eigenvectors to find A%. But it is the good way to do 99 multiplications. At every step
x| is unchanged and x , is multiplied by (3), so we have (3)%%:

99 -8 . 1 99 .6 very
A 2| I8 really x; + (.2)(5) Xp=1|, + | small
) ' vector

This is the first column of A1%0. The number we originally wrote as .6000 was not exact.
We left out (.2)(3)°° which wouldn’t show up for 30 decimal places.

The eigenvector x; is a “steady state” that doesn’t change (because Ay = 1). The
eigenvector x, is a “decaying mode” that virtually disappears (because A, = .5). The
higher the power of A, the closer its columns approach the steady state.

We mention that this particular A is a Markov matrix. Its entries are positive and
every column adds to 1. Those facts guarantee that the largest eigenvalue is A = 1 (as we
found). Its eigenvector x; = (.6, .4) is the steady state—which all columns of A* will
approach. Section 8.3 shows how Markov matrices appear in applications like Google.

For projections we can spot the steady state (A = 1) and the nullspace (A = 0).

Example 2

Its eigenvectors are x; = (1,1) and x, = (1, —1). For those vectors, Px; = x; (steady
state) and Px, = 0 (nullspace). This example illustrates Markov matrices and singular
matrices and (most important) symmetric matrices. All have special A’s and x’s:

5 .5

1. Each columnof P = [ 5 s

] adds to 1, so A = 1 is an eigenvalue.

2. P issingular, so A = 0 is an eigenvalue.
3. P is symmetric, so its eigenvectors (1, 1) and (1, —1) are perpendicular.

The only eigenvalues of a projection matrix are 0 and 1. The eigenvectors for A = 0
(which means Px = Ox) fill up the nullspace. The eigenvectors for A = 1 (which means
Px = x) fill up the column space. The nullspace is projected to zero. The column space
projects onto itself. The projection keeps the column space and destroys the nullspace:

Project each part v = [_i:l + B] projects onto Pv = [g] + [;] )

Special properties of a matrix lead to special eigenvalues and eigenvectors.
That is a major theme of this chapter (it is captured in a table at the very end).
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Projections have A = 0 and 1. Permutations have all || = 1. The next matrix R (a
reflection and at the same time a permutation) is also special.

Example 3 The reflection matrix R = [¢}] has eigenvalues 1 and —1.

The eigenvector (1, 1) is unchanged by R. The second eigenvector is (1, —1)—its signs
are reversed by R. A matrix with no negative entries can still have a negative eigenvalue!
The eigenvectors for R are the same as for P, because reflection = 2(projection) — I

0 1 5 57 10
R=2P-1I [1 0]=2[.5 .5]_[0 1]' 2

Here is the point. If Px = Ax then 2Px = 2Ax. The eigenvalues are doubled when
the matrix is doubled. Now subtract /x = x. The resultis QP — I)x = (21 — 1)x.
When a matrix is shifted by I, each A is shifted by 1. No change in eigenvectors.

xo Px; =x Rx; = x;
P X9 = 0.172
. . . ) . ‘e -
Projection onto blue line Reflection across line Rxs = —x

Figure 6.2: Projections P have eigenvalues 1 and 0. Reflections R have A = 1 and —1.
A typical x changes direction, but not the eigenvectors x1 and x5. -

Key idea: The eigenvalues of R and P are related exactly as the matrices are related:
The eigenvaluesof R=2P — I are2(1)— 1 =1and2(0) -1 = —1.

The eigenvalues of R? are A2. In this case R?2 = . Check (1)2 = 1 and (—1)? = 1.

The Equation for the Eigenvalues

For projections and reflections we found A’s and x’s by geometry; Px = x, Px = 0,
Rx = —x. Now we use determinants and linear algebra. This is the key calculation in
the chapter—almost every application starts by solving Ax = Ax.

First move Ax to the left side. Write the equation Ax = Ax as (A — Al)x = 0. The
matrix A — Al times the eigenvector x is the zero vector. The eigenvectors make up the

nullspace of A — AI. When we know an eigenvalue A, we find an eigenvector by solving
(A-2A)x =0.

Eigenvalues first. If (A — Al)x = 0 has a nonzero solution, A — A is not invertible.
The determinant of A — AI must be zero. This is how to recognize an eigenvalue A:
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Eigenvalues The number A is an eigenvalue of 4 if and only if 4 — Al is singular:
Equation for the eigenvalues  det(A—A)=0. . (3)
This “characteristic polynomial” det(A — AI) involves only A, not x. When 4 is n by #,
equation (3) has degree n. Then A has n eigenvalues (repeats possible!) Each A leads to x:

For each éigenﬁzélue' Asolve (A —AD)x = 0 or Ax = Ax to find an elgenvectorx

1
Example 4 A=|:2 4

] is already singular (zero determinant). Find its A’s and x’s.

When A is singular, A = 0 is one of the eigenvalues. The equation Ax = Ox has
solutions. They are the eigenvectors for A = 0. But det(A — AI) = 0 is the way to find all
A’s and x’s. Always subtract A/ from A:

Subtract ). from the diagonalto find A — Ll = I:l ; A 4 _2_ A:I . 4

Take the determinant “ad — bc” of this 2 by 2 matrix. From 1 — A times 4 — A,
the “ad” part is A2 — 51 + 4. The “b¢” part, not containing A, is 2 times 2.

det[lgk 4_2_A]=(1-1)(4-1)-(2)(2):12—51. )

Set this determinant A% — 5) to zero. One solution is A = 0 (as expected, since A is
singular). Factoring into A times A — 5, the other rootis A = 5:

det(A —AI) = A*—51 =0 yieldsthe "eig"éhValfues- A =0 and A= 5
Now find the eigenvectors. Solve (A — Al)x = 0 separately for Ay = Oand A, = 5:

(A-0)x = [2 4]|z = [OJ yields an eigenvector . z__ __1] forA; =0

boos -

(A-5D)x = [—-; _? i = [g yields an eigenvector y =;:| for Ao = 5.

The matrices A — 0 and A — 5] are singular (because O and 5 are eigenvalues). The
eigenvectors (2, —1) and (1, 2) are in the nullspaces: (A — Al)x = 0is Ax = Ax.

We need to emphasize: There is nothing exceptional about A = 0. Like every other
number, zero might be an eigenvalue and it might not. If A4 is singular, it is. The eigenvec-
tors fill the nullspace: Ax = Ox = 0. If A is invertible, zero is not an eigenvalue. We shift
A by a multiple of I to make it singular.

In the example, the shifted matrix A — 5/ is singular and 5 is the other eigenvalue.
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Summary To solve the eigenvalue problem for an n by n matrix, follow these steps:

Compute the determinant of A — A1

Find the roots of this poi_;nomzal,

solve (A — Al)x = 0 to find an eigenvector x .

A note on the eigenvectors of 2 by 2 matrices. When A — A1 is singular, both rows are
multiples of a vector (a, b). The eigenvector is any multiple of (b, —a). The example had
A=0and A =5:

A = 0 :rows of A — 07 in the direction (1, 2); eigenvector in the direction (2, —1)
A = 5 :rows of A — 51 in the direction (—4, 2); eigenvector in the direction (2, 4).

Previously we wrote that last eigenvector as (1,2). Both (1,2) and (2,4) are correct.
There is a whole line of eigenvectors—any nonzero multiple of x is as good as x.
MATLAB'’s eig(A) divides by the length, to make the eigenvector into a unit vector.

We end with a warning. Some 2 by 2 matrices have only one line of eigenvectors.
This can only happen when two eigenvalues are equal. (On the other hand A = [ has
equal eigenvalues and plenty of eigenvectors.) Similarly some n by n matrices don’t have
n independent eigenvectors. Without n eigenvectors, we don’t have a basis. We can’t write
every v as a combination of eigenvectors. In the language of the next section, we can’t
diagonalize a matrix without # independent eigenvectors.

Good News, Bad News

Bad news first: If you add a row of A to another row, or exchange rows, the eigenvalues
usually change. Elimination does not preserve the A’s. The triangular U has its eigenvalues
sitting along the diagonal—they are the pivots. But they are not the eigenvalues of A!
Eigenvalues are changed when row 1 is added to row 2:

1 3

2 6

1 3
U_[O 0] hasA =0and A = 1; A—[

] hasA =0and A = 7.
Good news second: The product Ay times A, and the sum Ay + A, can be found quickly
from the matrix. For this A, the product is O times 7. That agrees with the determinant
(which is 0). The sum of eigenvalues is O 4 7. That agrees with the sum down the main
diagonal (the trace is 1 + 6). These quick checks always work:

The product of the n eigenvalues equals the determinant.
The sum of the n eigenvalues equals the sum of the n diagonal entries.
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The sum of the entries on the main diagonal is called the frace of A:

Mt dadk e dy = frace = an o+ az o+ - o

Those checks are very useful. They are proved in Problems 16~17 and again in the next
section. They don’t remove the pain of computing A’s. But when the computation is wrong,
they generally tell us so. To compute the correct A’s, go back to det(4 — A7) = 0.

The determinant test makes the product of the A’s equal to the product of the pivots
(assuming no row exchanges). But the sum of the A’s is not the sum of the pivots—as the
example showed. The individual A’s have almost nothing to do with the pivots. In this new
part of linear algebra, the key equation is really nonlinear: A multiplies x.

Why do the eigenvalues of a triangular matrix lie on its diagonal?

Imaginary Eigenvalues

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

After a rotation, no vector Qx stays in the same direction as x (except x = 0 which is
useless). There cannot be an eigenvector, unless we go to imaginary numbers. Which we
do.

To see how i can help, look at Q2 which is —I. If Q is rotation through 90°, then

Q? is rotation through 180°. Its eigenvalues are —1 and —1. (Certainly —/x = —1x.)
Squaring Q will square each A, so we must have A> = —1. The eigenvalues of the 90°
rotation matrix Q are +i and —i, because {2 = —1.

Those A’s come as usual from det(Q — AJ) = 0. This equation gives A2 + 1 = 0.
Its roots are i and —i. We meet the imaginary number i also in the eigenvectors:

Complex O —1([1]_ .|l and 0 —-1][: — i

eigenvectors 1 ool|li|= i 1 of|1]  "j1}|°
Somehow these complex vectors x; = (1,i) and x, = (i, 1) keep their direction as
they are rotated. Don’t ask me how. This example makes the all-important point that real

matrices can easily have complex eigenvalues and eigenvectors. The particular eigenvalues
i and —i also illustrate two special properties of Q:

1. Q is an orthogonal matrix so the absolute value of each A is |A| = 1.

2. Q is a skew-symmetric matrix so each A is pure imaginary.
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A symmetric matrix (AT = A) can be compared to a real number. A skew-symmetric
matrix (AT = —A) can be compared to an imaginary number. An orthogonal matrix
(ATA = I) can be compared to a complex number with || = 1. For the eigenvalues those
are more than analogies—they are theorems to be proved in Section 6.4.

The eigenvectors for all these special matrices are perpendicular. Somehow (i, 1) and
(1, 1) are perpendicular (Chapter 10 explains the dot product of complex vectors).

Eigshow in MATLAB

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a 2
by 2 matrix. It starts with the unit vector x = (1,0). The mouse makes this vector move
around the unit circle. At the same time the screen shows Ax, in color and also moving.
Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is parallel to x. At
that parallel moment, Ax = Ax (at x; and x, in the second figure).

y=(01) 4|08 03
| T 102 07
~
N
Q.3,0.7)
\
Ax = (0.8,0.2)
- RS -
x = (1,0) ~ — — circleof x’s
These are not eigenvectors Ax lines up with x at eigenvectors

The eigenvalue A is the length of Ax, when the unit eigenvector x lines up. The built-in
choices for A illustrate three possibilities: 0, 1, or 2 directions where Ax crosses x.

0. There are no real eigenvectors. Ax stays behind or ahead of x. This means the
eigenvalues and eigenvectors are complex, as they are for the rotation Q.

1. There is only one line of eigenvectors (unusual). The moving directions Ax and x
touch but don’t cross over. This happens for the last 2 by 2 matrix below.

2. There are eigenvectors in fwo independent directions. This is typical! Ax crosses x
at the first eigenvector x 1, and it crosses back at the second eigenvector x,. Then
Ax and x cross again at —x| and —x,.

You can mentally follow x and Ax for these five matrices. Under the matrices I will
count their real eigenvectors. Can you see where Ax lines up with x?

S RO G N i
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When A is singular (rank one), its column space is a line. The vector Ax goes up
and down that line while x circles around. One eigenvector x is along the line. Another
eigenvector appears when Ax, = 0. Zero is an eigenvalue of a singular matrix.

® REVIEW OF THE KEY IDEAS =

Ax = Ax says that eigenvectors x keep the same direction when multiplied by A.
Ax = Ax also says that det(A — Al) = 0. This determines » eigenvalues.

The eigenvalues of A2 and A~! are A2 and A~1, with the same eigenvectors.

ol A e

The sum of the A’s equals the sum down the main diagonal of A (the trace).
The product of the A’s equals the determinant.

5. Projections P, reflections R, 90° rotations Q have special eigenvalues 1,0, -1, i, —i.
Singular matrices have A = 0. Triangular matrices have A’s on their diagonal.

= WORKED EXAMPLES =

6.1 A Find the eigenvalues and eigenvectors of 4 and A2 and A" and A + 41:

1 2 -1 » | 5 -4
A= [_1 2:' and A° = [_4 5]
Check the trace A; + A, and the determinant A; A, for A and also A2.

Solution  The eigenvalues of A come from det(4 — A7) = 0:

2—-42 -1

det(4 — Al) =l I

,=A2—4A+3=0.

This factors into (A — 1)(A —3) = 0 so the eigenvalues of A are A; = 1 and A, = 3. For the
trace, the sum 2+ 2 agrees with 14 3. The determinant 3 agrees with the product A{A, = 3.
The eigenvectors come separately by solving (A — AI)x = 0 whichis Ax = Ax:

A=L (A-I)x

(1 —17[x] _[o] . . i
1J y| = gives the eigenvector x| =

A=3 (A-3])x = -1 -l x] 0 gives the eigenvector x, = 1]
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A? and A™! and A + 41 keep the same eigenvectors as A. Their eigenvalues are A2 and
A~Vand A + 4:

A? has eigenvalues 12 = 1and 3> =9 47! has % and % A + 41 has ; -_::3 ; ;
The trace of A2 is 5 + 5 which agrees with 1 + 9. The determinant is 25 — 16 = 9.

Notes for later sections: A has orthogonal eigenvectors (Section 6.4 on symmetric
matrices). A can be diagonalized since A1 # A, (Section 6.2). A is similar to any 2 by 2
matrix with eigenvalues I and 3 (Section 6.6). A is a positive definite matrix (Section 6.5)
since A = AT and the A’s are positive.

6.1 B Find the eigenvalues and eigenvectors of this 3 by 3 matrix A:

Symmetric matrix 1 -1 O
Singular matrix A={-1 2 -1
Tracel+2+1=4 0 -1 1

Solution  Since all rows of A add to zero, the vector x = (1,1, 1) gives Ax = 0. This
is an eigenvector for the eigenvalue A = 0. To find A, and A3 I will compute the 3 by 3
determinant:

1= =1 0 | =(1-MC=-)0=1)=2(1-1)
det(A—AD=| -1 2-1 =1 | =01=-[C-V)(1-1)-2]
0 -1 1-A| == ENGE=1).

That factor —A confirms that A = 0 is a root, and an eigenvalue of A. The other factors
(1 — A) and (3 — A) give the other eigenvalues 1 and 3, adding to 4 (the trace). Each
eigenvalue 0, 1, 3 corresponds to an eigenvector :

l 1 1
X1 = 1 Ax1=0x1 Xy = 0 Ax2=1x2 X3 = -2 Ax3=3x3.
| —~1 1

I notice again that eigenvectors are perpendicular when A is symmetric.

The 3 by 3 matrix produced a third-degree (cubic) polynomial for det(4A — AI) =
—A3 + 4)2 — 3). We were lucky to find simple roots A = 0, 1, 3. Normally we would use
a command like eig(A), and the computation will never even use determinants (Section 9.3
shows a better way for large matrices).

The full command [S, D] = eig(A) will produce unit eigenvectors in the columns of
the eigenvector matrix .S. The first one happens to have three minus signs, reversed from
(1,1, 1) and divided by +/3. The eigenvalues of A will be on the diagonal of the eigenvalue
mairix (typed as D but soon called A).
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Problem Set 6.1

1 The example at the start of the chapter has powers of this matrix A:

78 3 , [.70 45 w_ [6 6
A—[.z .7] and A _[.30 .55] and A _[.4 .4]'

Find the eigenvalues of these matrices. All powers have the same eigenvectors.

(a) Show from A how a row exchange can produce different eigenvalues.

(b) Why is a zero eigenvalue not changed by the steps of elimination?

2 Find the eigenvalues and the eigenvectors of these two matrices:

1 4 2 4
A_[z 3] and A+I—|:2 4].

A + I has the eigenvectors as A. Its eigenvalues are by 1.

3 Compute the eigenvalues and eigenvectors of A and A™!. Check the trace !
10 2 -1 |[-1/2 1
A—[l 1:| and A —-[ 1/2 O]'

A~ has the eigenvectors as A. When A has eigenvalues A; and Ay, its inverse
has eigenvalues

4 Compute the eigenvalues and eigenvectors of A and A2:

-1 3 2 | 7 =3
A—-[z 0] and A -—[_2 6]'

A? has the same as A. When A has eigenvalues A; and A5, A2 has eigenvalues
. In this example, why is A3 + A3 = 13?2

5 Find the eigenvalues of A and B (easy for triangular matrices) and A + B:

3 0] 11 4 1
A-—[l 1] and B_[O 3] and A—!—B--[1 4].
Eigenvalues of A 4+ B (are equal to)(are not equal to) eigenvalues of A plus eigen-

values of B.

6 Find the eigenvalues of A and B and AB and BA:

1 O 1 2 1 2 3 2
A—[l 1] and B—[O 1] and AB—[1 3] and JI?A—-[:1 1].

(a) Are the eigenvalues of AB equal to eigenvalues of A times eigenvalues of B?
(b) Are the eigenvalues of AB equal to the eigenvalues of BA?
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Elimination produces A = LU. The eigenvalues of U are on its diagonal; they
are the . The eigenvalues of L are on its diagonal; they are all . The
eigenvalues of A are not the same as

(a) If you know that x is an eigenvector, the way to find A is to

(b) If you know that A is an eigenvalue, the way to find x is to .
What do you do to the equation Ax = Ax, in order to prove (a), (b), and (c)?

(a) A?is an eigenvalue of A2, as in Problem 4.
(b) A~ lisan eigenvalue of A~L, as in Problem 3.

(¢) A+ lisaneigenvalue of A + I, as in Problem 2.

Find the eigenvalues and eigenvectors for both of these Markov matrices A and 4.
Explain from those answers why 419 is close to 4A%:

=[5 3] = e[ 1]

Here is a strange fact about 2 by 2 matrices with eigenvalues A; # A,: The columns
of A — A are multiples of the eigenvector x,. Any idea why this should be?

Find three eigenvectors for this matrix P (projection matrices have A =1 and 0):

Projection matrix P =

oRr N
o o B
—_ 0 O

If two eigenvectors share the same A, so do all their linear combinations. Find an
eigenvector of P with no zero components.

From the unit vector # = (%, £, 2,2) construct the rank one projection matrix
P = uu™. This matrix has P? = P because u”u = 1.
(a) Pu=u comes from (zuu=u( ). Then u is an eigenvector with A =1.

(b) If v is perpendicular to # show that Pv = 0. Then A = 0.

(c) Find three independent eigenvectors of P all with eigenvalue A = 0.
Solve det(Q — AT') = 0 by the quadratic formula to reach A = cos @ =i sin §:

0= [cos@ —sinf

sinf  cosd ] rotates the xy plane by the angle 6. No real A’s.

Find the eigenvectors of Q by solving (Q —AI)x = 0. Use i? = —1.



6.1. Introduction to Eigenvalues 295

15

16

17

18

19

20

21

22

Every permutation matrix leaves x = (1,1,.. .,1) unchanged. Then A = 1. Find
two more A’s (possibly complex) for these permutations, from det(P — AI) = 0:

P = and P =

-0 O

1
0
0

O O
—_0 O
e I )
o O

The determinant of A equals the product AjA; -+ 4,. Start with the polynomial
det(A — AT) separated into its n factors (always possible). Then set A = 0:

det(A—AI) = A1 —A)Az2—A)-- (4 —A) so detd=
Check this rule in Example 1 where the Markov matrix has A = 1 and %

The sum of the diagonal entries (the trace) equals the sum of the eigenvalues:

A=[Z cbi] has det(4 —Al) =A% — (@ +d)A+ad —bec =0.

The quadratic formula gives the eigenvalues A = (a+d++ )/2and A=
Their sum is .If AhasA; =3 and A, = 4thendet(A — Al) =

If Ahas Ay = 4and A, = Sthendet(4d — AI) = (A — 4)(A —5) = A2 — 94 + 20.
Find three matrices that have trace ¢ + d = 9 and determinant 20 and A = 4, 5.

A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This information is enough
to find three of these (give the answers where possible) :

(a) the rank of B

(b) the determinant of BTB

(c) the eigenvalues of BTB

(d) the eigenvalues of (B2 + 1)L,

Choose the last rows of A and C to give eigenvalues 4,7 and 1, 2, 3:

0 1

0 1 0
Companion matrices A= [* *] C=10 0 1
* ok %k

The eigenvalues of A equal the eigenvalues of AT. This is because det(4 — AI)
equals det(AT — AI). That is true because . Show by an example that the
eigenvectors of A and AT are not the same.

Construct any 3 by 3 Markov matrix M : positive entries down each column add to 1.
Show that MT(1,1,1) = (1,1,1). By Problem 21, A = 1 is also an eigenvalue
of M. Challenge: A 3 by 3 singular Markov matrix with trace % has what A’s ?
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Find three 2 by 2 matrices that have A; = A, = 0. The trace is zero and the
determinant is zero. A might not be the zero matrix but check that 4% = 0.

This matrix is singular with rank one. Find three A’s and three eigenvectors:

1 2 1 2

A=|2[[212]=|4 2 4

1 2 1 2
Suppose A and B have the same eigenvalues Ay, . . ., A, with the same independent
eigenvectors X1,. . .,X,. Then A = B. Reason: Any vector x is a combination

cixy 4+ -+ cpxy,. Whatis Ax? What is Bx?

The block B has eigenvalues 1,2 and C has eigenvalues 3,4 and D has eigenval-
ues 5, 7. Find the eigenvalues of the 4 by 4 matrix A:

0130

A=[B c]_ -2 3 0 4
0 D| | 00 6 1

0 01 6

Find the rank and the four eigenvalues of A and C:

and C =

pmnt el k]
bt et
e et ek
— i
O = =
_—0 e O
O == O =
—_0 = O

Subtract I from the previous A. Find the A’s and then the determinants of

01 1 1 0 -1 -1 -1
1 01 1 -1 0 -1 -1
B=A-1= 110 1 and C=1—-A= 1 -1 0 —1
1 1 10 -1 -1 -1 O
(Review) Find the eigenvalues of A, B, and C:
1 2 3 0 0 1 2 2 2
A=10 4 5 and B=]0 2 0 and C=|2 2 2
0 0 6 3 00 2 2 2

When a 4+ b =c + d show that (1, 1) is an eigenvector and find both eigenvalues :

Az[g g]
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31 If we exchange rows 1 and 2 and columns 1 and 2, the eigenvalues don’t change.
Find eigenvectors of 4 and B for A = 11. Rank one gives A, = A3 = 0.

1 2 1 6 3 3
A=]|3 6 3 and B=PAPT=|2 1 1
4 8 4 8 4 4

32  Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors #, v, w.

(a) Give a basis for the nullspace and a basis for the column space.

(b) Find a particular solution to Ax = v + w. Find all solutions.

(c) Ax =u has no solution. If it did then would be in the column space.
33  Suppose u, v are orthonormal vectors in R?, and A = uv'. Compute 42 = uvTuv?’
to discover the eigenvalues of 4. Check that the trace of A agrees with A; + A,.

34  Find the eigenvalues of this permutation matrix P from det (P — Al) = 0. Which
vectors are not changed by the permutation? They are eigenvectors for A = 1. Can
you find three more eigenvectors?

0 0 0 1

1 0 00
P=1010 0

0 0 1 O
Challenge Problems

35 There are six 3 by 3 permutation matrices P. What numbers can be the determinants
of P? What numbers can be pivots? What numbers can be the frace of P? What
four numbers can be eigenvalues of P, as in Problem 15?7

36 Isthereareal2by? ma'trbg (other than I ) with A3 = I? Its eigenvalues must satisfy
A3 = 1. They can be ¢?™/3 and ¢~27/3, What trace and determinant would this
give? Construct a rotation matrix as A (which angle of rotation?).

37 (a) Find the eigenvalues and eigenvectors of A. They depend on c¢:

4 1-—c
A_[.6 c ]

(b) Show that A has just one line of eigenvectors when ¢ = 1.6.

(c) This is a Markov matrix when ¢ =.8. Then A” will approach what matrix A>?
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6.2 Diagonalizing a Matrix

When x is an eigenvector, multiplication by A is just multiplication by a number A:
Ax = Ax. All the difficulties of matrices are swept away. Instead of an interconnected
system, we can follow the eigenvectors separately. It is like having a diagonal matrix, with
no off-diagonal interconnections. The 100th power of a diagonal matrix is easy.

The point of this section is very direct. The matrix A turns into a diagonal matrix A
when we use the eigenvectors properly. This is the matrix form of our key idea. We start
right off with that one essential computation.

The matrix A is “diagonalized.” We use capital lambda for the eigenvalue matrix,
because of the small A’s (the eigenvalues) on its diagonal.

Proof Multiply A times its eigenvectors, which are the columns of S. The first column of
AS is Ax. Thatis A;x,. Each column of S is multiplied by its eigenvalue A;:

A times S AS=A|x1 - xpl|l=|A1x1 - Apxy

The trick is to split this matrix AS into S times A:

Al
S times A Axy - Apxp l=1x1 - xp = SA.

Keep those matrices in the right order! Then A; multiplies the first column x, as shown.
The diagonalization is complete, and we can write AS = SA in two good ways:

The matrix S has an inverse, because its columns (the eigenvectors of A) were assumed to
be linearly independent. Without n independent eigenvectors, we can’t diagonalize.

A and A have the same eigenvalues Aq,...,A,. The eigenvectors are different. The
job of the original eigenvectors x1,..., X, was to diagonalize A. Those eigenvectors in .S

produce A = SAS™!. You will soon see the simplicity and importance and meaning of
the nth power A" = SA®S™1L.
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Example 1  This A is triangular so the A’s are on the diagonal: A = 1 and A = 6.

Eivenvect 11 1 1 —17 1 s] [1 1]_ [1 0
genvectors 1 o1 |1 o 1| (o 6| [0 1|{T o 6
s-1 A S A

In other words A = SAS™!. Then watch 4> = SAST!SAS~!. When you remove
S—18 = I, this becomes SA2S~1. Same eigenvectors in S and squared eigenvalues
in A2

The kth power will be A* = SAkS~1 which is easy to compute:

k
1 5 1 171 1 —~1 1 6—1

Withk = 1 we get A. Withk = Owe get A® = I (and A0 = 1). Withk = —1 we get A~ L.
You can see how A2 = [1 35; 0 36] fits that formula when k = 2.
Here are four small remarks before we use A again.

Remark 1 Suppose the eigenvalues A, . . ., A, are all different. Then it is automatic that
the eigenvectors x1, . . ., X, are independent. Any matrix that has no repeated eigenvalues
can be diagonalized.

Remark 2 We can multiply eigenvectors by any nonzero constants. Ax = Ax will remain
true. In Example 1, we can divide the eigenvector (1, 1) by V2 to produce a unit vector.

Remark 3 The eigenvectors in S come in the same order as the eigenvalues in A. To
reverse the order in A, put (1, 1) before (1,0) in S:

0O 1|1 5|1 1 6 0
New order 6, 1 [1 -—IiH:O 6][1 0]—[0 1]—Anew

To diagonalize A we must use an eigenvector matrix. From S~1AS = A we know that
AS = SA. Suppose the first column of S is x. Then the first columns of 4.8 and SA are
Ax and A;x. For those to be equal, x must be an eigenvector.

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few
eigenvectors. Those matrices cannot be diagonalized. Here are two examples:

1 -1 0 0

Their eigenvalues happen to be 0 and 0. Nothing is special about A = 0, it is the repetition
of A that counts. All eigenvectors of the first matrix are multiples of (1, 1):

Only one line Ax — Ox means 1 -1 |0 and x = ¢ |
of eigenvectors o 1 —1||*| "o R
There is no second eigenvector, so the unusual matrix A cannot be diagonalized.
Those matrices are the best examples to test any statement about eigenvectors. In many

true-false questions, non-diagonalizable matrices lead to false.
Remember that there is no connection between invertibility and diagonalizability:

Not diagonalizable A= [1 :1] and B = [O 1].
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- Invertibility is concermned with the eigenvalues (A = 0 or A # 0).

- Diagonalizability is concerned with the eigenvectors (too few or enough for S).

Each eigenvalue has at least one eigenvector! A — A is singular. If (4 — AJ)x = 0 leads
youto x =0, A is not an eigenvalue. Look for a mistake in solving det(4 — A7) = 0.
Eigenvectors for n different A’s are independent. Then we can diagonalize A.

Proof Suppose cix14c2x2 = 0. Multiply by A to find ¢;A;x1 +c2A2x, = 0. Multiply
by A, to find c1A2x1 + ¢c2A2x> = 0. Now subtract one from the other:

Subtraction leaves (A; — A2)c1x1 = 0. Therefore ¢; = 0.

Since the A’s are different and x; # 0, we are forced to this conclusion that c; = O.
Similarly ¢; = 0. No other combination gives ¢; x| + ¢2x2 = 0, so the eigenvectors x;
and x, must be independent.

This proof extends directly to j eigenvectors. Suppose cyx;+:--+c;x; = 0. Multiply
by A, multiply by A, and subtract. This removes x ;. Now multiply by 4 and by A;_; and
subtract. This removes x ;_;. Eventually only x; is left:

(A1 —A2) (A1 —Aj)cix; =0 which forces ¢y = 0. 3)

Similarly every ¢; = 0. When the A’s are all different, the eigenvectors are independent.
A full set of eigenvectors can go into the columns of the eigenvector matrix S.

Example 2 Powers of A The Markov matrix A = [-$-3] in the last section had
A1 = land A, = .5. Here is A = SAS™! with those eigenvalues in the diagonal A:

2 7)=18 allo 5)[e —6)=sas

The eigenvectors (.6, .4) and (1, —1) are in the columns of S. They are also the eigenvectors
of A%. Watch how A? has the same S, and the eigenvalue matrix of A2 is A%:

b3

sA2s @

Same S for A2 A2

Just keep going, and you see why the high powers A* approach a “steady state”:

k_ orke—1_ -6 17[1% 0 1 1
Powers of A A" = SA*S —['4 _1][0 Gyl la —6|

As k gets larger, (.5) gets smaller. In the limit it disappears completely. That limit is A
b6 111 01 1 6 .6
P oo —
Limitk —co A7 = [.4 —1] [0 0] [.4 —.6] = [.4 .4]'
The limit has the eigenvector x { in both columns. We saw this A® on the very first page
of the chapter. Now we see it coming, from powers like 4100 = SA1005-1,
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1 When does A* — zero matrix?

Fibonacci Numbers

We present a famous example, where eigenvalues tell how fast the Fibonacci numbers grow.
Every new Fibonacci number is the sum of the two previous F’s:

0,1,1,2,3,5,8,13,... Fyz = Fre1 + Fr.

These numbers turn up in a fantastic variety of applications. Plants and trees grow in a
spiral pattern, and a pear tree has 8 growths for every 3 turns. For a willow those numbers
can be 13 and 5. The champion is a sunflower of Daniel O’Connell, which had 233 seeds
in 144 loops. Those are the Fibonacci numbers Fj3 and Fy,. Our problem is more basic.

Problem: Find the Fibonacci number Fyg9¢9 The slow way is to apply the rule
Fyys = Fp41 + Fy one step at a time. By adding Fg = 8 to Fi7 = 13 we reach Fg = 21.
Eventually we come to F¢¢. Linear algebra gives a better way.

The key is to begin with a matrix equation ug; = Awuy. That is a one-step rule for
vectors, while Fibonacci gave a two-step rule for scalars. We match those rules by putting
two Fibonacci numbers into a vector. Then you will see the matrix A.

Every step multiplies by A = [ 1 }]. After 100 steps we reach u100 = A'%u:

_ |1 _ |1 _ 12 _ 13 _ | Fio1
Ug = ol° Uy = 1 Uy = 11 U3 = 7] cees Uigop = FIOO .

This problem is just right for eigenvalues. Subtract A from the diagonal of A:

1=A 1

A—AI=[ A

] leadsto det(A—Al)=A*—A—-1.

The equation A2 — 1 — 1 = 0 is solved by the quadratic formula (—b £+ Vb2 — 4ac ) [2a:

Eigenvalues A =

These eigenvalues lead to eigenvectors x; = (A1,1) and x, = (A2,1). Step 2 finds the
combination of those eigenvectors that gives #o = (1,0):

1 _ 1 Al _ )\,2 _xl—xz
[0]‘11—12([1] [ID o MEINTh ©)
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Step 3 multiplies ug by A'% to find u;g9. The eigenvectors x| and x, stay separate!
They are multiplied by (1,)'%° and (1,)!90:

(7

100 steps from g "100 -

We want Fy99 = second component of #1¢9. The second components of x; and x5, are 1.
The difference between (1 + J§)/2 and (1 — J§)/2 is A1 — Ay = /5. We have Fjqo:

1 1+J§ 100 1_J§ 100 2
F100= \/-S-li( ) ) -—-( 5 ) ~ 3.54 - 10°". (8)

Is this a whole number? Yes. The fractions and square roots must disappear, because
Fibonacci’s rule Fp4, = Fi41 + Fi stays with integers. The second term in (8) is less
than %, so it must move the first term to the nearest whole number:

k_ 1k k
PLEBPL: 1 (1+«/§) L ©

= nearest integer to
Al — A2 NG 2

The ratio of Fg to Fs is 8/5 = 1.6. The ratio Fyg1/F100 must be very close to the
limiting ratio (1 + +/5)/2. The Greeks called this number the “golden mean”.
For some reason a rectangle with sides 1.618 and 1 looks especially graceful.

kth Fibonacci number =

Matrix Powers A*

Fibonacci’s example is a typical difference equation uy+; = Aug. Each step multiplies
by A. The solution is ux = A*uo. We want to make clear how diagonalizing the matrix
gives a quick way to compute A* and find uy, in three steps.

The eigenvector matrix S produces A = SAS~!. This is a factorization of the matrix,
like A = LU or A = QR. The new factorization is perfectly suited to computing powers,
because every time S~ multiplies S we get I:

Powers of A Afug = (SAS™Y) - (SAS™Dug = SAFS~1u,
I will split SAXS 1y, into three steps that show how eigenvalues work:

the eigenvectors. Then ¢ = S 'ug.

2. : 7 + Now we have A*S~1uy.

This is SA¥ S~ uy.
o= ‘Avk”o =_Cl(/11)k¥1 +eeet c”(A”)kx"' (10)

In matrix language A* equals (SAS™1)* which is S times A¥ times S~!. In Step 1,
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the eigenvectors in .S lead to the ¢’s in the combination #g = cyx; + -+ - + CpXy:

€1
Step 1 up=|x1 - Xxp : |. Thissaysthat ug =:Se¢. (11)

Cn

The coefficients in Step 1 are ¢ = S~ ug. Then Step 2 multiplies by A¥. The final result
ur =3 ¢;(A;)*x; in Step 3 is the product of § and A* and S~uy:

(Al)k 1
Akuo = SAkS_luo = SAke = X1 ... Xp . (A2)
(An)k Cn
This result is exactly g = c;(A1)¥x1 + -+ + ¢4 (An)kx,,. It solves up 1 = Aug.

Example 3  Start from u#( = (1, 0). Compute A*¥uo when S and A contain these eigen-
vectors and eigenvalues:

1 2 2 1
A=[1 O] has A; =2 and x1=[1], Az =~—1 and x2=[_1].

This matrix is like Fibonacci except the rule is changed to Fpio = Fiqyy + 2F%.
The new numbers start 0, 1, 1, 3. They grow faster from A = 2.

Solution in three steps Find #g = ¢1x1 + ¢ax5 and then uy = c1(A1)%x1 + ca(A2)* x>

1 12 171 1
Step 1 uo—[o]—§[1]+§[_1:] SO cl—cz—§
Step 2 Multiply the two parts by (11)* = 2% and (A)¥ = (—=1)*
Step 3 Combine eigenvectors ¢1(11)¥x and c2(A2)*x, into uy:
1 2 1 1
— 4k — _nk —(—1)*
up = A%ug uk—32 [1]+3( 1) [_1]. (13)

The new number is F, = (2% — (—1)¥)/3. After 0,1, 1,3 comes F,; = 15/3 = 5.

Behind these numerical examples lies a fundamental idea: Follow the eigenvectors. In
Section 6.3 this is the crucial link from linear algebra to differential equations (powers A
will become e**). Chapter 7 sees the same idea as “transforming to an eigenvector basis.”
The best example of all is a Fourier series, built from the eigenvectors of d /dx.
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Nondiagonalizable Matrices (Optional)

Suppose A is an eigenvalue of A. We discover that fact in two ways:
1. Eigenvectors (geometric) There are nonzero solutions to Ax = Ax.
2. Eigenvalues (algebraic) The determinant of A — A/ is zero.

The number A may be a simple eigenvalue or a multiple eigenvalue, and we want to know
its multiplicity. Most eigenvalues have multiplicity M = 1 (simple eigenvalues). Then
there is a single line of eigenvectors, and det(A — A7) does not have a double factor.

For exceptional matrices, an eigenvalue can be repeated. Then there are two different
ways to count its multiplicity. Always GM < AM for each A:

Count the independent eigenvectors for A. This
is the dimension of the nullspace of A — A1,

Count the repetitions of A among the eigenval-
ues. Look at the n roots of det(4 — A7) = 0.

If Ahas A = 4,4,4, that eigenvalue has AM = 3 and GM = 1, 2, or 3.
The following matrix A is the standard example of trouble. Its eigenvalue A = 0 is
repeated. It is a double eigenvalue (AM = 2) with only one eigenvector (GM = 1).

AM =2 A=[0

GM =1 1] has det(A-—)\I)=|

-1 1 =A,2 A=0,0but
0 0 '

0 -2 1 eigenvector

There “should” be two eigenvectors, because A2 = 0 has a double root. The double factor
A2 makes AM = 2. But there is only one eigenvector x = (1,0). This shortage of
eigenvectors when GM is below AM means that A is not diagonalizable.

The vector called “repeats” in the Teaching Code eigval gives the algebraic multiplicity
AM for each eigenvalue. When repeats = [1 1... 1] we know that the n eigenvalues are
all different and A is diagonalizable. The sum of all components in “repeats” is always 7,
because every nth degree equation det(4 — AI) = 0 has # roots (counting repetitions).

The diagonal matrix D in the Teaching Code eigvec gives the geometric multiplicity
GM for each eigenvalue. This counts the independent eigenvectors. The total number of
independent eigenvectors might be less than #. Then A is not diagonalizable.

We emphasize again: A = 0 makes for easy computations, but these three matrices also
have the same shortage of eigenvectors. Their repeated eigenvalue is A = 5. Traces are 10,
determinants are 25:

5 1 6 —1 7 2
A= I:O 5] and A= [1 4j| and A= [_2 3] .
Those all have det(4 — AI) = (A — 5)2. The algebraic multiplicity is AM = 2. But each

A — 51 has rank r = 1. The geometric multiplicity is GM = 1. There is only one line of
eigenvectors for A = 5, and these matrices are not diagonalizable.
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Eigenvalues of AB and A+ B

The first guess about the eigenvalues of AB is not true. An eigenvalue A of A times an
eigenvalue B of B usually does not give an eigenvalue of 4 B:

False proof ABx = ABx = BAx = BAx. (14)

It seems that B times A is an eigenvalue. When x is an eigenvector for A and B, this
proof is correct. The mistake is to expect that A and B aufomatically share the same
eigenvector x. Usually they don’t. Eigenvectors of A are not generally eigenvectors of B.
A and B could have all zero eigenvalues while 1 is an eigenvalue of AB:

0 1 0 0. {1t 0 {0 1
A—[O 0] and B—[I O]’ then AB--|:0 0:| and A-}—B—[1 0].

For the same reason, the eigenvalues of A + B are generallynot A + 8. Here A+ 8 =0
while 4 + B has eigenvalues 1 and —1. (At least they add to zero.)

The false proof suggests what is true. Suppose x really is an eigenvector for both 4 and
B. Then we do have ABx = Afx and BAx = ABx. When all n eigenvectors are shared,
we can multiply eigenvalues. The test AB = BA for shared eigenvectors is important in
quantum mechanics—time out to mention this application of linear algebra:

Heisenberg’s uncertainty principle In quantum mechanics, the position matrix P and
the momentum matrix Q do not commute. In fact QP — PQ = I (these are infinite
matrices). Then we cannot have Px = 0 at the same time as Ox = 0 (unless x = 0).
If we knew the position exactly, we could not also know the momentum exactly.
Problem 28 derives Heisenberg’s uncertainty principle | Px| || Qx| > %llx 2.

m REVIEW OF THE KEY IDEAS =

1. If A has n independent eigenvectors x 1, ..., X, they go into the columns of S.
A is diagonalized by S S7'1AS=A and A=SASL
2. The powers of A are A¥ = SA¥S~!. The eigenvectors in S are unchanged.

3. The eigenvalues of A% are (A1), ..., (A,)¥ in the matrix Ak,

4. The solution to uy; = Auy starting from ug is uy = Afug = SA*¥S~luy:

L = a1 x4+ () =1ty +o ek Gt

That shows Steps 1,2, 3 (c’s from S o, A* from A*, and x’s from S)
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5. A is diagonalizable if every eigenvalue has enough eigenvectors (GM = AM).

= WORKED EXAMPLES =

6.2 A The Lucas numbers are like the Fibonacci numbers except they start with
Ly = 1and L, = 3. Following the rule Lz4r» = Lgy1 + Lg, the next Lucas num-
bers are 4,7, 11, 18. Show that the Lucas number Lyq is 1100 + 1190,

Note The key point is that A; + A, = 1 and A? + A3 = 3, when the A’s are (1 £ +/5)/2.
The Lucas number Ly is l’l‘ + A%, since this is correct for L, and L,.

Solution  uyy; = [} ]uk is the same as for Fibonacci, because Lyip = Lyt + Ly
is the same rule (with different starting values). The equation becomes a 2 by 2 system:

: et u [ Ly |" " QFHP‘, by =

The eigenvalues and eigenvectors of A = [ 11] still come from A2 = A + I:

AL = 1+2J§ and x; = [/\11] Ay = 1-2«/§ and x, = [Alz:l'

Now solve c1x| + c2x2 = uy = (3,1). The solution is ¢; = A1 and ¢3 = A,. Check:
[ A3+A3 ] [ traceof 42 | [ 3] _
Arxy 4 Agxz = [ Ai+ds | T | traceofd |T |1 |T™

u190 = A%u; tells us the Lucas numbers (L1931, L10o). The second components of the
eigenvectors x; and x; are 1, so the second component of u¢g is the answer we want:

Lucas number Lioo = cllﬁ_g + A = /\{00 + /1500.
Lucas starts faster than Fibonacci, and ends up larger by a factor near /5.

6.2B  Find the inverse and the eigenvalues and the determinant of A:

4 -1 -1 -1
A =5 x eye(4) — ones(4) = :i :11 _i :i
-1 -1 -1 4

Describe an eigenvector matrix S that gives S~ A4S = A.
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Solution  What are the eigenvalues of the all-ones matrix ones(4)? Its rank is certainly
1, so three eigenvalues are A = 0,0, 0. Its trace is 4, so the other eigenvalue is A = 4.
Subtract this all-ones matrix from 57 to get our matrix 4 :

Subtract the eigenvalues 4,0,0,0 from 5.5, 5,5. The eigenvalues of A are 1,5,5,5.

The determinant of A is 125, the product of those four eigenvalues. The eigenvector for
A=1lisx = (1,1,1,1) or (c,c,c,c). The other eigenvectors are perpendicular to x
(since A is symmetric). The nicest eigenvector matrix S is the symmetric orthogonal
Hadamard matrix H (normalized to unit column vectors):

1 1 1 1
) 11 -1 I -1 T —1
Orthonormal eigenvectors S = H = 31 1 1 -1 -1 | = H =H
1 -1 -1 1
The eigenvalues of A™! are 1, {, 1, 2. The eigenvectors are not changed so A™! =
HA~'H™!. The inverse matrix is surprisingly neat:
2 1 1 1
1 111 2 11
-1 —_ - _
AT = S * (eye(4) + ones(4)) =11 21
1 1 1 2

A is a rank-one change from 5. So A™! is a rank-one change /5 + ones/5.

The determinant 125 counts the “spanning trees” in a graph with 5 nodes (all edges
included). Trees have no loops (graphs and trees are in Section 8.2).

With 6 nodes, the matrix 6 * eye(5) — ones(5) has the five eigenvalues 1, 6, 6, 6, 6.

Problem Set 6.2

Questions 1-7 are about the eigenvalue and eigenvector matrices A and S.

1 (a) Factor these two matrices into A = SAS™!:

1 2 1 1
A—[O 3} and A=[3 3].

(b) fA=SAS'then 43 = ( ) ) )and A~ ' =( )( )( ).

2 If Ahas Ay = 2 with eigenvector x; = [§] and A, = 5 with x, = [1],
use SAS™! to find A. No other matrix has the same A’s and x’s.

3 Suppose A = SAS~!. What is the eigenvalue matrix for A + 2/? What is the
eigenvector matrix? Check that A +2J7 = ( )( )( )7L
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4 True or false: If the columns of S (eigenvectors of A) are linearly independent, then

(a) A is invertible (b) A isdiagonalizable
(¢) § isinvertible (d) S is diagonalizable.

5 If the eigenvectors of A are the columns of 7, then 4 isa matrix. If the eigen-
vector matrix S is triangular, then S~ is triangular. Prove that A is also triangular.

6 Describe all matrices S that diagonalize this matrix A (find all eigenvectors):

4 0
A= [1 2] .
Then describe all matrices that diagonalize A™!.

7 Write down the most general matrix that has eigenvectors [}] and [_} ]

Questions 8—-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing S~

1 1| _[A1 Az2|[A1 O
1L ol [ 1 1 0 A )
Do the multiplication SA¥S~1[1] to find its second component. This is the kth
Fibonacci number Fr = (AY — A%) /(11 — 1,).
9 Suppose G2 is the average of the two previous numbers Gy 4+ and Gg:
Giy2 = 3Ge41 + 3Gk | [Gk+2] B [ ] [Gkﬂ}
18 = A .
Gi4+1 = Gr41 Gi+41 Gy

(a) Find the eigenvalues and eigenvectors of A.
(b) Find the limitas n — oo of the matrices A" = SA"S~1.
(c) If Go = 0 and G; = 1 show that the Gibonacci numbers approach %

10  Prove that every third Fibonacci numberin0,1,1,2,3,... iseven.

Questions 11-14 are about diagonalizability.

11 True or false: If the eigenvalues of A are 2, 2, 5 then the matrix is certainly
(a) invertible (b) diagonalizable (¢) not diagonalizable.

12  True or false: If the only eigenvectors of A are multiples of (1, 4) then A has

(a) noinverse  (b) arepeated eigenvalue  (c) no diagonalization SAS™!.
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13

14

Complete these matrices so that det A = 25. Then check that A = 5 is repeated—
the trace is 10 so the determinant of A — AJ is (A — 5)2. Find an eigenvector with
Ax = 5x. These matrices will not be diagonalizable because there is no second line
of eigenvectors.

8 9 4 10 5
A—[ 2] and A—[ 1] and A_[—S ]

The matrix A = [31] is not diagonalizable because the rank of A — 31 is
Change one entry to make A diagonalizable. Which entries could you change?

Questions 15-19 are about powers of matrices.

15

16

17

18

19

20

21

A*¥ = SA¥S~! approaches the zero matrix as k — oo if and only if every A has
absolute value less than . Which of these matrices has 4¢ — 0?

6 9 6 9
m:[A.J and A”‘L.ﬁ}
(Recommended) Find A and § to diagonalize A; in Problem 15. What is the limit

of A as k — 00? What is the limit of SA¥S™1? In the columns of this limiting
matrix you see the

Find A and S to diagonalize A, in Problem 15. What is (A2)1°u0 for these ug?

n[}] o nen[2] e [

Diagonalize A and compute SA* S~ to prove this formula for A*:

[ 2 -1 g 11430 13K

Diagonalize B and compute SA* S~ to prove this formula for B¥:

51 v [5% 5k -4k
B_[O 4] has B—[O 4k .

Suppose A = SAS™!. Take determinants to prove detA = detA = AjAsy---A,.
This quick proof only works when A can be

Show that trace ST = trace T'S, by adding the diagonal entries of ST and T'S:

_la b _lag r
S—[c d] and T—[S [].

Choose T as AS™!. Then SAS ™! has the same trace as AS 1S = A. The trace of
A equals the trace of A = sum of the eigenvalues.
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22

23

24

25

26

27

28

29

30

31
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AB — BA = I is impossible since the left side has trace = . But find an
elimination matrix so that A = E and B = ET give

1

AB—-BA=[ 0

ﬂ which has trace zero.

If A = SAS™!, diagonalize the block mairix B = [4 ,3 |. Find its cigenvalue and
eigenvector (block) matrices.

Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector
matrix 5. Show that the A’s form a subspace (cA and A; + Aj have this same 5).
What is this subspace when .S = 1?7 What is its dimension?

Suppose A2 = A. On the left side A multiplies each column of A. Which of our four
subspaces contains eigenvectors with A = 1? Which subspace contains eigenvectors
with A = 0? From the dimensions of those subspaces, A has a full set of independent
eigenvectors. So a matrix with A2 = A can be diagonalized.

(Recommended) Suppose Ax = Ax. If A = 0 then x is in the nullspace. If A # 0
then x is in the column space. Those spaces have dimensions (n — r) + r = n. So
why doesn’t every square matrix have » linearly independent eigenvectors?

The eigenvalues of A4 are 1 and 9, and the eigenvalues of B are —1 and 9:
5 4 4 5
=[] e s[t 1]

Find a matrix square root of A from R = §+/A S™!. Why is there no real matrix
square root of B?

(Heisenberg’s Uncertainty Principle) AB — BA = I can happen for infinite ma-
trices with 4 = AT and B = —BT. Then

xTx =xTABx — x"BAx < 2||Ax|| | Bx|-

Explain that last step by using the Schwarz inequality. Then Heisenberg’s inequality
says that || Ax || /|| x| times || Bx||/]|x|| is at least % It is impossible to get the position
error and momentum error both very small.

If A and B have the same A’s with the same independent eigenvectors, their factor-
izations into are the same. So 4 = B.

Suppose the same S diagonalizes both A and B. They have the same eigenvectors in
A=SA;S1and B = SA,S~!. Prove that AB = BA.

(a) If A = [a2] then the determinant of A — A/ is (A — a)(A — d). Check the
“Cayley-Hamilton Theorem” that (A — al)(A — dI) = zero matrix.

(b) Test the Cayley-Hamilton Theorem on Fibonacci’s A = [}3]. The theorem
predicts that A> — A — I = 0, since the polynomial det(4 —Al)is A2 — A — 1.
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32

33

34

35

36

37

38

Substitute A = SAS™! into the product (4 — A J)(A — AzI)--- (A — A, 1) and
explain why this produces the zero matrix. We are substituting the matrix 4 for the
number A in the polynomial p(A) = det(A — AI). The Cayley-Hamilton Theorem
says that this product is always p(A) = zero matrix, even if A is not diagonalizable.

Find the eigenvalues and eigenvectors and the kth power of A. For this “adjacency
matrix” the i, j entry of A% counts the k-step paths from i to ;.

2
1’'s in A show A= i 11
edges between nodes - 00
1 0 0 5

If A =[19] and AB = BA, show that B = [28] is also a diagonal matrix. B
has the same eigen as A but different eigen . These diagonal matrices
B form a two-dimensional subspace of matrix space. AB — BA = ( gives four
equations for the unknowns a, b, ¢, d—find the rank of the 4 by 4 matrix.

The powers A* approach zero if all |A;| < 1 and they blow up if any |A;| > 1.
Peter Lax gives these striking examples in his book Linear Algebra:

3 2 3 2 5 7 5 6.9
Sl R B ] B RS ]
141024 > 10700 p1024 - g Cl2=_c DY <1078

Find the eigenvalues A = ¢® of B and C to show B* =] and C? = —I.
Challenge Problems

The nth power of rotation through 6 is rotation through n6:

A" = cosf —sin® | [ cosnf —sinnd
| sin@  cos@ “ | sinn@ cosmf |-

Prove that neat formula by diagonalizing A = SAS™!. The eigenvectors (columns
of §) are (1,7) and (¢, 1). You need to know Euler’s formula ¢’ = cos8 + i sin 8.

The transpose of A = SAS™!is AT = (S™1)TAST. The eigenvectors in ATy =
Ay are the columns of that matrix (S™1)T. They are often called left eigenvectors.
How do you multiply matrices to find this formula for A?

Sum of rank-1 matrices A = SAS™! = llxly}" + -+ lnxny};.

The inverse of A = eye(n) + ones(n) is A™! = eye(n) + C * ones(n). Multiply
AA™! to find that number C (depending on 7).
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6.3 Applications to Differential Equations

Eigenvalues and eigenvectors and A = SA S ™! are perfect for matrix powers A%. They are
also perfect for differential equations du/dt = Au. This section is mostly linear algebra,
but to read it you need one fact from calculus: The derivative of e*! is Ae**. The whole
point of the section is this: To convert constant-coefficient differential equations into
linear algebra.

The ordinary scalar equation du/dt = u is solved by u = &’. The equation du/dt =
4u is solved by u = ¢**. The solutions are exponentials!

One equation ZZ:— = Au has the solutions u(¢) = Cet. (1)

The number C turns up on both sides of du/dt = Au. Att = O the solution Ce*
reduces to C (because e® = 1). By choosing C = u(0), the solution that starts from
u(0) at t =0 is u(t) = u(0)e?.

We just solved a 1 by 1 problem. Linear algebra moves to n by n. The unknown is
a vector u (now boldface). It starts from the initial vector #(0), which is given. The n
x inu(t).

equations contain a square matrix A. We expect n exponentials e*?

)

These differential equations are linear. If u(¢) and v(t) are solutions, so is Cu(z) + Dv(t).
We will need n constants like C' and D to match the # components of #(0). Our first job is
to find n “pure exponential solutions” ¥ = e** x by using Ax = Ax.

Notice that A4 is a constant matrix. In other linear equations, A changes as ¢ changes.
In nonlinear equations, A changes as u changes. We don’t have those difficulties.
du/dt = Au is “linear with constant coefficients”. Those and only those are the dif-
ferential equations that we will convert directly to linear algebra. The main point will be:

Solve linear constant coefficient equations by exponentials eMx, when Ax = Ax.

" Solution of du/dt = Au

Our pure exponential solution will be ¢! times a fixed vector x. You may guess that A
is an eigenvalue of A, and x is the eigenvector. Substitute u(¢) = e* x into the equation
du/dt = Au to prove you are right (the factor e** will cancel):

All components of this special solution # = ¢M x share the same e*!. The solution
grows when A > 0. It decays when A < 0. If A is a complex number, its real part decides
growth or decay. The imaginary part w gives oscillation ‘®? like a sine wave.
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Example 1  Solve du/dt = Au = [ 9} |u starting from u(0) = [$].

This is a vector equation for . It contains two scalar equations for the components y and z.
They are “coupled together” because the matrix is not diagonal:

du d[yl_To 1][y dy _ dz _
E—«Au E[Z]"—lil 0][2] means that E-mz and E-_y.

The idea of eigenvectors is to combine those equations in a way that gets back to
1 by 1 problems. The combinations y 4 z and y — z will do it:

d d
—o+=z+y ad  =(-2)=-0-2)

The combination y + z grows like e, because it has A = 1. The combination y — z decays
like e, because it has A = —1. Here is the point: We don’t have to juggle the original
equations du/dt = Au, looking for these special combinations. The eigenvectors and
eigenvalues of A will do it for us.

This matrix 4 has eigenvalues 1 and —1. The eigenvectors are (1, 1) and (1, —1). The
pure exponential solutions #; and u, take the form eMx with A = 1 and —1:

Notice: These #’s are eigenvectors. They satisfy Au; = u; and Aup, = —u>, just like x
and x,. The factors e’ and e™? change with time. Those factors give du; /dt = u; = Auy
and du,/dt = —u, = Au,. We have two solutions to du/dt = Au. To find all other
solutions, multiply those special solutions by any C and D and add:

. et [ 17 _[Cé + De™*
Complete solution u(t) =Ce [1]+De [_1 = | cet — De—t |- &)

With these constants C and D, we can match any starting vector u(0). Set¢ = 0 and
e® = 1. The problem asked for the initial value 2(0) = (4,2):

u(0) gives C, D C I:i] + D [_}:I = [;] yields C =3 and D =1.

With C = 3 and D = 1 in the solution (5), the initial value problem is solved.
The same three steps that solved ux1 = Auy now solve du/dt = Au:

1. Write #(0) as a combination c1x1 + --- + ¢, X, of the eigenvectors of A.
2. Multiply each eigenvector x; by e*?.

3. The solution is the combination of pure solutions e*! x:

(6)

Not included: If two A’s are equal, with only one eigenvector, another solution is needed.
(It will be e x). Step 1 needs A =SAS™! to be diagonalizable: a basis of eigenvectors.
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Example 2 Solve du/dt = Au knowing the eigenvalues A = 1,2, 3 of A:

du 1 1 1 9
T 0 2 1 |u startingfrom u(0)=|7
P ]lo o 3 4

The eigenvectors are x; = (1,0,0) and x5 = (1,1,0) and x3 = (1, 1, 1).
Step 1 The vector u(0) = (9,7,4) is 2x; + 3x3 + 4x3. Thus (¢, ¢2,¢3) = (2,3, 4).

'x, and 2! x, and ¢3!

Step 2 The pure exponential solutions are e
Step3 The combination that starts from u(0) is u(z) = 2¢’x, + 3e2 x5 + 4¢3 x 5.

The coefficients 2, 3, 4 came from solving the linear equation c; x| +c2x2 +¢3x3 = u(0):

C1 1 1 2 9
X X X3 cp|=1 0 1 31 =17 whichis Sc¢ = u(0). (7)
C3 0 0 4 4

You now have the basic idea—how to solve du/dt = Au. The rest of this section goes
further. We solve equations that contain second derivatives, because they arise so often in
applications. We also decide whether u(¢) approaches zero or blows up or just oscillates.

At the end comes the matrix exponential ¢4t Then ¢4ty (0) solves the equation
du/dt = Au in the same way that A¥ug solves the equation #g4+; = Aug. In fact
we ask whether u; approaches u(r). Example 3 will show how “difference equations”
help to solve differential equations. You will see real applications.

All these steps use the A’s and the x’s. This section solves the constant coefficient
problems that turn into linear algebra. It clarifies these simplest but most important
differential equations—whose solution is completely based on e*%.

Second Order Equations

The most important equation in mechanics is my” 4+-by’+ky = 0. The first term is the mass
m times the acceleration a = y”. This term ma balances the force F (Newton’s Law?!).
The force includes the damping —by’ and the elastic restoring force —ky, proportional to
distance moved. This is a second-order equation because it contains the second derivative
y" = d?y/dt?. It is still linear with constant coefficients m, b, k.

In a differential equations course, the method of solution is to substitute y = e,
Each derivative brings down a factor . We want y = e*? to solve the equation:
42y Ay 2 At _
d — + bd_ +ky =0 becomes (mA°+ bA+k)e 8)

Everything depends on mA2 + bA + k = 0. This equation for A has two roots A; and
Az. Then the equation for y has two pure solutions y; = e*1? and y, = e*2!. Their
combinations ¢y y1 + ¢y, give the complete solution unless A; = A,.
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In a linear algebra course we expect matrices and eigenvalues. Therefore we turn the
scalar equation (with y”) into a vector equation (first derivative only). Suppose m = 1.
The unknown vector u has components y and y’. The equation is du/dt = Au:

dy/dt =y’ d
convertsto — [y/] = [ 2 ll)} [y,]. 9)
dy'/dt = —ky — by’ arly ] 1= =1Ly

The first equation dy/dt = y’ is trivial (but true). The second equation connects y” to y’
and y. Together the equations connect u’ to u. So we solve by eigenvalues of A:
[=2 1 2 L
A AI =1 has determmant /'k +bA+k=0.
‘—k —b A T .
The equation for the A’s is the same! Tt is still A2 + bA + k = 0, since m = 1.
The roots A; and A, are now eigenvalues of A. The eigenvectors and the solution are

1 1 i 1
X1 = [M] X, = [Kz] u(t) = meht [M:l +cZeA2t [/\2]'

The first component of #(¢t) has y = cle)‘lt + czelzt—the same solution as before,
It can’t be anything else. In the second component of u(¢) you see the velocity dy/dt.
The vector problem is completely consistent with the scalar problem.

Example 3 Motion around a circle with y” + y =0 and y = cost

This is our master equation with mass m = 1 and stiffness ¥ = 1 and no damping dy’.
Substitute y = e*! into y” + y = Otoreach A2 + 1 = 0. The roots are > = i and
A = —i. Then half of e/’ 4+ ¢~ gives the solution y = cos?.

As a first-order system, the initial values y(0) = 1, ¥'(0) = 0 go into #(0) = (1, 0):

du dfy 0 1 y
"
— —— | — p—l = . ]-
Use y y 7 7 [y’] |: 1 0 ][y’] Au (10)

The eigenvalues of A4 are again A = i and A = —i (no surprise). A is anti-symmetric with
eigenvectors x; = (1,i) and x, = (1, —i). The combination that matches u(0) = (1,0)
is %(xl + x3). Step 2 multiplies % by ‘! and e~%*. Step 3 combines the pure oscillations
into #(¢) to find y = cosf as expected:

1. .
u@) = 5e” [ll] + -;-e"” [_:] = [—cs?;i] This is [;,((?)]

All good. The vector # = (cost, —sint) goes around a circle (Figure 6.3). The radius is 1
because cos? f + sin® ¢ = 1.

To display a circle on a screen, replace y”’ = —y by a finite difference equation. Here
are three choices using Y (74+At) — 2Y (¢) + Y (t—At). Divide by (At)? to approximate y”.
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Yn+1 —2Yy + Yn—1 —

(Ar)?

Figure 6.3 shows the exact y(¢) = cost completing a circle at 1 = 2x. The three difference
methods don’t complete a perfect circle in 32 steps of length At = 2x/32.
Those pictures will be explained by eigenvalues:

Forward |A[ >1(spiral out) Centered |[1|=1 (best) Backward |A|<1 (spiral in)

The 2-step equations (11) reduce to 1-step systems. In the continuous case u was
(v, y"). Now the discrete unknown is U,, = (¥, Z,) after n time steps At from Uy:

Y1 =Yn + At Zy |

Zn+l =Zn - At Yn G

Those are like Y/ = Z and Z' = —Y. Eliminating Z will bring back equation (11).
From the equation for Y, 4+, subtract the same equation for Y;,. That produces Y,4+1 — ¥,
on the left side and Y, — Y,,_; on the right side. Also on the right is At(Z, — Z,—),
which is —(A7)?Y,_, from the Z equation. This is the forward choice in equation (11).

My question is simple. Do the points (Y,, Z,) stay on the circle Y? + Z? = 1?
They could grow to infinity, they could decay to (0, 0). The answer must be found in the
eigenvalues of 4. |A|? is 1 + (At)?, the determinant of A. Figure 6.3 shows growth !

We are taking powers A" and not e*’, so we test the magnitude |\| and not the real
part of A.

i |A] > 1 and (¥, Z,) spirals out

DA M. 7 A PP A T S AL ST ot LR S

cost
—sint

Figure 6.3: Exact # = (cost, —sint) on a circle. Forward Euler spirals out (32 steps).




6.3. Applications to Differential Equations 317

The backward choice in (11) will do the opposite in Figure 6.4. Notice the difference:

Yn+l = Yn + At Zn+1 . 1 _At Yn+] __ Yn .
Backward Zoai = Zn — At Yary VR Zoi 1=z, 1= U, (13)

That matrix is AT. It still has A = 1 £ iA¢. But now we invert it to reach U,41.
When AT has |A| > 1, its inverse has |A| < 1. That explains why the solution spirals in
to (0, 0) for backward differences.

Figure 6.4: Backward differences spiral in. Leapfrog stays near the circle ¥,2 + Z 2=1.

On the right side of Figure 6.4 you see 32 steps with the centered choice. The solution
stays close to the circle (Problem 28) if Az < 2. This is the leapfrog method. The second
difference Y,4+1 — 2Y, + Y,—1 “leaps over” the center value Y.

This is the way a chemist follows the motion of molecules (molecular dynamics leads
to giant computations). Computational science is lively because one differential equation
can be replaced by many difference equations—some unstable, some stable, some neutral.
Problem 30 has a fourth (good) method that stays right on the circle.

Note Real engineering and real physics deal with systems (not just a single mass at
one point). The unknown y is a vector. The coefficient of y” is a mass matrix M,
not a number m. The coefficient of y is a stiffness matrix K, not a number k. The
coefficient of y’ is a damping matrix which might be zero.

The equation M y” + Ky = f is a major part of computational mechanics. It is
controlled by the eigenvalues of M 'K in Kx = AMx.

Stability of 2 by 2 Matrices

For the solution of du/dt = Au, there is a fundamental question. Does the solution
approach u = 0 ast — 00? Is the problem stable, by dissipating energy? The solutions in
Examples 1 and 2 included ¢’ (unstable). Stability depends on the eigenvalues of A.

The complete solution #(¢) is built from pure solutions eMx. If the eigenvalue A is
real, we know exactly when et will approach zero: The number A must be negative.
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If the eigenvalue is a complex number A = r + is, the real part r must be negative.
When ! splits into e™2¢'5%, the factor ¢?5¢ has absolute value fixed at 1:
ist

e’ = cosst +isinst has

le!5%|2 = cos® st + sin® st = 1.

The factor e”* controls growth (r > 0 is instability) or decay (r < 0 is stability).
The question is: Which matrices have negative eigenvalues? More accurately, when
are the real parts of the A’s all negative? 2 by 2 matrices allow a clear answer.

Thetrace T =a+d mustbe negative.
The determinant D = ad — bc must be positive.

Reason If the A’s are real and negative, their sum is negative. This is the trace 7. Their
product is positive. This is the determinant D. The argument also goes in the reverse
direction. If D = A1 A, is positive, then A; and A, have the same sign. If T = A; + Ay is
negative, that sign will be negative. We can test 7 and D.

If the A’s are complex numbers, they must have the form r + is and r — is.
Otherwise 7" and D will not be real. The determinant D is automatically positive, since
(r +is)(r —is) = r?>+ 52 Thetrace Tisr + is + r —is = 2r. So a negative trace
means that the real part r is negative and the matrix is stable. Q.E.D.

Figure 6.5 shows the parabola 72 = 4D which separates real from complex eigenval-
ues. Solving A2 — TA + D = 0 leads to ~/7'2 — 4D. This is real below the parabola and
imaginary above it. The stable region is the upper left quarter of the figure—where the
trace T is negative and the determinant D is positive.

determinant D

S both Rev)L < 0 bothRe A >0 s g —; stable
% o ’ —
: , i ]
‘ [0 4]
’ tabl
_bothA>0 |5 —6] U
unstable 0 —7]
» trace T |7 neutral

D< Omeans A1 < 0 and A, > O: unstable

Figure 6.5: A 2 by 2 matrix is stable (u(t) — 0) when trace < 0 and det > 0.
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The Exponential of a Matrix

We want to write the solution u(t) in a new form et u(0). This gives a perfect parallel
with A¥ug in the previous section. First we have to say what e4t means, with a matrix in
the exponent. To define eA! for matrices, we copy e* for numbers.

The direct definition of e* is by the infinite series 1 + x + %xz + %x3 + ---. When

you substitute any square matrix Az for x, this series defines the matrix exponential e4?:

+ 143+

The number that divides (Az)" is “n factorial”, This is n! = (1)(2)-+-(n — D(n).
The factorials after 1,2,6 are 4! = 24 and 5! = 120. They grow quickly. The series
always converges and its derivative is always Ae4?. Therefore e4?u(0) solves the
differential equation with one quick formula—even if there is a shortage of eigenvectors.

I will use this series in Example 4, to see it work with a missing eigenvector.
It will produce fe**. First let me reach Se!S~! in the good (diagonalizable) case.

This chapter emphasizes how to find u(t) = e4?u(0) by diagonalization. Assume A
does have n independent eigenvectors, so it is diagonalizable. Substitute 4 = SAS™! into
the series for e4?, Whenever SAS~1SAS~! appears, cancel S~!§ in the middle:

Use the series eAt =1 4+ SAS't + L(SAST)(SAST1e) + -
Factor out .S and S™! =S[I+Ar+ 3(Ar)> +---] 87!
Diagonalize e’ = SeAtS—1 (15)

A At

That equation says: e“! equals Se . Then A is a diagonal matrix and so is e*".
The numbers e*i! are on its diagonal. Multiply Se? S~1u(0) to recognize u(r):

Ats—l

eht C1

eu(0) = SeMS ()= | x1 - xp B DR 0T
eAnt Cr
This solution e4? u(0) is the same answer that came in equation (6) from three steps:
1. Write u(0) = ¢3x1 + --- + cpx,. Here we need n independent eigenvectors.

2. Multiply each x; by e*i? to follow it forward in time.

3. The best form ofeA’u(O) is u(t) = cle’l“xl o+ +c,,e’1"’xn. (17)
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Example 4 When you substitute y = e* into y” — 2y’ + y = 0, you get an equation
with repeated roots: A2 — 24 + 1 = 0 = (A — 1)2. A differential equations course would
propose e’ and te’ as two independent solutions. Here we discover why.

Linear algebra reduces y” — 2y’ + y = 0 to a vector equation for u = (y, y’):

d ¥y y' . du 0 1
— praund —_— prummnd . 1
dt[y'] [Zy’—y] is 7 Au [_1 2]u (18)

The eigenvalues of A are again A = 1,1 (with trace = 2 and detA = 1). The only
eigenvectors are multiples of x = (1, 1). Diagonalization is not possible, A has only one
line of eigenvectors. So we compute e from its definition as a series:

Short series et = et =D = o ] 4 (A= D). (19)

The “infinite” series ends quickly because (4 — I)? is the zero matrix! You can see e’
appearing in equation (19). The first component of u(z) = e“* u(0) is our answer y(¢):

wy=e[1+] 7} 1 |]u0  y0=er0-150 +iety 0,

Example 5 Use the infinite series to find e4? for 4 = [ _9 1]. Notice that 4* = [

I R P (|

A®, A% A7, A® will repeat these four matrices. The top right corner has 1,0,—1,0
repeating over and over. The infinite series for e’ contains 7 /11,0, —£3/31, 0.
Then 7 — £#3 starts that top right corner, and 1 — 32 starts the top left:

]_.___1_12_|_... t_lt3+...
I+At+%(At)2+é(At)3+---=|: 2 ) ]

—t+%t3—--- 1_%124_...

On the left side is e The top row of that matrix shows the series for cos ¢ and sin?¢.

20)

A is a skew-symmetric matrix (AT = —A). Its exponential e4? is an orthogonal matrix.
The eigenvalues of A4 are i and —i. The eigenvalues of e4? are ¢! and e %!, Three rules:

1 ¢4 always has the inverse e 4%,

2 The cigenvalues of et are always e?*.

3 When A is skew-symmetric, e A is orthogonal. Inverse = transpose = e~ At,
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Skew-symmetric matrices have pure imaginary eigenvalues like A = if. Then e# has
eigenvalues e'%?. Their absolute value is 1 (neutral stability, pure oscillation, energy is
conserved).

Our final example has a triangular matrix A. Then the eigenvector matrix S is trian-
gular. So are S~! and e4!. You will see the two forms of the solution: a combination of
eigenvectors and the short form e4‘#(0).

d
Example 6 Solve 2r _ Au = [(1) éjl u starting from u(0) = B] atr = 0.

dt
Solution The eigenvalues 1 and 2 are on the diagonal of A4 (since A is triangular). The
eigenvectors are (1,0) and (1,1). The starting #(0) is x; + x2 so¢; = ¢ = L.

Then u(t) is the same combination of pure exponentials (no te** when A = 1,2):

Solution to ' = Au u(t) = é [(1)] + e?* [i]

That is the clearest form. But the matrix form produces u(t) for every u(0):

t _ t L2t 4t
u(t) = SeB S1u(0) is [é }][e e2f] [(1) }]u(O): [eo e :Iu(O).

That last matrix is e4%. It’s not bad to see what a matrix exponential looks like (this is
a particularly nice one). The situation is the same as for Ax = b and inverses. We don’t
really need A~! to find x, and we don’t need ¢4 to solve du/dt = Au. But as quick
formulas for the answers, A~1b and e4? u(0) are unbeatable.

= REVIEW OF THE KEY IDEAS =

1. The equation ¥’ = Au is linear with constant coefficients, starting from u(0).

2. Its solution is usually a combination of exponentials, involving each A and x:

A

Independent eigenvectors u(t) =cie Ui+ F cneA"t Xp.

The constants ¢y, . . ., ¢, are determined by #(0) = cyx1 + -+ + cnxn = Sec.
u(t) approaches zero (stability) if every A has negative real part.

The solution is always u(t) = et u(0), with the matrix exponential e4t,

AL

Equations with y” reduce to #’ = Au by combining y’ and y into u = (y, y’).
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= WORKED EXAMPLES =

6.3A Solve y” + 4y’ + 3y = 0 by substituting e*! and also by linear algebra.

Solution Substituting y = eM yields (A2 + 4 + 3)e* = 0. That quadratic factors into
A2 44143 = (A+1)(A+3) = 0. Therefore Ay = —1 and A2 = —3. The pure solutions
are y; = e * and y, = e~ 3!. The complete solution ¢; y1 + ¢ y» approaches zero.

To use linear algebra we set # = (y, y’). Then the vector equation is &’ = Au:

dy/di =y converts to du [0 1 u
dy'/dt = =3y — 4y’ dt — |-3 —4]"

This A is called a “companion matrix” and its eigenvalues are again 1 and 3;

—A 1

Same quadratic  det(A—-Al)=| o _, ,

|=/\2+4A+3=0.

The eigenvectors of A are (1,A1) and (1, A,). Either way, the decay in y(¢) comes from
e~ and e~3'. With constant coefficients, calculus goes back to algebra Ax = Ax.

Note In linear algebra the serious danger is a shortage of eigenvectors. Our eigenvectors
(1,A1) and (1, A,) are the same if A; = A,. Then we can’t diagonalize A. In this case we
don’t yet have two independent solutions to du/dt = Au.

In differential equations the danger is also a repeated A. After y = e* | a second
solution has to be found. It turns out to be y = te* . This “impure” solution (with an
extra ¢) appears in the matrix exponential e4t, Example 4 showed how.

6.3 B Find the eigenvalues and eigenvectors of A and write #(0) = (0,2+/2, 0)asa
combination of the eigenvectors. Solve both equations #’ = Au and #” = Au:

2 1 0 2y [-2 1 0

d d d

Z=l 12 e amd =12 1lu wih S0 =0.
! 0 1 -2 ! 0 1 -2 !

The 1, -2, 1 diagonals make A into a second difference matrix (like a second derivative).
w' = Au is like the heat equation du/dt = 3*u/dx?.
Its solution u(¢) will decay (negative eigenvalues).
u” = Au is like the wave equation 3*u/dt*> = 3%u/dx?.
Its solution will oscillate (imaginary eigenvalues).

Solution  The eigenvalues and eigenvectors come from det(4 — AJ) = O:

—2-2 1 0
det(A—A)=| 1 —2-2A 1 | =(=2-)[(=2-1)*-2]=0.
0 1 -2-2
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One eigenvalue is A = —2, when —2 — A is zero. The other factor is A% 4 44 + 2, so the

other eigenvalues (also real and negative) are A = —2 + +/2. Find the eigenvectors:
01 0f]x 0 1
A==-2 (A+2DHx=|1 0 1||y]|=10 forx; = O
0 1 0| z] 0
(V2 1 07« 0] 1
==2-42 (A-ADx=|1 V2 1 ||y|=]0]| forxs=|-3
L0 1 V2] |z 0 | 1
—v2 1 0 7[x] [o 1
==2+2 (A-ADx=| 1 -v2 1 yl=[0] forxs=|+2
| 0 1 —v2] L2 | 0 1

The eigenvectors are orthogonal (proved in Section 6.4 for all symmetric matrices).
All three A; are negative. This A is negative definite and e4* decays to zero (stability).
The starting #(0) = (0,2+/2,0) is x3 — x5. The solution is u(¢) = e*3'x3 — e*2 x,.

Heat equation In Figure 6.6a, the temperature at the center starts at 2+/2. Heat diffuses
into the neighboring boxes and then to the outside boxes (frozen at 0°). The rate of heat
flow between boxes is the temperature difference. From box 2, heat flows left and right at
the rate ¥; — u» and u3 — u,. So the flow out is u; — 2u» + u3 in the second row of Au.

t=0 | t=0 |
t>0
t>0

Figure 6.6: Heat diffuses away from box 2 (left). Wave travels from box 2 (right).

Wave equation d*u/dt? = Au has the same eigenvectors x. But now the eigenvalues A

lead to oscillations ¢®? x and e *®? x. The frequencies come from w? = —A:
d? iwt iwt . N2 iwt iwt 2
Et—Z(e x)= A" x) becomes (iw)e“x =212"""x and w°=-A.

There are two square roots of —A, so we have ¢'®% x and e ~*®? x| With three eigenvectors
this makes six solutions to #” = Au. A combination will match the six components of u(0)
and #’'(0). Since &’ = 0 in this problem, ¢'®? x combines with e™*®? x into 2 cos wt x.
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6.3 C  Solve the four equations da/dt = 0,db/dt = a,dc/dt = 2b,dz/dt = 3¢
in that order starting from u#(0) = (a(0),5(0),c(0),z(0)). Solve the same equations
by the matrix exponential in z(¢) = e4?u(0).

Four equations a 0 0 0 O0]]a

A=0000 dlb| |1 00 0}]|>b . du_A
Eigenvalueson 4r|c| [0 2 0 of|c| ¥ 4= 7%
the diagonal z 0 0 3 0 z

First find A2, 43, A% and e" = I + At + 1(A1)? + $(A1)®. Why does the series stop?
Why is it always true that (eA)(eA) = (e24)? Always eAS times eAt is A6 + 1)

Solution 1 Integrate da/dt = 0, then db/dt = a, thendc/dt = 2b and dz/dt = 3c:

a(t)y= a(0) The 4 by 4 matrix which is
b(t) = ta(0)+  b(0) multiplying a(0), b(0), c(0), d(0)
c(t) = t2a(0) + 2tb(0)+ ¢(0) to produce a(t), b(t),c(t), d(t)

z(t) = t3a(0) + 3t2b(0) + 3tc(0) + z(0) must be the same e4? as below

Solution 2  The powers of A (strictly triangular) are all zero after A3.

0000 0000 0000
1000 ,_|loo oo ;_|oo o0 o0 .

4=lo 200 =200 0] T 000 0] 4 =9
0030 06 00 6 000

The diagonals move down at each step. So the series for e4? stops after four terms:

1
At At _ (Ae)> | (4r)® | ¢ 1
Same ¢ e —I,“-l- At + > + e =2 2 1

t3 312 3¢ 1

The square of ed is always e24 for many reasons:
1. Solving with e4 from ¢ = 0 to 1 and then from 1 to 2 agrees with 24 from 0 to 2.
2. The squared series (I + A + ATZ + -+-)? matches J + 24 + % 4. =e24,

3. If A can be diagonalized (this 4 can’t!) then (Se® $™1)(SeAS—1) = Se2A 51,

But notice in Problem 23 that eeB and Bed and A + B are all different.
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Problem Set 6.3

1

Aty solves

du [4 3
ar o 1|®

What combination ¥ = ¢; erMiy 1+ cze}”ﬂ X5 starts from u(0) = (5, —-2)?

Find two A’s and x’s so thatu = ¢

Solve Problem 1 for u = (v, z) by back substitution, z before y:

d d
Solve a—? = z from z(0) = —2.  Then solve Eyt_ = 4y + 3z from y(0) = 5.

The solution for y will be a combination of e#! and ef. The A’s are 4 and 1.

(a) If every column of A adds to zero, why is A = 0 an eigenvalue?

(b) With negative diagonal and positive off-diagonal adding to zero, u’ = Au
will be a “continuous” Markov equation. Find the eigenvalues and eigenvec-
tors, and the steady state ast — o0

du -2 4

3
) ) 0
Solve s = [ 5 3] u with u(0) = [1] What is u(00)?

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people.
The movement between rooms is proportional to the difference v — w:

dv dw
— =w—v and =v—-w

dt dr

Show that the total v + w is constant (40 people). Find the matrix in du/dt = Au
and its eigenvalues and eigenvectors. What are v and w at¢ = | and ¢ = o0?

Reverse the diffusion of people in Problem 4 to du/dt = —Au:

dv _ v—w and dw =w—

dr dt ‘
The total v + w still remains constant. How are the A’s changed now that A is
changed to —A? But show that v(¢) grows to infinity from v(0) = 30.

A has real eigenvalues but B has complex eigenvalues:
a 1 b -1
A—-[l a] B—[l b] (a and b are real)

Find the conditions on a and b so that all solutions of du/dt = Au and
dv/dt = Bv approach zero as t — ©0.
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7 Suppose P is the projection matrix onto the 45° line y = x in R2. What are its
eigenvalues? If du/dt = — Pu (notice minus sign) can you find the limit of u(¢) at
t = oo starting from #(0) = (3, 1)?

8 The rabbit population shows fast growth (from 6r) but loss to wolves (from —2w).
The wolf population always grows in this model (—w? would control wolves):

d d
;Z-:—=6r—2w and d—lf=2r+w.

Find the eigenvalues and eigenvectors. If r(0) = w(0) = 30 what are the popula-
tions at time £? After a long time, what is the ratio of rabbits to wolves?

9 (a) Write (4, 0) as a combination ¢c;x1 + ¢ox of these two eigenvectors of A:

ol k) ol

(b) The solution to du/dt = Au starting from (4,0) is cle”xl + cze_i’xz.
Substitute e!! = cost + i sint and e~** = cost —i sin to find u(r).

Questions 10-13 reduce second-order equations to first-order systems for (y, y’).

10 Find A to change the scalar equation y” = 5y’ + 4y into a vector equation for

u = (y,y’):
dt V” V' )

What are the eigenvalues of A? Find them also by substituting y = eM into y” =
57" + 4y.

11 The solution to y” = 0 is a straight line y = C + Dt. Convert to a matrix equation:

d—d; [;’] = [8 (1)] l:));/] has the solution [;jl] = oAt [;’/(((()))):l .

This matrix 4 has A = 0,0 and it cannot be diagonalized. Find A% and compute
et = | 4+ Ar + 2 A%t + ... Multiply your e/ times (y(0), y'(0)) to check the
straight line y(¢) = y(0) + y'(0)z.

12 Substitute y = e* into y” = 6y’ — 9y to show that A = 3 is a repeated root. This
is trouble; we need a second solution after e3? . The matrix equation is

alv]=1s ol[5)

Show that this matrix has A = 3, 3 and only one line of eigenvectors. Trouble here
too. Show that the second solution to y” = 6y’ — 9y is y = te".
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13  (a) Write down two familiar functions that solve the equation d2y/dt? = —9y.
Which one starts with y(0) = 3 and y’(0) = 0?
(b) This second-order equation y” = —9y produces a vector equation #’ = Au:

SRS AR P

Find u(¢) by using the eigenvalues and eigenvectors of 4: u(0) = (3, 0).

14  The matrix in this question is skew-symmetric (AT = —A):
, _— —
du 0 ¢ —b u,l = CUy — bus
-;i-t-: —c 0 almu or Uy = aU3 — CU
b —a 0 uz = buy — au,.

(a) The derivative of ||w()|? = u? + u3 + u3 is 2uqu) + 2uuly + 2usuj.
Substitute u’, 15, u} to get zero. Then |lu(¢)||? stays equal to [|u(0)}|.

(b) When A is skew-symmetric, Q = e is orthogonal. Prove QT = ¢~ 4! from
the series for Q@ = e4?. Then QTQ = I.

15 A particular solution to du/dt = Au—bisu, = A~'b, if A4 is invertible. The
usual solutions to du/dt = Au give u,. Find the complete solution u = u, + uy,:

du du 1 0 4
(a)E—u—4 (b) E—_[l l]u_[6i|'
16  If ¢ is not an eigenvalue of A, substitute # = ¢“’v and find a particular solution to

du/dt = Au — e°'h. How does it break down when c is an eigenvalue of A? The
“nullspace” of du/dt = Au contains the usual solutions e** x;.

17  Find a matrix A to illustrate each of the unstable regions in Figure 6.5:
(a) Ay <0andA, >0 ((b)A;>0andA, >0 (¢) A =a xibwitha > 0.
Questions 18-27 are about fhe matrix exponential eAt,

18  Write five terms of the infinite series for 4. Take the ¢ derivative of each term.
Show that you have four terms of Aet . Conclusion: e4fuq solves u' = Au.

19  The matrix B = [§ 3] has B> = 0. Find eB! from a (short) infinite series.
Check that the derivative of eB? is BeB!.

20  Starting from u(0) the solution at time T is eATu(O). Go an additional time ¢ to
reach e4! eATu(O). This solution at time ¢ 4+ T can also be written as
Conclusion: e4! times e4T equals

21 Write 4 = [} 4] in the form SAS™!. Find e’ from SeAfS~1.
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22

23

24

25

26

27

28
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If A2 = A show that the infinite series produces e = I + (e —1)A4. For A = [48]
At _

in Problem 21 this gives e

Generally e4eB is different from eBe4. They are both different from ed+ B,
Check this using Problems 21-22 and 19. (If AB = BA, all three are the same.)

T R i R |

Write 4 = [}1] as SAS™*. Multiply SeA?S~! to find the matrix exponential e4¢.
Check el and the derivative of e4’ when ¢ = 0.

Put A = [} 3] into the infinite series to find e?. First compute A2 and 4°:

e Al Tl )

Give two reasons why the matrix exponential e4? is never singular:

(a) Write down its inverse.

(b) Write down its eigenvalues. If Ax = Ax then e x = X.

Find a solution x(¢), y(¢) that gets large as t — oo. To avoid this instability a
scientist exchanged the two equations:

dx/dt = 0Ox—4y dy/dt = -2x + 2y
dy/dt = —2x + 2y becomes dx/dt = Ox —4y.

Now the matrix [ =2 _2] is stable. It has negative eigenvalues. How can this be?
Challenge Problems

Centering y” = —y.' in Example 3 will produce Yy, — 2Yy, + Y,—1 = —(A£)?Y,.
This can be written as a one-step difference equation for U = (Y, Z):

Y1 =Y, + At Z, 1 0 Y.+ _ 1 At Y,
Zpny1=2Zy— At Yy At 1 Zy+1 10 1 Zn
Invert the matrix on the left side to write thisas Up+; = AU,. Show thatdet 4 = 1.

Choose the large time step A¢ = 1 and find the eigenvalues Ay and A, = A; of 4:

A= [_i (l)]has |A1] = |A2| = 1. Show that A9 is exactly I.

After 6 stepstot = 6, Ug equals Uy. The exact y = cos? retumsto 1 at 1 = 2.
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29  That centered choice (leapfrog method) in Problem 28 is very successful for small
time steps A¢. But find the eigenvalues of A for Az = /2 and 2:

[ A e s 2]

Both matrices have |A| = 1. Compute A* in both cases and find the eigenvectors
of A. That value Ar = 2 is at the border of instability. Time steps At > 2 will lead
to |A| > 1, and the powers in U,, = A"U will explode.

Note You might say that nobody would compute with Az > 2. But if an atom
vibrates with y” = —1000000y, then Az > .0002 will give instability. Leapfrog has
a very strict stability limit. Y,4+) = Y, +3Z, and Z,, 41 = Z,, —3Y,+1 will explode
because At = 3 is too large.

30  Another good idea for y” = —y is the trapezoidal method (half forward/half back):
This may be the best way to keep (Y., Z,) exactly on a circle.

_ 1 —At/2 [ Yerr J_[ 1 A1/2]] Ya
Trapezoidal [ At)2 1 ][ Zni1 ]_ [ —-At/2 1 Zy |

(a) Invert the left matrix to write this equation as U,+; = AU,. Show that A is
an orthogonal matrix: ATA = I. These points U, never leave the circle.
A = (I — B)"'(I + B) is always an orthogonal matrix if BT = —B.

(b) (Optional MATLAB) Take 32 steps from Uy = (1,0) to U 35 with At = 2x/32.
Is U3, = Ug? 1 think there is a small error.

31  The cosine of a matrix is defined like e4, by copying the series for cos ¢

— 1o, 14 —_ 1, 1.4
cost—l—z—!t +4—!t — e cosA—I—ﬁA —l—aA —-
(a) If Ax = Ax, multiply each term times x to find the eigenvalue of cos A.

(b) Find the eigenvalues of A = [i ; with eigenvectors (1, 1) and (1, —1).

From the eigenvalues and eigenvectors of cos A, find that matrix C = cos A.
(c) The second derivative of cos(At) is —A2 cos(A4t).

2

d
u(t) = cos(At) u(0) solves d_t: = —A%u starting from #'(0) = 0.

Construct #(z) = cos(At) u(0) by the usual three steps for that specific A:

1. Expand u(0) = (4,2) = c;x; + ¢2x5 in the eigenvectors.
2. Multiply those eigenvectors by and (instead of e*?).
3. Add up the solution u(t) = ¢ x1+c

Xa.
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6.4 Symmetric Matrices

For projection onto a plane in R3, the plane is full of eigenvectors (where Px = x). The
other eigenvectors are perpendicular to the plane (where Px = 0). The eigenvalues
A = 1,1, 0 are real. Three eigenvectors can be chosen perpendicular to each other. I have
to write “can be chosen” because the two in the plane are not automatically perpendicular.
This section makes that best possible choice for symmetric matrices: The eigenvectors of
P = PT are perpendicular unit vectors.

Now we open up to all symmetric matrices. It is no exaggeration to say that these
are the most important matrices the world will ever see—in the theory of linear algebra
and also in the applications. We come immediately to the key question about symmetry.
Not only the question, but also the answer.

What is special about Ax = Ax when A is symmetric? We are looking for special
properties of the eigenvalues A and the eigenvectors x when 4 = AT.

The diagonalization A = SAS~! will reflect the symmetry of A. We get some hint by
transposing to AT = (S™1)TAST. Those are the same since A = AT. Possibly S~! in the
first form equals ST in the second form. Then STS = I. That makes each eigenvector in
S orthogonal to the other eigenvectors. The key facts get first place in the Table at the end
of this chapter, and here they are:

Those n orthonormal eigenvectors go into the columns of S. Every symmetric matrix can
be diagonalized. Its eigenvector matrix S becomes an orthogonal matrix Q. Orthogonal
matrices have 0~! = QT—what we suspected about S is true. To remember it we write
S = Q, when we choose orthonormal eigenvectors.

Why do we use the word “choose”? Because the eigenvectors do not have to be unit
vectors. Their lengths are at our disposal. We will choose unit vectors—eigenvectors of
length one, which are ortHonormal and not just orthogonal. Then SAS™! is in its special
and particular form QAQT for symmetric matrices:

(Spectral |

It is easy to see that QAQT is symmetric. Take its transpose. You get (QT)TATQT, which
is QAQT again. The harder part is to prove that every symmetric matrix has real A’s and
orthonormal x’s. This is the “spectral theorem” in mathematics and the “principal axis
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theorem” in geometry and physics. We have to prove it! No choice. I will approach the
proof in three steps:

1. By an example, showing real A’s in A and orthonormal x’s in Q.
2. By a proof of those facts when no eigenvalues are repeated.

3. By a proof that allows repeated eigenvalues (at the end of this section).

1 ’ b _ 1 2 _ I_A, 2
Example 1 Fmdthe)lsandxswhenA--|:2 4]andA—M—[ 5 4_1].

Solution The determinant of A — AJ is A2 — 5. The eigenvalues are 0 and 5 (both real).
We can see them directly: A = 0 is an eigenvalue because A is singular, and A = 5 matches
the trace down the diagonal of 4: 0 4 5 agrees with 1 + 4.

Two eigenvectors are (2,—1) and (1,2)—orthogonal but not yet orthonormal. The
eigenvector for A = 0 is in the nullspace of A. The eigenvector for A = 5 is in the column
space. We ask ourselves, why are the nullspace and column space perpendicular? The
Fundamental Theorem says that the nullspace is perpendicular to the row space—not the
column space. But our matrix is symmetric! Its row and column spaces are the same. Its
eigenvectors (2, —1) and (1, 2) must be (and are) perpendicular.

These eigenvectors have length /5. Divide them by +/5 to get unit vectors. Put those
into the columns of S (whichis Q). Then 0" 14AQ is Aand 07! = QT:

R AR B R

Now comes the 7 by 7 case. The A’s are real when A = AT and Ax = Ax.

real symmetric mdtrix arereal.

Proof Suppose that Ax = Ax. Until we know otherwise, A might be a complex number
a + ib (a and b real). Its complex conjugate is .. = a — ib. Similarly the components
of x may be complex ngmberé, and switching the signs of their imaginary parts gives x.
The good thing is that A times X is always the conjugate of A times x. So we can take
conjugates of Ax = Ax, remembering that A4 is real:

Ax = Ax leadsto AX = AX. Transpose to XTA=%T. (D
Now take the dot product of the first equation with X and the last equation with x:
¥TAx =% Ax andalso X Ax =X Ax. )

The left sides are the same so the right sides are equal. One equation has A, the other
has A. They multiply 'Jg_Tx = [x1|* + |x2|? + --- = length squared which is not zero.
Therefore A must equal A, and a +ib equals @ — i b. The imaginary partisb = 0. Q.E.D.
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The eigenvectors come from solving the real equation (A — Af)x = 0. So the x’s are
also real. The important fact is that they are perpendicular.

Proof Suppose Ax = Ajx and Ay = A,y. We are assuming here that 1; # A,. Take
dot products of the first equation with y and the second with x:

Use AT=4 Ax)Ty = (Ax)Ty =xTadTy = xTAy = xTA,y. 3)

The left side is xTA, y, the right side is xTA,y. Since A; # A, this proves that xTy = 0.
The eigenvector x (for A1) is perpendicular to the eigenvector y (for A,).

Example 2 The eigenvectors of a 2 by 2 symmetric matrix have a special form:

. _|a b | & _JAz2—c
Not widely known A_[b c] has xl_[/ll—a] and xz—[ b ] 4

This is in the Problem Set. The point here is that x; is perpendicular to x;:
xfxg =b(Ay —¢) + Ar—a)b=b(Ay + Ay —a —-c)=0.

This is zero because Ay + A, equals the trace a + ¢. Thus x?xz = (. Eagle eyes might
notice the special case a = ¢, b = 0 when x; = x, = 0. This case has repeated
eigenvalues, as in A = . It still has perpendicular eigenvectors (1, 0) and (0, 1).

This example shows the main goal of this section—to diagonalize symmetric matrices
A by orthogonal eigenvector matrices S = Q. Look again at the result:

Symmetry A=SAS™! becomes A= QAQT with Q0TQ =1.
This says that every 2 by 2 symmetric matrix looks like
— T _ 1 1
A=0AQ = [xl xz] [ lz] I | (5)
The columns x, and x , multiply the rows )tlx'f and )»gxg to produce A:

Sum of rank-one matrices A= Aix 1x1; + Aarx 2x§. 6)

This is the great factorization QAQT, written in terms of A’s and x’s. When the symmetric
matrix is n by n, there are n columns in Q multiplying n rows in Q. The n products x ix]
are projection matrices. Including the A’s, the spectral theorem A = QAQT for symmetric
matrices says that A is a combination of projection matrices:

A=MPy+---+ A, Py A; = eigenvalue, P; = projection onto eigenspace.
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Complex Eigenvalues of Real Matrices

Equation (1) wentfrom Ax = Axt0 AX = A X. Inthe end, A and x were real. Those two
equations were the same. But a nonsymmetric matrix can easily produce A and x that are
complex. In this case, AX = A X is different from Ax = A x. It gives us a new eigenvalue
(which is A) and a new eigenvector (which is X):

If Ax =Ax then

Example3 A= [2’:3 ":i;‘g] has A, =cosf 4+ isinf and X, = cos@ — i sind.

Those eigenvalues are conjugate to each other. They are A and A. The eigenvectors
must be x and x, because A is real:

. (cos@ —sinf ][ 1] . 1]
This is A x Ax = | sin0  cosh ||~ |~ (cos O +isin0) |:—i_
[cos @ ing ][ 1 1] 0
Thisis A\ ¥ A¥ =| >0 —50 | = (cos8 —isin@) |
| sin  cosf || i i

Those eigenvectors (1, —i) and (1, i) are complex conjugates because A is real.

For this rotation matrix the absolute value is |A] = 1, because cos? 8 + sin>§ = 1.
This fact |A| = 1 holds for the eigenvalues of every orthogonal matrix.

We apologize that a touch of complex numbers slipped in. They are unavoidable even
when the matrix is real. Chapter 10 goes beyond complex numbers A and complex vectors
to complex matrices A. Then you have the whole picture.

We end with two optional discussions.

Eigenvalues versus Pivots

The eigenvalues of A are very different from the pivots. For eigenvalues, we solve
det(A — AI') = 0. For pivots, we use elimination. The only connection so far is this:

product of pivots = determinant = product of eigenvalues.

We are assuming a full set of pivots di,...,d,. There are n real eigenvalues Aq,...,A,.
The d’s and A’s are not the same, but they come from the same matrix. This paragraph is
about a hidden relation. For symmetric matrices the pivots and the eigenvalues have the
same signs:

The number of positive eigenvalues of A = A" equals the number of positive pivots.
Special case: A has all A; > 0 if and only if all pivots are positive.

That special case is an all-important fact for positive definite matrices in Section 6.5.
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Example 4 This symmetric matrix A has one positive eigenvalue and one positive pivot:

Matching signs A= [1 3] has pivots 1 and —8

3 1 eigenvalues 4 and —2.

The signs of the pivots match the signs of the eigenvalues, one plus and one minus.
This could be false when the matrix is not symmetric:

oo . |1 6 has pivots 1 and 2
Opposite signs B = [——1 —4] eigenvalues —1 and —2.

The diagonal entries are a third set of numbers and we say nothing about them.
Here is a proof that the pivots and eigenvalues have matching signs, when 4 = AT.

You see it best when the pivots are divided out of the rows of U. Then A is LDLT.
The diagonal pivot matrix D goes between triangular matrices L and L7T:

1 3| _ |1 Off1 1 3 c e 4 T Yot .
[3 1:]_[3 l][ —8][0 l] Thisis A = LDL". It is symmetric.

Watch the eigenvalues when L and L™ move toward the identity matrix:A — D.

The eigenvalues of LDLT are 4 and —2. The eigenvalues of IDIT are 1 and —8 (the
pivots!). The eigenvalues are changing, as the “3” in L moves to zero. But to change sign,
a real eigenvalue would have to cross zero. The matrix would at that moment be singular.
Our changing matrix always has pivots 1 and —8, so it is never singular. The signs cannot
change, as the A’s move to the d’s.

We repeat the proof for any A = LDLT. Move L toward I, by moving the off-
diagonal entries to zero. The pivots are not changing and not zero. The eigenvalues A of
LDLT change to the eigenvalues d of IDIT. Since these eigenvalues cannot cross zero as
they move into the pivots, their signs cannot change. Q.E.D.

This connects the two halves of applied linear algebra—pivots and eigenvalues.

All Symmetric Matrices are Diagonalizable

When no eigenvalues of A are repeated, the eigenvectors are sure to be independent.
Then A can be diagonalized. But a repeated eigenvalue can produce a shortage of
eigenvectors. This somefimes happens for nonsymmetric matrices. It never happens
for symmetric matrices. There are always enough eigenvectors to diagonalize A = AT.

Here is one idea for a proof. Change A slightly by a diagonal matrix diag(c, 2c¢, ..., nc).
If ¢ is very small, the new symmetric matrix will have no repeated eigenvalues. Then we
know it has a full set of orthonormal eigenvectors. As ¢ — 0 we obtain » orthonormal
eigenvectors of the original A—even if some eigenvalues of that A are repeated.

Every mathematician knows that this argument is incomplete. How do we guarantee
that the small diagonal matrix will separate the eigenvalues? (I am sure this is true.)
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A different proof comes from a useful new factorization that applies to all mairices,
symmetric or not. This new factorization immediately produces 4 = QAQ7 with a full
set of real orthonormal eigenvectors when A is any symmetric matrix.

Every square matrix factors into A=QTQ ™! where T is upper triangular and @TzQ“l.
If A has real eigenvalues then Q and T can be chosen real: QTQ = 1.

This is Schur’s Theorem. We are looking for AQ = QT . The first column ¢, of Q must
be a unit eigenvector of A. Then the first columns of AQ and QT are Aq, and f1;4,. But
the other columns of Q need not be eigenvectors when T is only triangular (not diagonal).
So use any n — 1 columns that complete ¢, to a matrix Q; with orthonormal columns. At
this point only the first columns of  and T are set, where A¢; = t114,:

2j¥ 11
0,40, =| Ag; -+ Ag, | =] 0 |42] |. (8)
In 0

Now I will argue by “induction”. Assume Schur’s factorization Ay = Q.T>Q5 ! is
possible for that matrix A, of size n — 1. Put the orthogonal (or unitary) matrix Q> and the
triangular 75 into the final Q and 7T":

_ 1 0 I AU _ )
Q—QI[O Qz] and T—[O T2:| and AQ = QT asdesired.

Note 1 had to allow ¢; and Q; to be complex, in case A has complex eigenvalues.
But if 717 is a real eigenvalue, then ¢, and Q; can stay real. The induction step keeps
everything real when A has real eigenvalues. Induction starts with 1 by 1, no problem.

Proof that T is the diagonal A when A is symmetric. Then we have A = QAQT.

Every symmetric A has real eigenvalues. Schur’s A = QTQT with QTQ = I means that
T = QTAQ. This is a symmetric matrix (its transpose is QT4Q). Now the key point:
If T is triangular and also symmetric, it must be diagonal: T = A.

This proves A = QAQT. The matrix 4 = AT has n orthonormal eigenvectors.

= REVIEW OF THE KEY IDEAS =

A symmetric matrix has real eigenvalues and perpendicular eigenveciors.
Diagonalization becomes A = QAQ" with an orthogonal matrix Q.
All symmetric matrices are diagonalizable, even with repeated eigenvalues.

The signs of the eigenvalues match the signs of the pivots, when 4 = AT,

A

Every square matrix can be "triangularized" by A = QTQ 1.
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= WORKED EXAMPLES =

6.4 A What matrix A has eigenvalues A = 1, —1 and eigenvectors x; = (cos 8, sin 8)
and x, = (—sin 8, cos 6)? Which of these properties can be predicted in advance?

A=AT A%2=1  detA=-1 +and—pivot A7 l1=4

Solution  All those properties can be predicted! With real eigenvalues in A and or-
thonormal eigenvectors in O, the matrix A = QAQT must be symmetric. The eigenvalues
1 and —1 tell us that A2 = I (since A2 = 1) and A~! = A (same thing) and det 4 = —1.
The two pivots are positive and negative like the eigenvalues, since 4 is symmetric.

The matrix must be a reflection. Vectors in the direction of x; are unchanged by A
(since A = 1). Vectors in the perpendicular direction are reversed (since A = —1). The
reflection A = QAQT is across the “8-line”. Write ¢ for cos 8, s for sin 8:

g=]e=s][t O] es]_ c?2—s* 2cs | _[cos260 sin26
s cl|lo=1|]l=-sc| | 25 s*P—c?| |sin20 —cos20 |

Notice that x = (1, 0) goes to Ax = (cos 20, sin 26) on the 20-line. And (cos 28, sin 26)
goes back across the @-line to x = (1,0).

6.4 B  Find the eigenvalues of A3 and B4, and check the orthogonality of their first two
eigenvectors. Graph these eigenvectors to see discrete sines and cosines:

2 -1 0 _} _; 1
A= -1 2 -1 By = 1 2

| 0 -1 2 1 1
The —1,2, —1 pattern in both matrices is a “second difference”. Section 8.1 will explain
how this is like a second derivative. Then Ax = Ax and Bx = Ax are like d?x/dt? = Ax.
This has eigenvectors x = sinkt and x = cos k¢ that are the bases for Fourier series. The
matrices lead to “discrete sines” and “discrete cosines” that are the bases for the Discrete
Fourier Transform. This DFT is absolutely central to all areas of digital signal processing.
The favorite choice for JPEG in image processing has been By of size 8.

Solution  The eigenvalues of Az are A = 2 — V2 and 2 and 2 + /2. (see 6.3 B). Their
sum is 6 (the trace of 43) and their product is 4 (the determinant). The eigenvector matrix
S gives the “Discrete Sine Transform” and the graph shows how the first two eigenvectors
fall onto sine curves. Please draw the third eigenvector onto a third sine curve!
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1 V21 S
S=| 2 0 =2 sin ¢
1 -2 1 k

L
4 I

Eigenvector matrix for A3

Oe

sin2t
\\'I’

The eigenvalues of By are A = 2 — V2 and 2 and 2 + /2 and O (the same as for
As, plus the zero eigenvalue). The trace is still 6, but the determinant is now zero. The
eigenvector matrix C gives the 4-point “Discrete Cosine Transform” and the graph shows
how the first two eigenvectors fall onto cosine curves. (Please plot the third eigenvector.)

These eigenvectors match cosines at the halfway points %, 3%, 2% 7%

1 1 1 1 e ) -

c_| 1 v2-1 -1 1=-V2 N
Tl 1-v2 -1 V2-1 SN
1 —1 1 -1 0z e, ZET

Eigenvector matrix for B, .
.

S and C have orthogonal columns (eigenvectors of the symmetric A3 and Bjy).
When we multiply a vector by S or C, that signal splits into pure frequencies—as a musi-
cal chord separates into pure notes. This is the most useful and insightful transform in all
of signal processing. Here is a MATLAB code to create Bg and its eigenvector matrix C':

n==8; e=ones(n—1,1); B=2x eye(n)—diag(e, —1)—diag(e, 1); B(1,1)=1; B(n,n)=1;
[C. A] = eig(B);
plot(C(:,1:4), ~0')

Problem Set 6.4
1 Write 4 as M 4+ N, symmetric matrix plus skew-symmetric matrix:
1 2 4
A=1{4 3 0|=M+N (MT=M,NT = —N).
8 6 5
For any square matrix, M = 424" and N = add up to A.

2 If C is symmetric prove that ATCA is also symmetric. (Transpose it.) When A is 6
by 3, what are the shapes of C and ATCA?
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Find the eigenvalues and the unit eigenvectors of

A=

NN
S O™
O O N

Find an orthogonal matrix Q that diagonalizes A = [ =2 $]. What is A?

Find an orthogonal matrix { that diagonalizes this symmetric matrix:

1 0 27

A={0 -1 -2

2 -2 0]
. . . . [ 9 12
Find all orthogonal matrices that diagonalize 4 = 12 16|

(a) Find a symmetric matrix [ § %] that has a negative eigenvalue.
(b) How do you know it must have a negative pivot?
(c) How do you know it can’t have two negative eigenvalues?

If A> = O then the eigenvalues of A must be . Give an example that has
A # 0. But if A is symmetric, diagonalize it to prove that A must be zero.

If A = a + ib is an eigenvalue of a real matrix A, then its conjugate A=a—ibis
also an eigenvalue. (If Ax = Ax then also AX = AX.) Prove that every real 3 by 3
matrix has at least one real eigenvalue.

Here is a quick “proof™ that the eigenvalues of all real matrices are real:

xTAx

False proof Ax = Ax gives xTAx =AxTx so A= is real.

xTx

Find the flaw in this reasoning—a hidden assumption that is not justified. You could
test those steps on the 90° rotation matrix [0 —1; 1 0] withA =i andx = (i, 1).

Write A and B in the form Ay x lx'{ + Azxzx; of the spectral theorem QAQT:
3 1 9 12
a=[1 3] B=]i3 1f] Geertml=tmi=v.

Every 2 by 2 symmetric matrix is A;x1x¥ + )szzxg = AP + A, P,. Explain
P, + P, = x1x] + x2x] = I from columns times rows of Q. Why is Py P, = 0?

What are the eigenvalues of A = [_g 3]? Create a 4 by 4 skew-symmetric matrix
(AT = —A) and verify that all its eigenvalues are imaginary.
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(Recommended) This matrix M is skew-symmetric and also . Then all its
eigenvalues are pure imaginary and they also have |A| = L. (|M x| = ||x|| for every
x so ||JAx|| = [lx|| for eigenvectors.) Find all four eigenvalues from the trace of M:
0O 1 1 1
l -1 0 -1 1 . . :
M = 7§- 1 1 0 -1 can only have eigenvalues i or — 1.
-1 -1 1 O

Show that A (symmetric but complex) has only one line of eigenvectors:

A= [i 1] is not even diagonalizable: eigenvalues A = 0, 0.

AT = A is not such a special property for complex matrices. The good property is
A =4 (Section 10.2). Then all A’s are real and eigenvectors are orthogonal.

Even if A is rectangular, the block matrix B = [;T 61] is symmetric:

Az = A
Bx =Ax is [ ? A][”]:A[J’] whichis
A" 0}z z Ay = Az,
(a) Show that —A is also an eigenvalue, with the eigenvector (y, —z).

(b) Show that ATAz = A2z, so that A2 is an eigenvalue of ATA.
(¢) If A =TI (2 by 2) find all four eigenvalues and eigenvectors of B.

IfA= [{] in Problem 16, find all three eigenvalues and eigenvectors of B.

Another proof that eigenvectors are perpendicular when A = A™. Two steps:

1. Suppose Ax = Ax and Ay = Oy and A # 0. Then y is in the nullspace
and x is in the column space. They are perpendicular because . Go
carefully—why are these subspaces orthogonal?

2. If Ay = By, apply this argument to A — BI. The eigenvalue of A — I moves
to zero and the eigenvectors stay the same—so they are perpendicular.

Find the eigenvector matrix S for A and for B. Show that S doesn’t collapse at
d = 1, even though A = 1 is repeated. Are the eigenvectors perpendicular?

0 4 0 —d 0 1
A=|d 0 0 B=| 01 O have A =1.d,—-d.
0 0 1 0 0 4

Write a 2 by 2 complex matrix with ZT = A (a “Hermitian matrix™). Find A and A,
for your complex matrix. Adjust equations (1) and (2) to show that the eigenvalues
of a Hermitian mairix are real.
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True (with reason) or false (with example). “Orthonormal” is not assumed.

(a) A matrix with real eigenvalues and eigenvectors is symmetric.
(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.
(c) The inverse of a symmetric matrix is symmetric.
(d) The eigenvector matrix S of a symmetric matrix is symmetric.
(A paradox for instructors) If AAT = ATA then 4 and AT share the same eigen-

vectors (true). A and AT always share the same eigenvalues. Find the flaw in this
conclusion: They must have the same S and A. Therefore 4 equals AT.

(Recommended) Which of these classes of matrices do A and B belong to:
Invertible, orthogonal, projection, permutation, diagonalizable, Markov?

0O 0 1 1
A=10 1 0 B =-—
1 0 0 3

Which of these factorizations are possible for A and B: LU, QR, SAS™!, QAQT?

What number b in [% 3] makes A = QAQT possible? What number makes 4 =
SAS™! impossible? What number makes A~ impossible?

Find all 2 by 2 matrices that are orthogonal and also symmetric. Which two numbers
can be eigenvalues?

This A is nearly symmetric. But its eigenvectors are far from orthogonal:

A=l 10715 has i . 1 4 [9
=10 141015 as eigenvectors | o | an [7]

What is the angle between the eigenvectors?

(MATLAB) Take two symmetric matrices with different eigenvectors, say 4 = [} 9]
and B = [’13 (1,] Graph the eigenvalues A; (A4 +¢B) and A(A +¢B) for—-8 <t < &.
Peter Lax says on page 113 of Linear Algebra that A1 and A, appear to be on a
collision course at certain values of ¢. “Yet at the last minute they turn aside.” How
close do they come?

Challenge Problems

For complex matrices, the symmetry AT = A that produces real eigenvalues changes
to A" = A. From det(4 — A1) = 0, find the eigenvalues of the 2 by 2 “Hermitian”
matrix A = [4 2+4+i; 2—i 0] = A", To see why eigenvalues are real when
A" = A, adjust equation (1) of the text to AT = A X.

Transpose to T 4 = ¥T 4. With 4' = A, reach equation (2): A = 1.
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29

30

31

32

Normal matrices have 4 A = AA'. For real matrices, ATA = AAT includes
symmetric, skew-symmetric, and orthogonal. Those have real A, imaginary A, and
|A] = 1. Other normal matrices can have any complex eigenvalues A.

Key point: Normal matrices have n orthonormal eigenvectors. Those vectors x;
probably will have complex components. In that complex case orthogonality means
¥, x,; = 0 as Chapter 10 explains. Inner products (dot products) become X'y,

The test for n orthonormal columns in Q becomes ETQ = I insteadof QTQ = I.

A has n orthonormal eigenvectors (A = QA@T) if and only if A is normal.

(2) Startfrom A = QAQ with QO Q = I. Showthat 4 A = A4 : A is normal.

(b) Now start from A' A = A4 . Schur found A = QT Q" for every matrix A,
with a triangular 7. For normal matrices we must show (in 3 steps) that this 7
will actually be diagonal. Then T = A.

Stepl.Put A= QTQ intoA A= A4 tofindT T =TT .

a b
Step 2. Suppose T = [ 0 d
Step 3. Extend Step 2 to size n. A normal triangular 7" must be diagonal.

:| hasT T =TT . Prove thatb = 0.

If Anax 1s the largest eigenvalue of a symmetric matrix 4, no diagonal entry can be
larger than A .. What is the first entry a;; of A = QAQT? Show why @11 < Amax.

Suppose AT = —A4 (real antisymmetric matrix). Explain these facts about A:

(a) xTAx = O for every real vector x.
(b) The eigenvalues of A are pure imaginary.
(c) The determinant of A is positive or zero (not negative).
For (a), multiply out an example of xTAx and watch terms cancel. Or reverse

xT(Ax) to (Ax)Tx. For (b), Az = Az leads to 27 Az = AZTz = A|z||%. Part(a)
shows that 2" Az = (x — i y)TA(x + i y) has zero real part. Then (b) helps with (c).

If A is symmetric and all its eigenvalues are A = 2, how do you know that A must
be 27 7 (Key point: Symmetry guarantees that 4 is diagonalizable. See “Proofs of
the Spectral Theorem” on web.mit.eduf18.06.)
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6.5 Positive Definite Matrices

This section concentrates on symmetric matrices that have positive eigenvalues. If sym-
metry makes a matrix important, this extra property (all A > 0) makes it truly special.
When we say special, we don’t mean rare. Symmetric matrices with positive eigenvalues
are at the center of all kinds of applications. They are called peositive definite.

The first problem is to recognize these matrices. You may say, just find the eigenvalues
and test A > 0. That is exactly what we want to avoid. Calculating eigenvalues is work.
When the A’s are needed, we can compute them. But if we just want to know that they are
positive, there are faster ways. Here are two goals of this section:

e To find quick tests on a symmetric matrix that guarantee positive eigenvalues.
e To explain important applications of positive definiteness.

The A’s are automatically real because the matrix is symmetric.
Start with 2 by 2. When does A = [3 ] have A1 > 0 and A2 > 0?

lyf a>0 andaé.— b* > 0. - |

A = ; ﬂ is not positive definite because ac —b?> =1—4 <0

Ax = _; —2] is positive definite becausea = landac — 5?2 =6—4> 0
-1 2]. . . .

Az = s —g|S not positive definite (even with det A = +2) because a = —1

Notice that we didn’t compute the eigenvalues 3 and —1 of A;. Positive trace 3 — 1 = 2,
negative determinant (3)(—1) = —3. And A3 = —A; is negative definite. The positive
eigenvalues for A,, two negative eigenvalues for As.

Proof that the 2 by 2 test is passed when A; > 0 and A, > 0. Their product A1 A5 is
the determinant so ac — b% > 0. Their sum is the trace so a + ¢ > 0. Then a and ¢ are
both positive (if one of them is not positive, ac — b% > 0 will fail). Problem 1 reverses the
reasoning to show that the tests guarantee A; > 0 and 1, > 0,

This test uses the 1 by 1 determinant a and the 2 by 2 determinant ac — b2. When A4 is
3 by 3, det A > 0 is the third part of the test. The next test requires positive pivots.

A" are positive if and only if the pivots are positive:

ac — b?

a

a>0 and > 0.
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a > 0 is required in both tests. So ac > b? is also required, for the determinant test and
now the pivot. The point is to recognize that ratio as the second pivot of A:

c

The first pivot is a The second pivot is
a b a b 2 2
b —_— 0 c_b b b ac—b

The multiplier is b/a ‘T T T a

This connects two big parts of linear algebra. Positive eigenvalues mean positive pivots
and vice versa. We gave a proof for symmetric matrices of any size in the last section. The
pivots give a quick test for A > 0, and they are a lot faster to compute than the eigenvalues.
It is very satisfying to see pivots and determinants and eigenvalues come together in this

course.
1 2 ) -1 2
Al‘[z 1] Az‘[—z 6] A3=[ 2 —6]

pivots 1 and —3 pivots 1 and 2 pivots —1 and —2
(indefinite) (positive definite) (negative definite)

Here is a different way to look at symmetric matrices with positive eigenvalues.

Energy-based Definition

From Ax = Ax, multiply by xT to get xTAx = AxTx. The right side is a positive A times
a positive number xTx = ||x||2. So xT Ax is positive for any eigenvector.

The new idea is that xT Ax is positive for all nonzero vectors x, not just the eigen-
vectors. In many applications this number xT Ax (or 2xTAJc) is the energy in the system.
The requirement of positive energy gives another definition of a positive definite matrix.
I think this energy-based definition is the fundamental one.

Eigenvalues and pivots are two equivalent ways to test the new requirement x" 4x > 0.

Definition A is pajsi'zive,.deﬁnit;e zfxTAx> 0forevery nonzero vector x: .
xT '_f a b \  o 2  e 1 2 'I
ax =[x y][b ][y] S axt2bxy+ept>0. )

The four entries a, b, b, ¢ give the four parts of xT Ax. From a and ¢ come the pure squares
ax? and c¢y?. From b and b off the diagonal come the cross terms bxy and by x (the same).
Adding those four parts gives xT Ax. This energy-based definition leads to a basic fact:

If A and B are symmetric positive definite, so is A + B.

Reason: x” (4 + B)x is simply xTAx + xTBx. Those two terms are positive (for x # 0)
so A + B is also positive definite. The pivots and eigenvalues are not easy to follow when
matrices are added, but the energies just add.
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xTAx also connects with our final way to recognize a positive definite matrix.
Start with any matrix R, possibly rectangular. We know that A = RTR is square and
symmetric. More than that, A will be positive definite when R has independent columns:

If the columns of R are independent, then A = R R is positive definite.

Again eigenvalues and pivots are not easy. But the number xT Ax is the same as xTRTRx.
That is exactly (Rx)T(Rx)—another important proof by parenthesis! That vector Rx is
not zero when x # 0 (this is the meaning of independent columns). Then xT Ax is the
positive number || Rx ||? and the matrix A is positive definite.

Let me collect this theory together, into five equivalent statements of positive definite-
ness. You will see how that key idea connects the whole subject of linear algebra: pivots,
determinants, eigenvalues, and least squares (from RT R). Then come the applications.

ix has one of theseﬁveprOpertleS, it has them all o

The “upper left determinants” are 1 by 1,2 by 2, .. ., n by n. The last one is the determinant
of the complete matrix A. This remarkable theorem ties together the whole linear algebra
course—at least for symmetric matrices. We believe that two examples are more helpful
than a detailed proof (we nearly have a proof already).

Example 1  Test these matrices A and B for positive definiteness:

2 =1 0 2 -1 b
A=1]-1 2 —1 and B =|-1 2 -1
0 —1 2 b -1 2

Solution The pivots of A are 2 and % and %, all positive. Its upper left determinants are 2

and 3 and 4, all positive. The eigenvalues of A are 2 — +/2 and 2 and 2 + /2, all positive.
That completes tests 1, 2, and 3.
We can write xTAx as a sum of three squares. The pivots 2, 3 3 appear outside the

squares. The multipliers —5 and — g from elimination are inside the squares:
Ty — 2 2 2 PO
xTAx = 2(x{ — x1x2 + x5 — X2x3 + x3) Rewrite with squares

=2(x; — 3x2)” + 2(%2 — 2x3)® + 4(x3)>.  This sum is positive.
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I have two candidates to suggest for R. Either one will show that A = RTR is positive
definite. R can be a rectangular first difference matrix, 4 by 3, to produce those second
differences —1,2, —1 in A:

2 -1 0 1 ~1 0 _} (1) 8
A=R'R |-1 2 -1|=|0 1 -1 Of} o |
0 -1 2 0 0 1 -1 0 0 -1

The three columns of this R are independent. A is positive definite.
Another R comes from A = LDLT (the symmetric version of A = LU). Elimination
gives the pivots 2, %, gﬁ in D and the multipliers —-;—, 0, —% in L. Just put 4/ D with L.

2 1 —

ot D {3t

LDLT=| -3 1 2
-2 4
3 3
This choice of R has square roots (not so beautiful). But it is the only R thatis 3 by 3
and upper triangular. It is the “Cholesky factor” of 4 and it is computed by MATLAB’s
command R = chol(A). In applications, the rectangular R is how we build 4 and this
Cholesky R is how we break it apart.

Eigenvalues give the symmetric choice R = QJX OT. This is also successful with

RTR = QAQT = A. All these tests show that the —1, 2, —1 matrix A is positive definite.

-2 | = LvVD)LVD) =RTR.
1 R is the Cholesky factor

Now turn to B, where the (1, 3) and (3, 1) entries move away from 0 to 5. This b must
not be too large! The determinant test is easiest. The 1 by 1 determinant is 2, the 2 by 2
determinant is still 3. The 3 by 3 determinant involves b:

det B = 4 4+ 2b —2b% = (1 + b)(4 — 2b) must be positive.

Ath = —land b = 2 we getdetB = 0. Between b = —1 and b = 2 the matrix is
positive definite. The comer entry b = 0 in the first matrix A was safely between.

Positive Semidefinite Matrices

Often we are at the edge of positive definiteness. The determinant is zero. The smallest
eigenvalue is zero. The energy in its eigenvector is xTAx = xTOx = 0. These matrices
on the edge are called positive semidefinite. Here are two examples (not invertible):

) 2 -1 -1
A= and B=| -1 2 =1 arepositive semidefinite.
2 4 -1 -1 2

A has eigenvalues 5 and 0. Its upper left determinants are 1 and 0. Its rank is only 1. This
matrix A factors into RT R with dependent columns in R:

Dependent columns L 21 {1 Off1 2} _ RTR
Positive semidefinite 2 41712 0|0 O] :

If 4 is increased by any small number, the matrix will become positive definite.
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The cyclic B also has zero determinant (computed above when b = —1). It is singular.
The eigenvectorx = (1,1, 1) has Bx = 0 and xTBx = 0. Vectors x in all other directions
do give positive energy. This B can be written as RTR in many ways, but R will always
have dependent columns, with (1, 1, 1) in its nullspace:

Second differences A 2 -1 -1 1 -1 O 1 0 -1
from first differences RTR | -1 2 —-1|=| 0 1 -=1||-1 1 0
Cyclic A4 from cyclic R -1 -1 2 -1 0 1 0 -1 1

Positive semidefinite matrices have all A > 0 and all xTAx > 0. Those weak inequalities
(= instead of >) include positive definite matrices and the singular matrices at the edge.

First Application: The Ellipse ax? + 2bxy + cy?2 =1

Think of a tilted ellipse xTAx = 1. Its center is (0, 0), as in Figure 6.7a. Tum it to line up
with the coordinate axes (X and Y axes). That is Figure 6.7b. These two pictures show the
geometry behind the factorization A = QAQ™! = QAQT:

1. The tilted ellipse is associated with A. Its equationis xTAx = 1.
2. The lined-up ellipse is associated with A. Its equationis X TAX = 1.
3. The rotation matrix that lines up the ellipse is the eigenvector matrix Q.

Example 2  Find the axes of this tilted ellipse 5x2 + 8xy + 5y% = 1.
Solution Start with the positive definite matrix that matches this equation:

5 4

The equationis [x y][4 5

] [;] = 1. The matrix is A

1+ (\%_%)

Figure 6.7: The tilted ellipse 5x + 8xy + 5y2 = 1. Lined up itis 9X2 + Y? = 1,
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The eigenvectors are [ 1] and [_} ]. Divide by /2 for unit vectors. Then 4 = QAQT:
Eigenvectors in O 5 47_ 111 17f9 o] 1 1 1
Eigenvalues 9 and 1 4 5|17 2|t —1}|0 1] 2|1 -1

Now multiply by [x y ] on the left and ; ] on the right to get back to x TAx:

T, 9 Y A 2 (x — y)2

x Ax = sum of squares 5x“ 4 8xy + S5y 9 (—-—\/2. ) +1 7 . 3
The coefficients are not the pivots 5 and 9/5 from D, they are the eigenvalues 9 and 1
from A. Inside these squares are the eigenvectors (1,1)/+/2 and (1, —1)/~/2.

The axes of the tilted ellipse point along the eigenvectors. This explains why
A = QAQT is called the “principal axis theorem”—it displays the axes. Not only the
axis directions (from the eigenvectors) but also the axis lengths (from the eigenvalues).
To see it all, use capital letters for the new coordinates that line up the ellipse:

X+Yy xX—y
=X and
V2 V2

The largest value of X2 is 1/9. The endpoint of the shorter axis has X = 1/3and Y = 0.
Notice: The bigger eigenvalue A; gives the shorter axis, of half-length 1/v/A; = 1/3.
The smaller eigenvalue A, = 1 gives the greater length 1/4/A2 = 1.

In the x y system, the axes are along the eigenvectors of A. In the XY system, the axes
are along the eigenvectors of A—the coordinate axes. All comes from A = QAQT.

Lined up =Y and 9X24+V?’=1

Suppose A= QAQT is positive definite, so. A; > 0. The graph of xTAx = 1 is an ellipse:

[+ y]QAQT[;] =[x Y]A[})f] =X+ Aort =10

i- Thq;;:axgszfp.dint'éﬁbngjéi\géme;ctor;sz ’Ihehalf—lengthsare 1/+/%1 and 1/. /\2 o
A = I gives the circle x2 + y2 = 1. If one eigenvalue is negative (exchange 4’s and 5’s
in A), we don’t have an ellipse. The sum of squares becomes a difference of squares:

9X2 — Y? = 1. This indefinite matrix gives a hyperbola. For a negative definite matrix
like A = —1, with both A’s negative, the graph of —x? — y? = 1 has no points at all.

= REVIEW OF THE KEY IDEAS =

1. Positive definite matrices have positive eigenvalues and positive pivots.

2. A quick test is given by the upper left determinants: ¢ > 0 and ac — b% > 0.
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3. The graph of xT Ax is then a “bowl” going up from x = 0:
xTAx = ax?® + 2bxy + cy? is positive except at (x, y) = (0,0).

4. A = RTR is automatically positive definite if R has independent columns.

5. The ellipse xTAx = 1 has its axes along the eigenvectors of A. Lengths 1/ VA.

® WORKED EXAMPLES =

6.5 A  The great factorizations of a symmetric matrix are A = LDLT from pivots and
multipliers, and A = QAQT from eigenvalues and eigenvectors. Show that xTAx > 0 for
all nonzero x exactly when the pivots and eigenvalues are positive. Try these n by n tests
on pascal(6) and ones(6) and hilb(6) and other matrices in MATLAB’s gallery.

Solution  To prove xTAx > 0, put parentheses into xTLDLTx and xTQAQTx:
xTAx = (LTx)TD(LTx) and xTAx = (QTx)TA(QTx).

If x is nonzero, then y = LTx and z = QTx are nonzero (those matrices are invertible).
SoxTAx = yTDy = zTAz becomes a sum of squares and A is shown as positive definite:

Pivots xTAx = y™Dy = diy?+---+dyy? > 0
Eigenvalues xTAx = zTAz = Q22+ +A,22 > 0
MATLAB has a gallery of unusual matrices (type help gallery) and here are four:
pascal(6) is positive definite because all its pivots are 1 (Worked Example 2.6 A).
ones(6) is positive semidefinite because its eigenvalues are 0, 0,0, 0,0, 6.
H=hilb(6) is positive definite even though eig(H) shows two eigenvalues very near zero.
Hilbert matrix xTHx = foI (x1 + x28 + -+ + x65°)2ds > 0, H; = 1/(G + j + 1).

rand(6)+rand(6) can be positive definite or not. Experiments gave only 2 in 20000.
n =20000; p =0;fork = 1:n, A =rand(6); p = p + all(eig(4 + A’) > 0);end, p /n

A
BT

Solution  Multiply the first row of M by BT4A™! and subtract from the second row, to
get a block of zeros. The Schur complement S = C — BTA™! B appears in the corner:

I o[ 4 B T4 B 4 B )
—BT4' 1 || BT ¢ |T| o c=BTa'B |T| 0 s )

Those two blocks A and S must be positive definite. Their pivots are the pivots of M.

6.5B When is the symmetric block matrix M = [ g ] positive definite?
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6.5 C Second application: Test for a minimum. Does F(x, y) have a minimum if
0F/0x = 0 and dF /3y = 0 at the point (x, y) = (0,0)?

Solution For f(x), the test for a minimum comes from calculus: df/dx = 0 and
d? f/dx* > 0. Moving to two variables x and y produces a symmetric matrix H. It con-
tains the four second derivatives of F(x, y). Positive f " changes to positive definite H:

2F/dx%2  9*F/oxdy ]

Second derivative matrix H = |: 2F 13yox 2F / 8y2

F(x, y) has a minimum if H is positive definite. Reason: H reveals the important terms
ax? + 2bxy + cy? near (x, y) = (0,0). The second derivatives of F are 2a,2b, 2b, 2¢!

6.5D Find the eigenvalues of the —1, 2, —1 tridiagonal n by » matrix K (my favorite).

Solution  The best way is to guess A and x. Then check Kx = Ax. Guessing could not
work for most matrices, but special cases are a big part of mathematics (pure and applied).

The key is hidden in a differential equation. The second difference matrix K is like a
second derivative, and those eigenvalues are much easier to see:

Eigenfunctions y;, y2,... dx y(1)=0
Try y = sincx. Its second derivative is y” = —c?sincx. So the eigenvalue will be

A = —c2, provided y(x) satisfies the end point conditions y(0) = 0 = y(1).
Certainly sin0 = 0 (this is where cosines are eliminated by cos0 = 1). Atx = 1,
we need y(1) = sinc¢ = 0. The number ¢ must be k7, a multiple of 7, and A is —c?:

Eigenvalues A = —k2n? dz 5 o
) . ] —— sinknx = —k“n* sinknx. (6)
Eigenfunctions y = sinkmx dx

Now we go back to the matrix K and guess its eigenvectors. They come from sin kmx
at n points x = h,2h,...,nh, equally spaced between 0 and 1. The spacing Ax is h =
1/(n 4+ 1), so the (n + 1)st point comes out at (n + 1) = 1. Multiply that sine vector s
by K:

Ks =As =2 —2coskmh) s

Eigenvector of K = sine vector s
g s = (sinkmh,...,sinnkmh).

(1)

I will leave that multiplication K's = As as a challenge problem. Notice what is important:
1. All eigenvalues 2 — 2 cos kxrh are positive and K is positive definite.

2. The sine matrix S has orthogonal columns = eigenvectors s1,...,§, of K.



350 Chapter 6. Eigenvalues and Eigenvectors

sinh sinkmh
Discrete Sine Transform

The j, k entry is sin jknh S =

sinnmh sinnkmh

Those eigenvectors are orthogonal just like the eigenfunctions: /01 sin jrx sinknx dx = 0.

Problem Set 6.5

Problems 1-13 are about tests for positive definiteness.

1 Suppose the 2 by 2 tests a > 0 and ac — b? > 0 are passed. Then ¢ > b2/a is also
positive.,

(i) A1 and A have the same sign because their product A, A, equals

(i) That sign is positive because A1 + A, equals
Conclusion: The tests a > 0,ac — b? > 0 guarantee positive eigenvalues 1, A,.

2 Which of A1, 42, A3, A4 has two positive eigenvalues? Use the test, don’t compute
the A’s. Find an x so that xTA;x < 0, so A4; fails the test.

5 6 _1 -2 110 110
Al_[é 7] AZ‘[uz —5] A?’—[lo 100] A“—[m 101]'

3 For which numbers 6 and c¢ are these matrices positive definite?

1 b 2 4 ¢ b
e O I P B P
With the pivots in D and multiplier in L, factor each 4 into LDLT.

4 What is the quadratic /' = ax? + 2bxy + cy? for each of these matrices? Complete
the square to write f as a sum of one or two squares di(  )? + da2( )2

1 2 1 3
A—[z 9] and A—[3 9].

5 Write f(x,y) = x2 + 4xy + 3y? as a difference of squares and find a point (x, y)
where f is negative. The minimum is not at (0,0) even though f has positive
coefficients.

6 The function f(x,y) = 2xy certainly has a saddle point and not a minimum at
(0,0). What symmetric matrix A produces this /? What are its eigenvalues?
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7

8

9

10

11

12

13

Test to see if RTR is positive definite in each case:

1 1
1 2 1 1 2
R--[O 3] and R = ; ? and R—[l ) 1].

The function f(x,y) = 3(x + 2y)? + 4y? is positive except at (0,0). What is the
matrixin f =[x y]A[x y]T? Check that the pivots of A are 3 and 4.

Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant:

X1
[xl X2 x3] A X2 | = 4(x; — x2 + 2x3)%
X3

Which 3 by 3 symmetric matrices A and B produce these quadratics?

xTAx = 2(x? + x3 + x2 — x1x2 — x2x3). Why is A positive definite?

xTBx = 2(x? 4+ x2 + x3 — x1x2 — X1X3 — X2x3). Why is B semidefinite?

Compute the three upper left determinants of A4 to establish positive definiteness.
Verify that their ratios give the second and third pivots.

Pivots = ratios of determinants A=

S NN
W W N
00 WO

For what numbers ¢ and d are 4 and B positive definite? Test the 3 determinants:

c 1 1 1 2 3
A=1|1 ¢ 1 and B=|2 d 4
1 1 ¢ 3 4 5

Find a matrix with ¢ > O and ¢ > 0 and @ + ¢ > 2b that has a negative eigenvalue.

Problems 14-20 are about applications of the tests.

14

15

If A is positive definite then A~ is positive definite. Best proof: The eigenvalues
of A™! are positive because . Second proof (only for 2 by 2):

1 —
The entries of A™! = Py [ Z 2] pass the determinant tests
ac — —

If A and B are positive definite, their sum A + B is positive definite. Pivots and
eigenvalues are not convenient for A + B. Better to prove x (4 + B)x > 0. Or if
A= RTRand B = STS, show that A+ B = [r s]" [ §] with independent columns.
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16 A positive definite matrix cannot have a zero (or even worse, a negative number) on
its diagonal. Show that this matrix fails to have xTAx > 0:

4 1 1 X1
[x1 X2 x3] 1 0 2 X3 | is not positive when (x,x2,x3)=( , , ).
1 2 5 X3

17 A diagonal entry a; of a symmetric matrix cannot be smaller than all the A’s. If it
were, then A — a;; I would have eigenvalues and would be positive definite.
But A —aj;l hasa on the main diagonal.

18 If Ax = Ax thenxTAx = .If xTAx > 0, prove that A > 0.

19  Reverse Problem 18 to show that if all A > O then xTAx > 0. We must do this
for every nonzero x, not just the eigenvectors. So write x as a combination of the

eigenvectors and explain why all “cross terms” are x]x j = 0. Then xTAx is

(c1x1+Fenxy) (Crhix 1+ Fenrnxy) = EhxTx 4+ 42 AnxTx, > 0.
20 Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is P = .
(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite!
Problems 21-24 use the eigenvalues; Problems 25-27 are based on pivots.

21  For which s and ¢ do A and B have all A > 0 (therefore positive definite)?

s —4 —4 t 3 0
A=|-4 s —4 and B=|3 ¢ 4

|4 -4 s 0 4 1

22 From A = QAQT compute the positive definite symmetric square root QAY2QT
of each matrix. Check that this square root gives R? = A:

5 4 10 6
A—[4 5] and A—[6 10].

23  You may have seen the equation for an ellipse as x2/a? + y?/b? = 1. What are a
and b when the equation is written 1;x2 4+ A,y? = 1? The ellipse 9x2 + 4y? = 1
has axes with half-lengths a = and b =

24  Draw the tilted ellipse x2 + xy + y? = 1 and find the half-lengths of its axes from
the eigenvalues of the corresponding matrix A.
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25

26

27

28

29

30

31
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With positive pivots in D, the factorization A = LDLT becomes L/D~/DLT.
(Square roots of the pivots give D = +/D+/D.) Then C = +/DLT yields the
Cholesky factorization A = CTC which is “symmetrized L U

3 1
0 2

4 8

From Cz[ 2 25

] find A. From A= [ ] find C = chol(A4).

In the Cholesky factorization A = CTC, with CT = LD , the square roots of the
pivots are on the diagonal of C. Find C (upper triangular) for

9 0 0 I 1 1
A=]10 1 2 and A=1|1 2 2
0 2 8 1 2 7

The symmetric factorization A = L DLT means that xTAx = xTLDL x:

[ y][z }Z] [;]=[x y][b}a (1)] [g (ac—obz)/a][(l) b{a][;]

The left side is ax? + 2bxy + cy?. The right side is a(x + -ﬁ'—y)2 + y2.
The second pivot completes the square! Test witha =2,b = 4, ¢ = 10.

Without multiplying A = [COS 6 —sin 9} [2 0] [_ cos®  sin 9], find

sin @ cos@ (|0 5 sinf@ cosf
(a) the determinant of A (b) the eigenvalues of A
(c) the eigenvectors of A (d) a reason why A is symmetric positive definite.

For Fi(x,y) = ix* + x?y + y? and F5(x,y) = x> + xy — x find the second
derivative matrices H; and H:

02F/0x?  9%F/0x0y

Test for minimum, H = I:azF /dydx  3*F/dy?

:l is positive definite

H, is positive definite so F; is concave up (= convex). Find the minimum point
of Fy and the saddle point of F» (look only where first derivatives are zero).

The graph of z = x2 4 y2 is a bowl opening upward. The graph of z = x? — y? is
a saddle. The graph of z = —x? — y? is a bowl opening downward. What is a test
ona,b,c for z = ax? + 2bxy + ¢y? to have a saddle point at (0, 0)?

Which values of ¢ give a bowl and which ¢ give a saddle point for the graph of
z = 4x% + 12xy + cy?? Describe this graph at the borderline value of c.
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32

33

34

35

Chapter 6. Eigenvalues and Eigenvectors
Challenge Problems

A group of nonsingular matrices includes AB and A™! if it includes A and B.
“Products and inverses stay in the group.” Which of these are groups (as in 2.7.37)?
Invent a “subgroup” of two of these groups (not I by itself = the smallest

group).

(a) Positive definite symmetric matrices A.
(b) Orthogonal matrices Q.

(c) All exponentials e*4 of a fixed matrix A.
(d) Matrices P with positive eigenvalues.

(e) Matrices D with determinant 1.

When A and B are symmetric positive definite, AB might not even be symmetric.
But its eigenvalues are still positive. Start from ABx = Ax and take dot products
with Bx. Then prove A > 0.

Write down the 5 by 5 sine matrix S from Worked Example 6.5 D, containing the
eigenvectors of K when n = 5 and h = 1/6. Multiply K times S to see the five
positive eigenvalues.

Their sum should equal the trace 10. Their product should be det K =