EE2030 Linear Algebra Final Exam, Jan. 13, 2016 Lecturer: Yi-Wen Liu

Full score = 100. The following rules apply:

- Organize your work in a reasonably neat and coherent way so you can receive partial credit.
- Theorems proved in class can be referred without derivation.
- Mysterious or unsupported answers will not receive full credit.

1. (20 points) (Gran-Schmidt orthogonalization).

(a) Let
$$v_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0\\3\\4\\12 \end{pmatrix}$. find $t \in \mathbb{R}$ such that $\langle v_2 - tv_1, v_1 \rangle = 0$.

- (b) Let V be the vector space of square-integrable continuous functions defined on [-1, 1]. Consider the following vectors in V: $f_3(t) = |t|$, $f_1(t) = 1$, $f_2(t) = t^2$. Find the function $g(t) \in \text{span}(\{f_1(t), f_2(t)\})$ such that $||f_3(t) - g(t)||^2$ is minimized.
- 2. (30 points) (Orthogonal complement, range, and null space). Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Then we have $L_A : \mathbb{R}^3 \to \mathbb{R}^2$.
 - (a) Describe accurately the subspace $N(L_A)$ using the Gaussian elimination method. What is the dimensionality of the subspace?
 - (b) Make a sketch to describe the set $\mathsf{R}(\mathsf{L}_{A^t})$.
 - (c) Show that, if $y \in \mathsf{R}(\mathsf{L}_{A^t})$, and $x \in \mathsf{N}(\mathsf{L}_A)$, then $\langle x, y \rangle = 0$.
 - (d) Calculate $A^t A$ and show that it is not full-rank.
 - (e) Find the eigenvalues for $A^t A$.
 - (f) Is $A^t A$ diagonalizable? Why or why not?

- 3. (30 points) (Unitary 3x3 matrices). Assume that $A \in M_{3x3}(\mathbb{R})$, and $A^t A = I$. In the following parts you will be guided to show that such matrices can never have three distinct real eigenvalues, and one of the eigenvalues must be 1 or -1.
 - (a) Argue that A must at least have a real eigenvalue. (*Hint*: The characteristic polynomial is third-order).
 - (b) Show that, if $\lambda \in \mathbb{R}$ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue for A^t . (*Hint*: $A^t = A^{-1}$).
 - (c) Assume that $\lambda \in \mathbb{C}$ is an eigenvalue for A and x is an eigenvector associated with λ . Let $\mathsf{T} : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation represented by $A^* \bar{\lambda}I$. Prove that $\mathsf{R}(\mathsf{T}) \subseteq \{x\}^{\perp}$.
 - (d) Continuing from (c), if $\lambda \in \mathbb{R}$, argue that λ is also an eigenvalue for A^t .
 - (e) Show that, if \exists nonzero vector $x \in \mathbb{C}^3$ such that $Ax = \lambda x$, where $\lambda \in \mathbb{C}$, then $|\lambda| = 1$. (*Hint*: Unitary transformations preserves the norm).
 - (f) Finally, argue that A can not have three distinct real eigenvalues, and one of the eigenvalues must be 1 or -1.
- 4. (20 points) (Discriminant of a cylindrical curve). Let $f(x, y) = 3x^2 + 4xy + 6y^2$ be a bivariate function. Consider the curve f(x, y) = 1. The curve is actually an ellipse. Find its principal axes, and draw the ellipse on the x-y plane. [Hint: Note that

$$f(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Digonalize the 2x2 matrix in the middle of this quadratic form and perform a change of coordinates.]