Full score = 105. The following rules apply:

- Organize your work in a reasonably neat and coherent way.
- Mysterious or unsupported answers will not receive full credit.
- 1. (20 points) (System of linear equations). Below, find the set of all solutions to Ax = b.

(a)	A =	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	$\frac{3}{0}$	$0 \\ 2$	$\begin{pmatrix} 2\\ -2 \end{pmatrix}, b =$	$\begin{pmatrix} 6\\1 \end{pmatrix}$.
(b)	A =	$\begin{pmatrix} 1\\5\\1 \end{pmatrix}$	$2 \\ 6 \\ 1$	$3 \\ 7 \\ 1$	$\begin{pmatrix} 4\\8\\1 \end{pmatrix}, b =$	$\begin{pmatrix} 100\\ 260\\ 2\pi \end{pmatrix}.$

- 2. (10 points) (Vandermonde matrix). Let $f(x) = a + bx + cx^2$ be a polynomial.
 - (a) Assume that f(1) = 1, f(2) = 0 and f(3) = 1. Find f(4).

	1	1	1	1	
(b) Calculate the determinant	1	2	3	5	
(b) Calculate the determinant	1	4	9	25	·
	1	8	27	125	

- 3. (30 points) (Eigenvalue problem and change of coordinate). Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
 - (a) (10 points) Let $\theta = \pi/6$. ($\therefore \cos \theta = \sqrt{3}/2$ and $\sin \theta = 1/2$). Find all of the eigenvalues of A.
 - (b) (5 points) Show that $(1,1)^t$ and $(1,-1)^t$ are eigenvectors for A.
 - (c) (5 points) Generally for any $\theta \in (0, \pi/4)$, describe what the corresponding linear transformation $L_A : R^2 \to R^2$ does using a geometric illustration. In your opinions, does it make sense that $(1, 1)^t$ and $(1, -1)^t$ are eigenvectors regardless of the choice of θ ?
 - (d) (5 points) Let $\beta = \{(1,1)^t, (1,-1)^t\}$ be an ordered basis for R^2 , and Let γ be the standard basis, i.e., $\gamma = \{(1,0)^t, (0,1)^t\}$. Let I_2 be the identity transformation on R^2 , i.e., $I_2(v) = v$, for any $v \in R^2$. Calculate the change-of-coordinate matrix $Q = [I_2]_{\gamma}^{\beta}$.
 - (e) (5 points) Show that $[L_A]_{\beta}$ is diagonal.

- 4. (10 points) (Elementary operations). Let $A = \begin{pmatrix} 3 & 8 \\ 8 & 3 \end{pmatrix}$. Write A as a product of elementary matrices. [Hint: Find A^{-1} via row operations.]
- 5. (10 points) (Orthonormal Group). Suppose that A and B are square matrices and $A^{t}A = I = B^{t}B$. Let C = AB.
 - (a) Show that $C^t C = I$.
 - (b) Show that $det(A) = \pm 1$.
- 6. (25 points) **True or false**. For each statement below, if you think it is true, prove it. Otherwise, explain what is wrong. *Right answers with no explanation receive 2 points each*. Wrong answers with reasonable explanation will be considered partial credits.

(a) Let

$$M = \begin{pmatrix} O & A \\ I & B \end{pmatrix},$$

where O is a zero matrix, I is an identity matrix, and A is a square matrix. Then det(M) = -det(A).

- (b) Let A and B be square matrices of the same size. If AB = I, then BA = I.
- (c) Let $A \in M_{m \times n}(R)$ and $B \in M_{n \times m}(R)$. If $AB = I_m$, then $BA = I_n$.
- (d) Let A be an $n \times n$ matrix, and $b \in M_{n \times 1}(R)$. If the system of equations Ax = b has infinitely many solutions, then the last row of A can be written as a linear combination of other rows in A.
- (e) Let $T : V \to V$ be a linear operator, and let β and β' be two ordered bases for V. Assume that V is finite-dimensional. Then, det $([T]_{\beta}) = det ([T]_{\beta'})$.