EE2030 Linear Algebra

1st Midterm Exam, Oct. 23, 2015 Lecturer: Yi-Wen Liu

This exam contains 2 pages and 6 problems. Check to see if any pages are missing.

The following rules apply:

- Organize your work in a reasonably neat and coherent way.
- Mysterious or unsupported answers will not receive full credit.
- 1. (15 points) Let v_1, v_2, v_3 be vectors in \mathbb{R}^5 , and

$$v_1 = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix}, v_2 = \begin{pmatrix} 6\\7\\8\\9\\10 \end{pmatrix}, v_3 = \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$$

- (a) (10 points) Show that $\{v_1, v_2, v_3\}$ are linearly dependent, and determine dim $(\text{span}(\{v_1, v_2, v_3\}))$.
- (b) (5 points) Let $A = [v_1|v_2|v_3]$ be a 5 × 3 matrix, and let L_A denote the corresponding *left multiplication* transform from \mathbb{R}^3 to \mathbb{R}^5 . Find a vector that belongs to $N(L_A)$.
- 2. (10 points) Let P(R) denote the set of all polynomials with real coefficients. Define $T : P(R) \to P(R)$ by

$$\mathsf{T}\big(f(x)\big) = \int_0^x f(t)dt$$

Show that T is one-to-one, but not onto.

3. (20 points) Let $\mathsf{T}_A : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as follows:

$$\mathsf{T}_A(v) = A \times v \stackrel{\Delta}{=} (A_y v_z - A_z v_y, A_z v_x - A_x v_z, A_x v_y - A_y v_x)^T,$$

for any $v = (v_x, v_y, v_z)^T$ in \mathbb{R}^3 , and let us assume that $A = (A_x, A_y, A_z)^T$ is fixed.

- (a) Show that T_A is a linear transformation.
- (b) Define a basis β for \mathbb{R}^3 (suggestion: use the most common definition) and write down $[\mathsf{T}_A]^{\beta}_{\beta}$.
- (c) If $A = (0, 0, 1)^T$, describe or make a sketch of $\mathsf{R}(\mathsf{T}_A)$.
- (d) Continuing from above, describe or make a sketch of $N(T_A)$.

- 4. (20 points) Matrix multiplication.
 - (a) Let

$$A = \begin{pmatrix} \cos\frac{2\pi}{67} & -\sin\frac{2\pi}{67} \\ \sin\frac{2\pi}{67} & \cos\frac{2\pi}{67} \end{pmatrix}$$

be a 2×2 matrix. Argue that $A^{67} = I$.

(b) For any square matrix $C \in M_{n \times n}(\mathbb{R})$, define $f(C) = \sum_{i=1}^{n} C_{ii}$. In other words, f(C) is the sum of the diagonal elements of C. Prove that, for any $A, B \in M_{n \times n}(\mathbb{R})$, we have f(AB) = f(BA). [Remark: f(C) is called the trace of C and we will show later in this semester that the

[Remark: f(C) is called the trace of C and we will show later in this semester that the trace of a matrix equals to the sum of all its eigenvalues.]

- 5. (15 points) In no more than 5 lines, briefly answer each of the following questions.
 - (a) At the beginning of this semester, we went through the 8 properties that a vector space must obey. One of them requires that 1x = x for each x in V. Could anything go wrong if a vector space does not require 1x = x?
 - (b) If a matrix represents a linear transformation, what does the product of two matrices represent?
 - (c) What are the two properties that a basis for a vector space must have?
- 6. (20 points) **True or false**. For each statement below, if you think it is true, prove it. Otherwise, explain what is wrong. *Right answers with no explanation receive 2 points each*. Wrong answers with reasonable explanation will be considered partial credits.
 - (a) Let $S_1 \subseteq S_2$ be two non-empty subsets of a vector space V. If $\operatorname{span}(S_2) = V$, then $\operatorname{span}(S_1) = V$.
 - (b) Let $T : V \to W$ be a linear transformation. If $\{v_1, ..., v_n\} \subseteq V$ is linearly dependent, then $\{T(v_1), ..., T(v_n)\}$ is linearly dependent.
 - (c) Continuing from above, if $\{v_1, ..., v_n\} \subseteq V$ is linearly independent, then $\{\mathsf{T}(v_1), ..., \mathsf{T}(v_n)\}$ is linearly independent.
 - (d) Let S be a subset of a vector space V. Then, $\operatorname{span}(S)$ is the intersection of all subspaces of V that contain S.