EE3230 Lecture 6: Circuit Characterization and Performance Estimation III

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

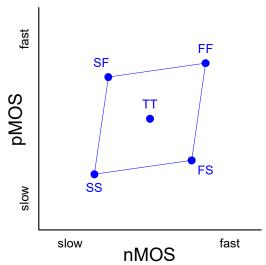
Outline

- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling

Chy

Design Margin

Sources of variations


Process variation
Supply voltage
Temperature

Uth nominal value 30 value

Memory 阿瑟瑟科 1年10年夏到600月0.

Process Variation

- Uncertainties in device parameters during manufacturing process
 - $-L_{eff}$, V_{th} , t_{ox} , etc.
 - Vary aroun (Typical (nominal) values
- **F**ast
 - Leff: Short
 - V_{th}: <u>low</u>
 - t_{ox}: thin
- **S**low: opposite
- Not all parameters are independent or NMOS and PMOS

Environmental Variation

- Supply voltage and temperature also vary
 - Across time and space
- <u>F</u>ast:

+10%

Corner	Voltage	Temperature
<u>F</u> ast	1.98V	0°C,-40°C
<u>T</u> ypical	V₀ 0 = 1.8 V	70°C
Slow	1,62V	100°C, 125°C

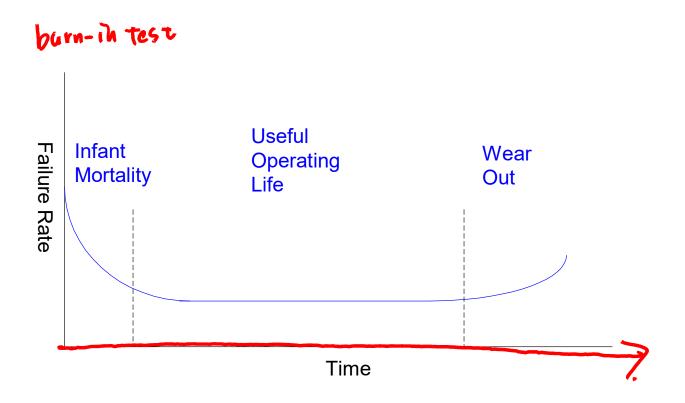
-10%

Process Corners

- Process corners describe extreme case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - NMOS speed
 - PMOS speed
 - Voltage
 - Temperature

Important Corners

- Some critical corners include
 - Worst corner depending on performance of interest


Purpose	NMOS	PMOS	V _{DD}	Temp
Cycle time	S	S	S 1g	SÀ
Power	F	F	F	F 19
Subthrehold leakage	F	F	F	SZ
> Pseudo-nMOS	S	F	?	?

Outline

- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling

Reliability

- Hard errors
- Soft errors

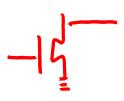
Electromigration

- "Electron wind" causes movement of metal atoms along wires
- Excessive electromigration leads to <u>open circuits</u>
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current/area)
 - Exponential dependence on temperature

- Black's Equation:
$$MTTF \propto \frac{e^{\frac{E_a}{kT}}}{J_{dc}{}^n}$$
 - Typical limits: $J_{dc} < 1 - 2$ mA / μ m

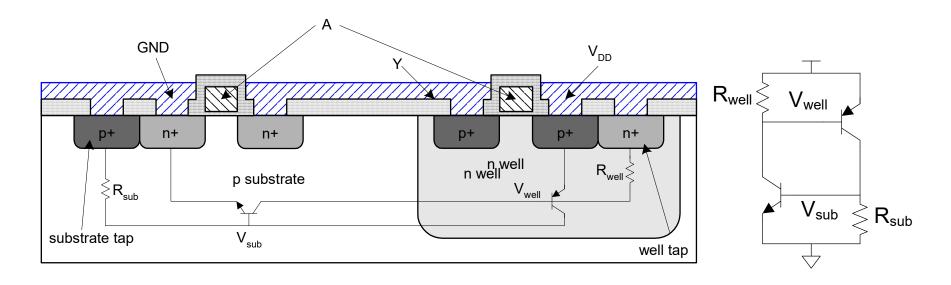
Self-Heating

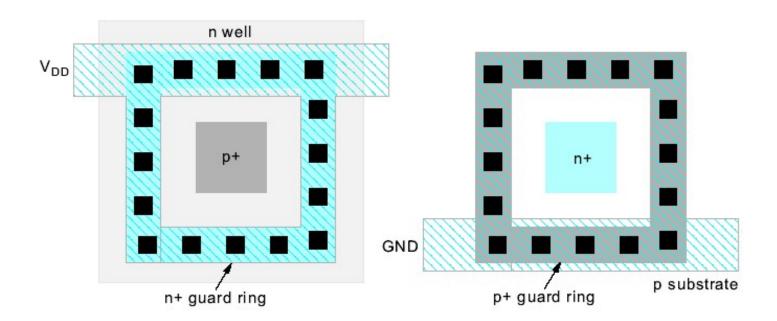
- Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive → slower
- Self-heating limits <u>AC current densities</u> for reliability


$$I_{rms} = \sqrt{\frac{\int_{0}^{T} I(t)^{2} dt}{T}}$$

- Typical limits: J_{rms} < 15 mA / μm^{2}

Hot Carriers


- Electric fields across channel impart high energies to some carriers
 - These "hot" carriers may be blasted into gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in V_{th} over time
 - Eventually V_{th} shifts too far for devices to operate correctly
- Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with input risetime and long propagation delays


Latchup

- Positive feedback leading to V_{DD} GND short
 - Major problem for 1970's CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well contacts (taps)

Guard Rings

- Latchup when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard rings to collect injected charge

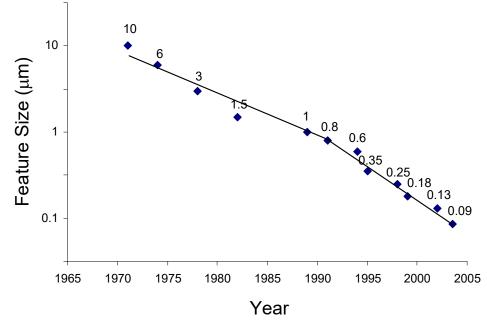
Overvoltage

- High voltages can damage transistors
 - Electrostatic discharge
 - Oxide arcing
 - Punch-through
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents
- Requires low V_{DD} for thin oxides and short channels
- Use ESD protection structures where chip meets real world

Summary

- Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- Very important to check circuits for pitfalls
 - For large chips, you need an automatic checker
 - Design rules aren't worth the paper they are printed on unless you back them up with a tool

Soft Errors


- In 1970's, DRAMs were observed to occasionally flip bits for no apparent reason
 - Ultimately linked to alpha particles and cosmic rays
- Collisions with particles create electron-hole pairs in substrate
 - These carriers are collected on dynamic nodes, disturbing the voltage
- Minimize soft errors by having plenty of charge on dynamic nodes
- Tolerate errors through ECC (redundancy)

Outline

- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster
 - Wires do not improve (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

Scaling Assumptions (I)

- What changes between technology nodes?
- Constant Field Scaling
 - All dimensions (x, y, z => W, L, t_{ox})
 - Voltage (V_{DD})
 - Doping levels
- Lateral Scaling
 - Only gate length L
 - Often done as a quick gate shrink (S = 1.05)

Device Scaling

Parameter	Sensitivity	Constant Field	Lateral
Scaling	Parameters		
Length: L		1/S	1/S
Width: W	0	1/S	1
Gate oxide thickness: t_{ox}	11	1/S	1
Supply voltage: V_{DD}	Ti	1/S	1
Threshold voltage: V_{tn} , V_{tp}		1/S	1
Substrate doping: N_A	ın	S	1
Device C	haracteristics		
β	$\frac{W}{L} \frac{1}{t_{\text{ox}}}$	S	S
Current: I_{ds}	$\beta \big(V_{DD} - V_t \big)^2$	1/S	S
Resistance: R	$rac{{V}_{DD}}{{I}_{ds}}$	1	1/S
Gate capacitance: C	$\frac{WL}{t_{\text{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/ <i>S</i>	$1/S^2$
Clock frequency: f	1/τ	S	S^2
Dynamic power dissipation (per gate): P	CV^2f	$1/S^2$	S
Chip area: A		$1/S^2$	1
Power density	P/A	1	S
Current density	I_{ds}/A	S	S

Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
- Velocity saturation makes lateral scaling unsustainable

Example

- Gate capacitance is typically about 2 fF/μm
- The FO4 inverter delay in the TT corner for a process of feature size 2λ (in nm) is about λ ps
- Estimate the ON resistance of a unit (4λ wide)
 NMOS transistor
- FO4 = 5 τ = 15 RC
- RC = $\lambda/15$ ps/nm
- If W = 4λ , C = $8\lambda^*$ (1e-3) fF, R = $8.33 \text{ k}\Omega$
 - Unit resistance is roughly independent of λ

Scaling Assumptions (II)

- Wire thickness
 - constant vs. reduced through scaling
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by $D_c \approx 1.1$

Interconnect Scaling

Parameter	Sensitivity	Reduced Thickness	Constant Thickness	
Scaling P.	arameters	TillCkiless	HIICKIESS	
Width: w	arameters		1/S	
Spacing: s	1/8			
Thickness: t		1/S	1	
Interlayer oxide height: <i>b</i>	1/S			
Characteristics Per Unit Length				
Wire resistance per unit length: R_w	$\frac{1}{wt}$	S^2	S	
Fringing capacitance per unit length: $C_{\it wf}$	$\frac{t}{s}$	1	S	
Parallel plate capacitance per unit length: C_{wp}	$\frac{w}{h}$	1	1	
Total wire capacitance per unit length: C_w	$C_{wf} + C_{wp}$	1	between 1, S	
Unrepeated RC constant per unit length: t_{wu}	$R_w C_w$	S^2	between S , S^2	
Repeated wire RC delay per unit length: t_{wr} (assuming constant field scaling of gates in Table 4.15)	$\sqrt{RCR_wC_w}$	\sqrt{S}	between 1, \sqrt{S}	
Crosstalk noise	$\frac{t}{s}$	1	S	

Interconnect Delay

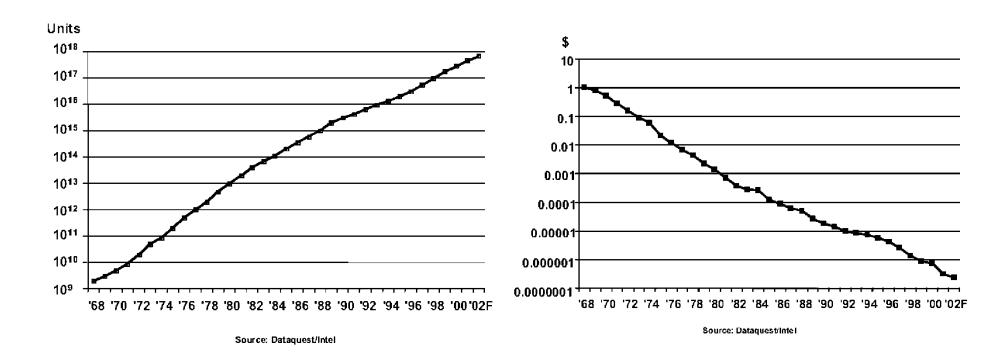
Parameter	Sensitivity	Reduced Thickness	Constant Thickness	
S	caling Parameters			
Width: w			1/ <i>S</i>	
Spacing: s		1/S		
Thickness: t		1/S	1	
Interlayer oxide height: h		1/S		
Local/Scaled Interconnect Characteri	stics			
Length: 1			1/ <i>S</i>	
Unrepeated wire RC delay	Pt_{vou}	1	between 1/S, 1	
Repeated wire delay	lt_{wr}	$\sqrt{1/S}$	between $1/S$, $\sqrt{1/S}$	
Global Interconnect Characteristics		A STATE OF THE STA	46 0036	
Length: /		D_c		
Unrepeated wire RC delay	l^2t_{wu}	$S^2D_c^2$	between SD_c^2 , $S^2D_c^2$	
Repeated wire delay	lt_{wr}	$D_c \sqrt{S}$	between D_c , $D_c \sqrt{S}$	

Obesrvations

- Capacitance per micron of wire remains constant
 - About $0.2 fF/\mu m$
 - Roughly 1/10 of gate capacitance
- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle

ITRS Roadmap

- Semiconductor Industry Association forecast
 - International <u>Technology</u> <u>Roadmap for <u>Semiconductors</u>
 </u>

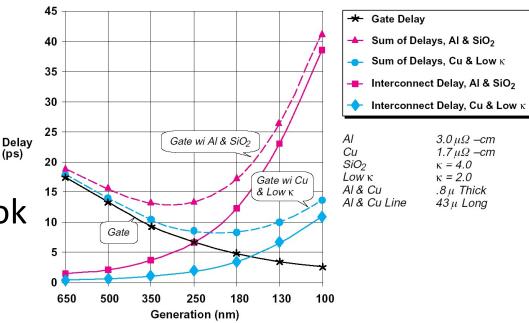

Table 4.17 Predictions from the 2002 ITRS							
Year	2001	2004	2007	2010	2013	2016	
Feature size (nm)	130	90	65	45	32	22	
$V_{DD}\left(\mathrm{V} ight)$	1.1-1.2	1-1.2	0.7-1.1	0.6-1.0	0.5-0.9	0.4-0.9	
Millions of transistors/die	193	385	773	1564	3092	6184	
Wiring levels	8-10	9–13	10-14	10-14	11–15	11–15	
Intermediate wire pitch (nm)	450	275	195	135	95	65	
Interconnect dielectric	3-3.6	2.6-3.1	2.3-2.7	2.1	1.9	1.8	
constant							
I/O signals	1024	1024	1024	1280	1408	1472	
Clock rate (MHz)	1684	3990	6739	11511	19348	28751	
FO4 delays/cycle	13.7	8.4	6.8	5.8	4.8	4.7	
Maximum power (W)	130	160	190	218	251	288	
DRAM capacity (Gbits)	0.5	1	4	8	32	64	

Scaling Implications

- Improved performance
- Improved cost
- Interconnect woes
- Power woes
- Productivity challenges
- Physical limits

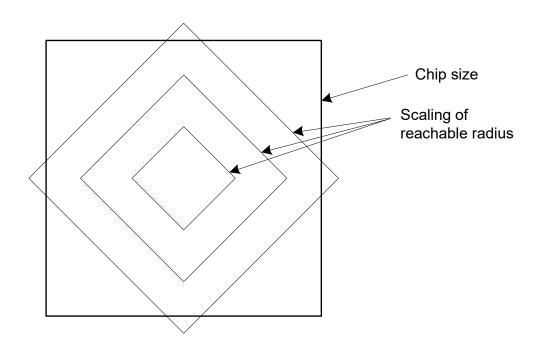
Cost Improvement

- In 2003, \$0.01 bought you 100,000 transistors
 - Moore's Law is still going strong

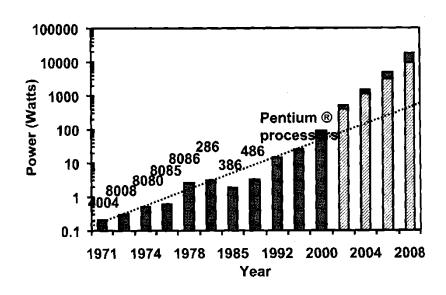


[Moore '03]

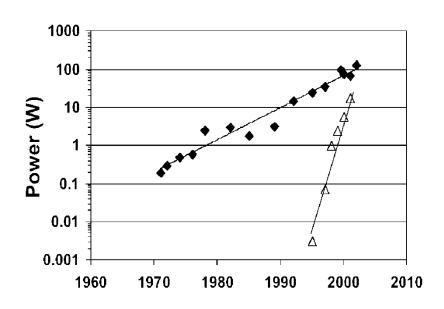
Interconnect


- SIA made a gloomy forecast in 1997
 - Delay would reach minimum at 250 180 nm, then get worse because of wires
- However ...
 - Misleading scale
 - Global wires

100 kgate blocks ok


Reachable Radius

- We cannot send a signal across a large fast chip in one cycle anymore
- But micro-architect can plan around this
 - Just as off-chip memory latencies were tolerated


Dynamic Power Consumption

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun!
 - "Business as usual will not work in the future"
- Intel stock dropped 8% on the next day
- But attention to power is increasing

Static Power Consumption

- V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point to increase because of velocity saturation
- V_{th} must decrease to keep device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

[Moore '03]

Productivity

- Transistor count is increasing faster than designer productivity (gates/week)
 - Bigger design teams
 - Up to 500 for a high-end microprocessor
 - More expensive design cost
 - Pressure to raise productivity
 - Rely on synthesis, IP blocks
 - Need for good engineering managers

Physical Limitations

- Will Moore's Law run out of steam?
 - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated

EE3230 Ping-Hsuan Hsieh

36