# EE3230 Lecture 7: Combinational Circuit Design

#### Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

# Outline

#### Static CMOS

- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

#### **Static CMOS**

- Bubble pushing
- Compound gates
- Logical effort example
- Input ordering
- Asymmetric gates
- Skewed gates
- Best P/N ratio

#### **Example I**

#### 1) Sketch a design using AND, OR, and NOT gates

## Example II

2) Sketch a design using NAND, NOR, and NOT gates. Assume  $\overline{S}$  is available

# **Bubble Pushing**

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
  - Remember DeMorgan's Law

#### **Bubble Pushing**

• Y = AB + CD





#### **Example III**

3) Sketch a design using one compound gate and one NOT gate. Assume  $\overline{S}$  is available.

#### **Logical Effort of Compound Gates**



## **Example IV**

 The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the NAND and compound gate designs



#### **NAND Solution**



#### **Compound Solution**



• D =

## **Example V**

• Annotate your designs with transistor sizes that achieve this delay

#### NAND solution

**Compound solution** 





## **Input Order**

- Our parasitic delay model was too simple
  - Calculate parasitic delay for Y falling
    - If A arrives latest?
    - If B arrives latest?



#### **Inner and Outer Inputs**

- Outer inputs are closer to rail (B)
- Inner inputs are closer to output (A)



- If input arrival time is known
  - Connect latest input to inner terminal

#### **Data-Dependent VTC**

- The threshold voltage of M<sub>2</sub> is higher than M<sub>1</sub> due to body effect
- Since  $V_{SB}$  of  $M_2$  is not zero (when  $V_B = 0$ )



#### **Symmetric Gates**

• Inputs can be made perfectly symmetric

#### **Asymmetric Gates**

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
  - Use smaller transistor on A (less capacitance)
  - Boost size of noncritical input
  - So total resistance is same

$$-g_A =$$

$$-g_{B} =$$

$$-g_{total} = g_A + g_B$$





- Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

#### **Skewed Gates**

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
  - Downsize noncritical NMOS transistor



• Calculate logical effort by comparing to unskewed inverter with same effective R on that edge.

$$- g_{u} =$$

$$-g_d =$$

#### HI- and LO- Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
  - HI-skew gates favor rising output (small NMOS)
  - LO-skew gates favor falling output (small PMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

### **Catalog of Skewed Gates**



#### **Asymmetric Skew**

- Combine asymmetric and skewed gates
  - Downsize noncritical transistor on unimportant input
  - Reduces parasitic delay for critical input





# **Best P/N Ratio**

- We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- Alternative: choose ratio for least average delay
- **Ex:** inverter
  - Delay driving identical inverter

$$- t_{pdf} =$$

$$- t_{pdr} =$$

 $- t_{pd} =$ 

- Differentiate t<sub>pd</sub> w.r.t. P
- Least delay for P =



# **P/N Ratios**

- In general, best P/N ratio is square root of that giving equal delay
  - Only improves average delay slightly for inverters
  - But significantly decreases area and power



#### **Observations**

- For speed:
  - NAND vs. NOR
  - Many simple stages vs. fewer high fan-in stages
  - Latest-arriving input
- For area and power:
  - Many simple stages vs. fewer high fan-in stages

# Outline

- Static CMOS
- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

## Introduction

- What makes a circuit fast?
  - I = C dV/dt  $\rightarrow$  t<sub>pd</sub>  $\propto$  (C/I)  $\Delta$ V
  - low capacitance
  - high current
  - small swing
- Logical effort is proportional to C
- PMOS are the enemy!
  - High capacitance for a given current
- Can we take the PMOS capacitance off the input?
- Various circuit families try to do this...



#### **Pseudo-NMOS**

- In the old days, NMOS processes had no PMOS
  - Instead, use pull-up transistor that is always ON
- In CMOS, use a PMOS that is always ON
  - *Ratio* issue, Make PMOS about 1/3~1/6 effective strength of pulldown network



#### **Pseudo-NMOS Gates**

- Design for unit current on output to compare with unit inverter.
- Choose PMOS size between 1/3
  ~ 1/6 the effective width (pick 1/3)



#### Inverter

#### NAND2





#### **Pseudo-NMOS Design**

• Ex: Design a k-input AND gate using INV+ pseudo-NMOS NOR. Find delay driving a fanout of H



- P =
- N =
- D =

#### **Pseudo-NMOS Power**

- Pseudo-nMOS draws power whenever Y = 0
  - Called static power  $P = I^*V_{DD}$
  - A few mA/gate \* 1M gates would be a problem
  - This is why NMOS process went extinct!
- Use pseudo-NMOS sparingly for wide NORs
- Turn off PMOS when not in use



# Outline

- Static CMOS
- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

### **Cascode Voltage Switch Logic**

- <u>D</u>ifferential <u>Cascode</u> <u>V</u>oltage <u>S</u>witching <u>Logic</u>
  - Seeks the performance of ratioed circuits without the static power consumption
  - Use both true and complementary input signals and compute both true and complementary outputs



#### **Cascode Voltage Switch Logic**



# Outline

- Static CMOS
- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

## **Dynamic CMOS**

- In static circuits at every point in time (except when switching) the output is connected to either GND or V<sub>DD</sub> via a low resistance path.
  - Fan-in of N requires 2N devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
  - Requires only N + 2 transistors
  - Takes a sequence of precharge and conditional evaluation phases to realize logic functions
#### **Dynamic Logic**

- Dynamic gates uses a clocked PMOS pullup
- Two modes: precharge and evaluate



# The Foot

- What if pulldown network is ON during precharge?
- Use series evaluation transistor to prevent fight



# **Logical Effort**



# **Conditions on Output**

- Once output of a dynamic gate is discharged, it cannot be charged again until next precharge phase
- Inputs to the gate can make at most one transition during evaluation
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C<sub>L</sub>

# **Properties of Dynamic Gates (I)**

- Logic function is implemented by the PDN only
  - Number of transistors is N + 2 (versus 2N for static CMOS)
  - Should be smaller in area than static CMOS
- Full output swing ( $V_{OL}$  = GND and  $V_{OH}$  =  $V_{DD}$ )
- Nonratioed size of devices is not important for proper functioning (only for performance)
- Faster switching speed
  - Reduced load capacitance due to lower number of transistors per gate (C<sub>int</sub>), leading to reduced logical effort
  - Reduced load capacitance due to smaller fan-out (C<sub>ext</sub>)
  - No  $I_{sc}$ , so all the current provided by PDN goes into discharging  $C_L$
  - $t_{PLH} = 0$  by ignoring the time for precharge, but the presence of evaluation transistor slows down  $t_{PHL}$

# **Properties of Dynamic Gates (II)**

#### • Lower power dissipation

- Consumes only dynamic power no short-circuit current since the pull-up path is not ON during evaluation
- lower capacitance both C<sub>int</sub> (since there are fewer transistors connected to the drain output) and C<sub>ext</sub> (since there the output load is one per connected gate, not two)
- At most one transition per cycle by construction no glitching
- But power dissipation can be significantly higher
  - Higher transition probabilities
  - Extra load on CLK
- PDN starts to work as soon as the input signals exceed  $V_{Tn}$ , so set  $V_M$ ,  $V_{IH}$  and  $V_{IL}$  all equal to  $V_{Tn}$ 
  - Low noise margin (NM<sub>L</sub>)
- Need a precharge clock

#### **Dynamic Behavior**



#### **Time-Independent Gate Parameters**

- The amount by which the output voltage drops depends strongly on input voltage and available evaluation time
  - Noise needed to corrupt the signal increases for short evaluation time,
    i.e., the switching threshold is truly time-independent.



#### **Power Consumption**



Only dissipate power when previous output is LOW

#### Dynamic 2-input NOR Gate

| А | В | Out |
|---|---|-----|
| 0 | 0 | 1   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 0   |

Assume signal probabilities  $P_{A=1} = 1/2$  $P_{B=1} = 1/2$ 

and transition probability  $P_{0\rightarrow 1} = P_{out=0} \times P_{out=1}$   $= 3/4 \times 1$ = 3/4

Switching activity can be higher in dynamic gates!  $P_{0\rightarrow 1} = P_{out=0}$ 

#### **Charge Leakage**



#### Minimum clock rate of a few kHz

# **Impact of Charge Leakage**

- Output settles to an intermediate voltage determined by a resistive divider of the pull-up and pull-down networks
  - Once the output drops below the switching threshold of the fan-out logic gate, the output is interpreted as a low voltage



#### **One Solution to Charge Leakage**

• Keeper compensates for charge lost due to pull-down leakage paths



Same approach as level restorer for pass transistor logic

# **Summary: Leakage**

- Dynamic node floats high during evaluation
  - Transistors are leaky  $(I_{OFF} \neq 0)$
  - Dynamic data leak away over time
  - Formerly miliseconds, now nanoseconds!
- Use keeper to hold dynamic node
  - Must be weak enough not to fight evaluation

# **Charge Sharing**

• Charge stored originally on  $C_L$  is redistributed (shared) over  $C_L$  and  $C_a$  leading to static power consumption by downstream gates and possible circuit malfunction



V<sub>out</sub> drops below the switching threshold of following gate and causes malfunction

# **Charge Sharing**

• Dynamic gates suffer from charge sharing



# **Charge Sharing Example**

 What is the worst-case voltage drop on y? Assume all inputs are low during precharge and that all internal nodes are initially 0 V.



# **Solution to Charge Redistribution**

- Precharge internal nodes using a clock-driven transistor (secondary precharge transistor)
  - Typically need to precharge every other node
  - At the cost of increased area and power



• Large load capacitance C<sub>out</sub> helps as well

# **Backgate Coupling**

- Susceptible to crosstalk due to 1) high-impedance output node and 2) backgate capacitive coupling
  - Out<sub>2</sub> couples with Out<sub>1</sub> capacitively through the gatesource and gate-drain capacitances of M<sub>4</sub>



# **Impact of Backgate Coupling**

 Capacitive coupling means Out<sub>1</sub> drops significantly so Out<sub>2</sub> doesn't go all the way to ground



# **Clock Feedthrough**

 The fast rising (and falling) edges of CLK couples to Out so that voltage of Out can rise above V<sub>DD</sub> (or below GND)



A special case of backgate coupling

#### **Cascading Gates**

 Only one single 0→1 transition allowed at the inputs during evaluation phase



# Monotonicity

• Dynamic gates require *monotonically rising* inputs during evaluation



#### **Monotonicity Woes**

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!



#### **Monotonicity Woes**

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!



#### **Domino Gates**

- Dynamic stage followed by inverting static gate
  - Dynamic/static pair is called domino gate



# **Domino Optimizations**

- Each domino gate triggers next one, like a string of dominos toppling over
- Gates precharge in parallel, evaluate sequentially
  - Evaluation is more critical than precharge
- HI-skewed static stages can perform logic



#### **Dual-Rail Domino**

- Domino only performs non-inverting functions:
  - AND, OR but not NAND, NOR, or XOR
- Dual-rail domino solves this problem
  - Takes true and complementary inputs
  - Produces true and complementary outputs

| sig_h | sig_l | Meaning     |
|-------|-------|-------------|
| 0     | 0     | Precharged  |
| 0     | 1     | <b>'</b> 0' |
| 1     | 0     | '1'         |
| 1     | 1     | invalid     |



#### **Example: AND/NAND**

- Given A\_h, A\_l, B\_h, B\_l
- Compute  $Y_h = AxB$ ,  $Y_l = \sim (AxB)$
- PDNs perform complementary conduction



# **Example: XOR/XNOR**

• Sometimes possible to share transistors



#### **Noise Sensitivity**

- Dynamic gates are very sensitive to noise
  - Inputs:  $V_{IH} \approx V_{tn}$
  - Outputs: floating output susceptible noise
- Noise sources
  - Capacitive crosstalk
  - Charge sharing
  - Power supply noise
  - Feedthrough noise
  - And more!

# **Summary: Domino**

- Domino logic is attractive for high-speed circuits
  - 1.5 2x faster than static CMOS
  - But many challenges:
    - Monotonicity
    - Leakage
    - Charge sharing
    - Noise
- Widely used in high-performance microprocessors

# Outline

- Static CMOS
- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

#### **Pass Transistor Circuits**

- Use pass transistors like switches to perform logic
- Inputs drive gates as well as diffusion terminals
- CMOS + Transmission Gates:
  - 2-input multiplexer
  - Gates should be restoring



# **NMOS Transistors in Parallel/Series**

- Primary inputs drive both gate and source/drain terminals
- NMOS switch turns ON when the gate voltage is high



 Remember – NMOS transistors pass a strong 0 but a weak 1

# **PMOS Transistors in Parallel/Series**

- Primary inputs drive both gate and source/drain terminals
- PMOS switch turns ON when the gate input is low



Remember –
 PMOS transistors pass a strong 1 but a weak 0
### **Pass Transistor (PT) Logic**



- Static low-impedance paths exist to either supply rail under all circumstances
- N transistors instead of 2N
- No static power consumption
- Ratioless
- Bidirectional (versus undirectional)

### **VTC of PT AND Gate**



 Pure PT logic is not regenerative Signals gradually degrade after passing through a few stages (can fix by inserting static CMOS inverters)

## **NMOS Only PT Driving an Inverter**

•  $V_x$  does not pull up to  $V_{DD}$ , but  $V_{DD} - V_{Tn}$ 



- V<sub>Tn</sub> voltage drop causes static power consumption
  M<sub>2</sub> may conduct weakly, forming a path from V<sub>DD</sub> to GND
- $V_{Tn}$  increases for pass transistors due to body effect

### **Voltage Swing of PT Driving and Inverter**

- Body effect large V<sub>SB</sub> at node x when pulling high (B is tied to GND and S charged up close to V<sub>DD</sub>)
- So the voltage drop is even worse

$$V_x = V_{DD} - (V_{Tn0} + \gamma(\sqrt{(|2\phi_f| + V_x)} - \sqrt{|2\phi_f|}))$$



#### **Cascaded NMOS Only PTs**



Swing on  $y = V_{DD} - V_{Tn1} - V_{Tn2}$  Swing on  $y = V_{DD} - V_{Tn1}$ 

- Pass transistor gates should never be cascaded
- Logic on the right suffers from static power dissipation and reduced noise margins

### **Solution #1: Level Restorer**

- Full swing on node x (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT

Restorer is only active when A is high

• For correct operation M<sub>r</sub> must be sized correctly (ratioed)



### **Restorer Circuit Transient Response**

 Restorer has speed and power impacts: increase capacitance at x, slow down the gate, increase t<sub>r</sub> (but decrease t<sub>f</sub>)



## Solution #2: Multiple V<sub>TH</sub> Transistors

 Technology solution
 Use (near) zero V<sub>T</sub> devices for NMOS PTs to eliminate most of the threshold drop (body effect still prevents full swing to V<sub>DD</sub>)



 Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V<sub>GS</sub> is below V<sub>T</sub>)

## Solution #3: Transmission Gates (TGs)

- Most widely used solution
- Full swing *bidirectional* switch controlled by the gate signal C, A = B if C = 1





#### **Solution #4: CPL**

- Complementary Pass-transistor Logic
  - Dual-rail form of pass transistor logic
  - Avoid need for ratioed feedback
  - Optional cross-coupling for rail-to-rail swing



## Outline

- Static CMOS
- Ratioed circuits
- Cascode voltage switch logic
- Dynamic circuits
- Pass-transistor circuits
- Circuit pitfalls

### Introduction

- Circuit Pitfalls
  - Detective puzzle
  - Given circuit and symptom, diagnose causes and recommend solutions
  - All these pitfalls have caused failures in real chips
- Noise Budgets
- Reliability

# **Threshold Drop**

- Circuit
  - 2:1 multiplexer



- Symptom
  - Mux works when
    selected input is 0
    but not 1
  - Or fails at low  $V_{DD}$
  - Or fails in SF corner

- Principle: Threshold drop
  - X never rises above  $V_{DD}$ - $V_{th}$
  - $V_{thn}$  increased due to body effect
  - $V_{th}$  drop worsens as  $V_{th}$  becomes a greater fraction of  $V_{DD}$

□ Solution: Use transmission gates, not pass transistors

- Circuit
  - Latch



- Symptom
  - Load a 0 into Q
  - Set  $\phi = 0$
  - Eventually Q
    spontaneously flips to 1

- Principle: Leakage
  - X is a dynamic node holding value as charge on the node
  - Eventually subthreshold leakage may disturb charge
- □ Solution: Stabilize node with feedback
  - Or periodically refresh node (requires fast clock, not practical with huge leakage)

# Leakage



- □ Principle: Leakage
  - X is a dynamic node holding value as charge on the node
  - Eventually subthreshold
    leakage may disturb charge
- Solution: Keeper

- Symptom
  - Precharge gate (Y=0)
  - Then evaluate
  - Eventually Y spontaneously flips to 1



### **Ratio Failure**

- Circuit
  - Pseudo-NMOS OR



- Symptom
  - When only one input is true, Y = 0
  - Seems happening in SF corner

- □ Principle: Ratio Failure
  - nMOS and pMOS fight each other.
  - If the pMOS is too strong, nMOS cannot pull X low enough.

□ Solution: Check that ratio is satisfied in all corners

## **Ratio Failure**

• Circuit



- Principle: Ratio Failure (again)
  - Series resistance of D driver, wire resistance, and Tgate must be much less than weak feedback inverter.
- ❑ Solutions: Check relative strengths
  - Avoid unbuffered diffusion inputs where driver is unknown

- Symptom
  - Q stuck at 1
  - Seems only happening for certain latches
     where input driver is
     weak (small gate or
     located far away)



# **Charge Sharing**

Z

- Circuit – Domino AND gate A B K B
- Principle: Charge Sharing
  - If X was low, it shares charge with Y
- Solutions: Limit charge sharing

$$V_x = V_Y = \frac{C_Y}{C_x + C_Y} V_{DD}$$

- Safe if  $C_Y >> C_X$
- Or precharge node X too

- Symptom
  - Precharge gate while
    - A = B = 0, so Z = 0
  - Set  $\phi$  = 1 and A rises
  - Z is observed to sometimes rise



# **Charge Sharing**

- Circuit
  - Dynamic gate
    - + latch



- Symptom
  - Precharge gate while transmission gate latch is opaque
  - Evaluate
  - When latch becomes transparent, X falls

- Principle: Charge Sharing
  - If Y was low, it shares charge with X
- Solution: Buffer dynamic nodes before driving transmission gate

## **Diffusion Input Noise**

• Circuit



- Symptom
  - Q changes while latch is opaque
  - Especially if D comes
    from a far-away driver

□ Principle: Diffusion Input Noise Sensitivity

- − If D <  $-V_{thn}$  → transmission gate turns on
- Most likely because of power supply noise or coupling on D
- □ Solution: Buffer D locally



## **Hot Spot**

 Nonuniform power dissipation (even within overall power budget)



## **Minority Carrier Injection**

- Minority injection caused by forward biased p-n junction
- Solution: Use guard ring to collect the excess minority carriers



### **Backgate Coupling**

- Dynamic gates drive multiple-input static CMOS gates
- Solution: Drive input closer to the rail

