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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls
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Static CMOS
• Bubble pushing
• Compound gates
• Logical effort example
• Input ordering
• Asymmetric gates
• Skewed gates
• Best P/N ratio

3



EE3230 Ping-Hsuan Hsieh

Example I
module mux(input  s, d0, d1, 

output y);

assign y = s ? d1 : d0;
endmodule

1) Sketch a design using AND, OR, and NOT gates
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Example II
2) Sketch a design using NAND, NOR, and NOT gates.  
Assume S is available
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Bubble Pushing
• Start with network of AND / OR gates
• Convert to NAND / NOR + inverters
• Push bubbles around to simplify logic

– Remember DeMorgan’s Law
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Bubble Pushing
• Y = AB + CD
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Example III
3) Sketch a design using one compound gate and one 
NOT gate. Assume S is available.
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Logical Effort of Compound Gates
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Example IV
• The multiplexer has a maximum input capacitance of 

16 units on each input.  It must drive a load of 160 
units. Estimate the delay of the NAND and 
compound gate designs
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NAND Solution
• P =

• G =

• F = 

• !" =

• D = 
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Compound Solution
• P =

• G =

• F = 

• !" =

• D = 
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Example V
• Annotate your designs with transistor sizes that 

achieve this delay
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Input Order
• Our parasitic delay model was too simple

– Calculate parasitic delay for Y falling
• If A arrives latest?
• If B arrives latest?
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Inner and Outer Inputs
• Outer inputs are closer to rail (B)
• Inner inputs are closer to output (A)

• If input arrival time is known
– Connect latest input to inner terminal
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Data-Dependent VTC
• The threshold voltage of M2 is higher than M1 due to 

body effect
• Since VSB of M2 is not zero (when VB = 0)
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Symmetric Gates
• Inputs can be made perfectly symmetric

17
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Asymmetric Gates
• Asymmetric gates favor one input over another
• Ex: suppose input A of a NAND gate is most critical

– Use smaller transistor on A (less capacitance)
– Boost size of noncritical input
– So total resistance is same
– gA = 
– gB = 
– gtotal = gA + gB

• Asymmetric gate approaches g = 1 on critical input
• But total logical effort goes up
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Skewed Gates
• Skewed gates favor one edge over another
• Ex: suppose rising output of inverter is most critical

– Downsize noncritical NMOS transistor

• Calculate logical effort by comparing to unskewed
inverter with same effective R on that edge.
– gu =
– gd =
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HI- and LO- Skew
• Def: Logical effort of a skewed gate for a particular 

transition is the ratio of the input capacitance of that 
gate to the input capacitance of an unskewed
inverter delivering the same output current for the 
same transition.

• Skewed gates reduce size of noncritical transistors
– HI-skew gates favor rising output (small NMOS)
– LO-skew gates favor falling output (small PMOS)

• Logical effort is smaller for favored direction
• But larger for the other direction
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Catalog of Skewed Gates
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Asymmetric Skew
• Combine asymmetric and skewed gates

– Downsize noncritical transistor on unimportant input
– Reduces parasitic delay for critical input
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Best P/N Ratio
• We have selected P/N ratio for unit rise and fall 

resistance (µ = 2-3 for an inverter).
• Alternative: choose ratio for least average delay
• Ex: inverter

– Delay driving identical inverter

– tpdf = 

– tpdr =

– tpd =

– Differentiate tpd w.r.t. P

– Least delay for P = 

23
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P/N Ratios
• In general, best P/N ratio is square root of 

that giving equal delay
– Only improves average delay slightly for inverters
– But significantly decreases area and power
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Observations
• For speed:

– NAND vs. NOR
– Many simple stages vs. fewer high fan-in stages
– Latest-arriving input

• For area and power:
– Many simple stages vs. fewer high fan-in stages
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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls

26
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Introduction
• What makes a circuit fast?

– I = C dV/dt à tpd ∝ (C/I) DV

– low capacitance

– high current

– small swing

• Logical effort is proportional to C

• PMOS are the enemy!

– High capacitance for a given current

• Can we take the PMOS capacitance off the input?

• Various circuit families try to do this…
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Pseudo-NMOS
• In the old days, NMOS processes had no PMOS

– Instead, use pull-up transistor that is always ON

• In CMOS, use a PMOS that is always ON
– Ratio issue, Make PMOS about 1/3~1/6 effective strength 

of pulldown network
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Pseudo-NMOS Gates
• Design for unit current on output

to compare with unit inverter.
• Choose PMOS size between 1/3

~ 1/6 the effective width (pick 1/3)

29

f
inputs

Y

Inverter NAND2 NOR2

4/3

2/3

A
Y

8/3
8/3

2/3

B
A

Y

A B 4/34/3

2/3

gu    = 4/3
gd    = 4/9
gavg  = 8/9
pu    = 6/3
pd    = 6/9
pavg  = 12/9

Y

gu    = 8/3
gd    = 8/9
gavg  = 16/9
pu    = 10/3
pd    = 10/9
pavg  = 20/9

gu    = 4/3
gd    = 4/9
gavg  = 8/9
pu    = 10/3
pd    = 10/9
pavg  = 20/9



EE3230 Ping-Hsuan Hsieh

Pseudo-NMOS Design
• Ex: Design a k-input AND gate using INV+ pseudo-

NMOS NOR. Find delay driving a fanout of H

• G =

• F =

• P =

• N =

• D =  

30

In1

Ink

Y

Pseudo-nMOS
1

1 H



EE3230 Ping-Hsuan Hsieh

Pseudo-NMOS Power
• Pseudo-nMOS draws power whenever Y = 0

– Called static power     P = I*VDD

– A few mA/gate * 1M gates would be a problem

– This is why NMOS process went extinct!

• Use pseudo-NMOS sparingly for wide NORs

• Turn off PMOS when not in use

31
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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls
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Cascode Voltage Switch Logic
• Differential Cascode Voltage Switching Logic

– Seeks the performance of ratioed circuits without the 
static power consumption

– Use both true and complementary input signals and 
compute both true and complementary outputs

33
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Cascode Voltage Switch Logic

34

4-input XOR/XNOR gate2-input AND/NAND gate
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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls
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Dynamic CMOS
• In static circuits at every point in time (except when 

switching) the output is connected to either GND or 
VDD via a low resistance path.
– Fan-in of N requires 2N devices

• Dynamic circuits rely on the temporary storage of 
signal values on the capacitance of high impedance 
nodes.
– Requires only N + 2 transistors
– Takes a sequence of precharge and conditional evaluation

phases to realize logic functions
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Dynamic Logic
• Dynamic gates uses a clocked PMOS pullup
• Two modes: precharge and evaluate
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The Foot
• What if pulldown network is ON during precharge?
• Use series evaluation transistor to prevent fight
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Logical Effort
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Conditions on Output
• Once output of a dynamic gate is discharged, it 

cannot be charged again until next precharge phase
• Inputs to the gate can make at most one transition 

during evaluation
• Output can be in the high impedance state during 

and after evaluation (PDN off), state is stored on CL
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Properties of Dynamic Gates (I)
• Logic function is implemented by the PDN only

– Number of transistors is N + 2 (versus 2N for static CMOS)
– Should be smaller in area than static CMOS

• Full output swing (VOL = GND and VOH = VDD)
• Nonratioed – size of devices is not important for 

proper functioning  (only for performance)
• Faster switching speed

– Reduced load capacitance due to lower number of transistors per gate 
(Cint), leading to reduced logical effort

– Reduced load capacitance due to smaller fan-out (Cext)
– No Isc, so all the current provided by PDN goes into discharging CL

– tPLH = 0 by ignoring the time for precharge, but the presence of 
evaluation transistor slows down tPHL
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Properties of Dynamic Gates (II)
• Lower power dissipation

– Consumes only dynamic power – no short-circuit current since the 
pull-up path is not ON during evaluation

– lower capacitance – both Cint (since there are fewer transistors 
connected to the drain output) and Cext (since there the output load is 
one per connected gate, not two)

– At most one transition per cycle by construction – no glitching

• But power dissipation can be significantly higher
– Higher transition probabilities
– Extra load on CLK

• PDN starts to work as soon as the input signals 
exceed VTn, so set VM, VIH and VIL all equal to VTn
– Low noise margin (NML)

• Need a precharge clock
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Dynamic Behavior

43
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Time-Independent Gate Parameters
• The amount by which the output voltage drops depends 

strongly on input voltage and available evaluation time
– Noise needed to corrupt the signal increases for short evaluation time, 

i.e., the switching threshold is truly time-independent.
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Power Consumption

45
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Data Dependent Dynamic Power

46
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Charge Leakage

47

Minimum clock rate of a few kHz

CL

CLK

CLK
Out

A=0

Mp

Me

CLK

VOut

Precharge

Evaluate



EE3230 Ping-Hsuan Hsieh

Impact of Charge Leakage
• Output settles to an intermediate voltage determined by a 

resistive divider of the pull-up and pull-down networks
– Once the output drops below the switching threshold of the fan-out 

logic gate, the output is interpreted as a low voltage

48
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One Solution to Charge Leakage
• Keeper compensates for charge lost due to 

pull-down leakage paths

49

Same approach as level restorer for pass transistor logic

CL

CLK

CLK

Me

Mp

A

B

!Out

Mkp

Keeper



EE3230 Ping-Hsuan Hsieh

Summary: Leakage
• Dynamic node floats high during evaluation

– Transistors are leaky (IOFF ¹ 0)
– Dynamic data leak away over time
– Formerly miliseconds, now nanoseconds!

• Use keeper to hold dynamic node
– Must be weak enough not to fight evaluation

50
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Charge Sharing
• Charge stored originally on CL is redistributed (shared) 

over CL and Ca leading to static power consumption by 
downstream gates and possible circuit malfunction

• Vout drops below the switching threshold of following 
gate and causes malfunction
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Charge Sharing
• Dynamic gates suffer from charge sharing

52
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Charge Sharing Example
• What is the worst-case voltage drop on y?

Assume all inputs are low during precharge and that 
all internal nodes are initially 0 V.
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Solution to Charge Redistribution
• Precharge internal nodes using a clock-driven 

transistor (secondary precharge transistor)
– Typically need to precharge every other node
– At the cost of increased area and power

• Large load capacitance Cout helps as well
54
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Backgate Coupling
• Susceptible to crosstalk due to 1) high-impedance 

output node and 2) backgate capacitive coupling
‒ Out2 couples with Out1 capacitively through the gate-

source and gate-drain capacitances of M4
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Impact of Backgate Coupling
• Capacitive coupling means Out1 drops significantly so 

Out2 doesn’t go all the way to ground
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Clock Feedthrough
• The fast rising (and falling) edges of CLK couples to 

Out so that voltage of Out can rise above VDD (or 

below GND)

• A special case of backgate coupling
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Cascading Gates
• Only one single 0®1 transition allowed at the inputs 

during evaluation phase
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Monotonicity
• Dynamic gates require monotonically rising inputs 

during evaluation
– 0®0
– 0®1
– 1®1
– But NOT 1®0

59
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Monotonicity Woes
• But dynamic gates produce monotonically falling 

outputs during evaluation
• Illegal for one dynamic gate to drive another!

60
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Monotonicity Woes
• But dynamic gates produce monotonically falling 

outputs during evaluation
• Illegal for one dynamic gate to drive another!

61
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Domino Gates
• Dynamic stage followed by inverting static gate

– Dynamic/static pair is called domino gate
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Domino Optimizations
• Each domino gate triggers next one, like a string of 

dominos toppling over
• Gates precharge in parallel, evaluate sequentially

– Evaluation is more critical than precharge
• HI-skewed static stages can perform logic
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Dual-Rail Domino
• Domino only performs non-inverting functions:

– AND, OR but not NAND, NOR, or XOR

• Dual-rail domino solves this problem
– Takes true and complementary inputs 
– Produces true and complementary outputs

64
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Example: AND/NAND
• Given A_h, A_l, B_h, B_l
• Compute Y_h = AxB, 

Y_l = ~(AxB)
• PDNs perform complementary conduction

65
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Example: XOR/XNOR
• Sometimes possible to share transistors

66
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Noise Sensitivity
• Dynamic gates are very sensitive to noise

– Inputs: VIH » Vtn

– Outputs: floating output susceptible noise
• Noise sources

– Capacitive crosstalk
– Charge sharing
– Power supply noise
– Feedthrough noise
– And more!

67
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Summary: Domino
• Domino logic is attractive for high-speed circuits

– 1.5 – 2x faster than static CMOS
– But many challenges:
• Monotonicity
• Leakage
• Charge sharing
• Noise

• Widely used in high-performance microprocessors

68
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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls

69
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Pass Transistor Circuits
• Use pass transistors like switches to perform logic
• Inputs drive gates as well as diffusion terminals
• CMOS + Transmission Gates:

– 2-input multiplexer
– Gates should be restoring

70

A

B
S

S

S

Y
A

B
S

S

S

Y
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NMOS Transistors in Parallel/Series
• Primary inputs drive both gate and source/drain 

terminals
• NMOS switch turns ON when the gate voltage is high

• Remember –
NMOS transistors pass a strong 0 but a weak 1
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A B

X Y
X = Y if A and B

X Y

A

B X = Y if A or B
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PMOS Transistors in Parallel/Series
• Primary inputs drive both gate and source/drain 

terminals
• PMOS switch turns ON when the gate input is low

• Remember –
PMOS transistors pass a strong 1 but a weak 0
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A B

X Y
X = Y if A and B = A + B

X Y

A

B X = Y if A or B = A • B
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Pass Transistor (PT) Logic

• Static – low-impedance paths exist to either supply 
rail under all circumstances

• N transistors instead of 2N
• No static power consumption
• Ratioless
• Bidirectional (versus undirectional)
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A
B

FB
0

A

0

B

B
F

= A • B
= A • B
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VTC of PT AND Gate

• Pure PT logic is not regenerative
Signals gradually degrade after passing through a few 
stages (can fix by inserting static CMOS inverters)
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A

0

B

B F= A•B
0.5/0.25

0.5/0.25

0.5/0.25

1.5/0.25

B=VDD, A=0®VDD

A=VDD, B=0®VDD
A=B=0®VDD

V o
ut
, V

Vin, V
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NMOS Only PT Driving an Inverter
• Vx does not pull up to VDD, but VDD – VTn

• VTn voltage drop causes static power consumption 
– M2 may conduct weakly, forming a path from VDD to GND

• VTn increases for pass transistors due to body effect
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In = VDD

A = VDD

Vx = VDD-VTn

M1

M2

B

SD

VGS
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Voltage Swing of PT Driving and Inverter
• Body effect – large VSB at node x when pulling high 

(B is tied to GND and S charged up close to VDD)
• So the voltage drop is even worse

Vx = VDD - (VTn0 +  g(Ö(|2ff| + Vx) - Ö|2ff|))
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In = 0 ® VDD =2.5V

VDD
x Out

0.5/0.25
0.5/0.25

1.5/0.25
D

S

B

Time, ns

Vo
lta

ge
, V

In

Out

x = 1.8V
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Cascaded NMOS Only PTs

• Pass transistor gates should never be cascaded
• Logic on the right suffers from static power 

dissipation and reduced noise margins
77

B = VDD

Out

M1

yM2

xM1

B = VDD

OutyM2

C = VDD

A = VDD

C = VDD

A = VDD
x = VDD - VTn1
G

S

G

S

Swing on y = VDD - VTn1 - VTn2 Swing on y = VDD - VTn1
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Solution #1: Level Restorer
• Full swing on node x (due to Level Restorer) 

so no static power consumption by inverter
• No static backward current path through Level Restorer and PT

– Restorer is only active when A is high
• For correct operation Mr must be sized correctly (ratioed)
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M1

M2

A=0 Mn

Mr

x

B

Out =1

off

= 0

Level Restorer
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Restorer Circuit Transient Response
• Restorer has speed and power impacts: 

increase capacitance at x, slow down the gate, 
increase tr (but decrease tf)
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W/L2=1.50/0.25

W/L1=0.50/0.25

Vo
lta

ge
 (V

)

Time (ps)

W/Lr=1.75/0.25

W/Lr=1.50/0.25

W/Lr=1.25/0.25
W/Lr=1.0/0.25

node x never goes below VM of inverter 
so output never switches

M1

M2
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x

W/Ln=0.50/0.25
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Solution #2: Multiple VTH Transistors
• Technology solution

Use (near) zero VT devices for NMOS PTs to eliminate most of 
the threshold drop (body effect still prevents full swing to VDD)

• Impacts static power consumption due to subthreshold
currents flowing through the PTs (even if VGS is below VT)
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Out

In2 = 0V

In1 = 2.5V

A= 2.5V

B = 0V

low VT transistors

on

off but 
leaking
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Solution #3: Transmission Gates (TGs)
• Most widely used solution
• Full swing bidirectional switch controlled by the gate 

signal C, A = B if C = 1
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A B

C

C

A B

C

C

B

C = VDD

C = GND

A = VDD B

C = VDD

C = GND

A = GND
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Solution #4: CPL
• Complementary Pass-transistor Logic

– Dual-rail form of pass transistor logic
– Avoid need for ratioed feedback
– Optional cross-coupling for rail-to-rail swing
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Outline
• Static CMOS
• Ratioed circuits
• Cascode voltage switch logic
• Dynamic circuits
• Pass-transistor circuits
• Circuit pitfalls
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Introduction
• Circuit Pitfalls

– Detective puzzle
– Given circuit and symptom, diagnose causes and 

recommend solutions
– All these pitfalls have caused failures in real chips

• Noise Budgets
• Reliability
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Threshold Drop
• Circuit

– 2:1 multiplexer

85

• Symptom
– Mux works when 

selected input is 0 
but not 1  

– Or fails at low VDD

– Or fails in SF corner 

XD0
YD1

S

S

q Principle: Threshold drop
– X never rises above VDD-Vth

– Vthn increased due to body effect
– Vth drop worsens as Vth becomes a greater fraction of VDD

q Solution: Use transmission gates, not pass transistors
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Leakage
• Circuit

– Latch

86

• Symptom
– Load a 0 into Q

– Set f = 0

– Eventually Q 
spontaneously flips to 1 

q Principle: Leakage
– X is a dynamic node holding value as charge on the node

– Eventually subthreshold leakage may disturb charge

q Solution: Stabilize node with feedback
– Or periodically refresh node 

(requires fast clock, not practical with huge leakage)

D Q

f

f

X
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Leakage
• Circuit

– Domino 
AND

87

• Symptom
– Precharge gate (Y=0)
– Then evaluate
– Eventually Y 

spontaneously flips to 1 

q Principle: Leakage
– X is a dynamic node holding 

value as charge on the node
– Eventually subthreshold 

leakage may disturb charge

q Solution: Keeper

1
0

Y
f X

1
0

Y
f

X
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Ratio Failure
• Circuit

– Pseudo-NMOS OR

88

• Symptom
– When only one input is 

true, Y = 0
– Seems happening in SF 

corner 

q Principle: Ratio Failure
– nMOS and pMOS fight each other.
– If the pMOS is too strong, nMOS cannot pull X low enough.

q Solution: Check that ratio is satisfied in all corners

A B
YX
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Ratio Failure
• Circuit

– Latch

89

• Symptom

– Q stuck at 1

– Seems only happening 

for certain latches 

where input driver is 

weak (small gate or 

located far away)

q Principle: Ratio Failure (again)

– Series resistance of D driver, wire 

resistance, and Tgate must be much 

less than weak feedback inverter.

q Solutions: Check relative strengths

– Avoid unbuffered diffusion inputs 

where driver is unknown

QD

f

f weak

X

QD

f

f weak
stronger
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Charge Sharing
• Circuit

– Domino 
AND gate
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B
A

Y
f

X

Z

B
A

Y
f

X
Cx

CY
Z

• Symptom
– Precharge gate while 

A = B = 0, so Z = 0
– Set f = 1 and A rises
– Z is observed to 

sometimes rise
q Principle: Charge Sharing

– If X was low, it shares charge with Y

q Solutions: Limit charge sharing

– Safe if CY >> CX

– Or precharge node X too

Y
x Y DD

x Y

C
V V V

C C
= =

+
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Charge Sharing
• Circuit

– Dynamic gate 
+ latch

91

• Symptom
– Precharge gate while 

transmission gate latch 
is opaque

– Evaluate
– When latch becomes 

transparent, X falls

q Principle: Charge Sharing
– If Y was low, it shares charge with X

q Solution: Buffer dynamic nodes 
before driving transmission gate

0
Xf

Y
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Diffusion Input Noise
• Circuit

– Latch

92

• Symptom
– Q changes while latch is 

opaque
– Especially if D comes 

from a far-away driver

q Principle: Diffusion Input Noise Sensitivity
– If D < –Vthn à transmission gate turns on
– Most likely because of power supply noise 

or coupling on D

q Solution: Buffer D locally QD

0

weakVDD

VDD
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Hot Spot
• Nonuniform power dissipation 

(even within overall power budget)
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Minority Carrier Injection
• Minority injection caused by forward biased p-n junction
• Solution: Use guard ring to collect the excess minority carriers
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Backgate Coupling
• Dynamic gates drive multiple-input static CMOS gates
• Solution: Drive input closer to the rail

95


