EE3230 Lecture 5: Circuit Characterization and Performance Estimation II

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

Outline

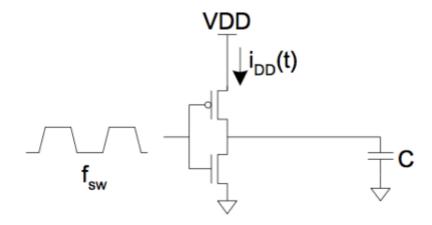
- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling

Power and Energy

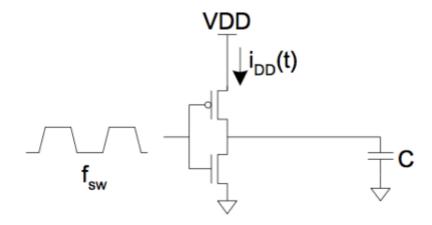
• Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip

Instantaneous Power:

• Energy:


Average Power:

Static and Dynamic Power Dissipation


- Static power dissipation
 - Sub-threshold conduction through OFF transistors
 - Tunneling current through gate oxide
 - Leakage through reverse-biased diodes
 - Contention current in ratioed circuits
- Dynamic power dissipation
 - Charging and discharging of load capacitance
 - "Short-circuit" current while both PMOS and NMOS networks are partially ON

Dynamic Power (I)

- Dynamic power is required to charge and discharge load capacitances when transistors switch
- One cycle involves a rising and falling output.
- On rising output, charge Q = CV_{DD} is required
- On falling output, charge is dumped to GND
- This repeats f_{sw} times per second

Dynamic Power (II)

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - **Dynamic gates:** Switch either 0 or 1 times per cycle, $a = \frac{1}{2}$
 - Static gates: Depends on design, typically $\alpha = 0.1$

Dynamic power:

Short-Circuit Current

- When transistors switch, both NMOS and PMOS networks may be momentarily ON at once
- Leads to a blip of short-circuit current
- < 10% of dynamic power if rise/fall times are comparable for input and output (well-controlled)

Example

- 200M transistor chip
 - 20M logic transistors
 - Average width: 12 λ
 - 180M memory transistors
 - Average width: 4 λ
 - -1.2-V 100-nm process ($\lambda = 0.5$ * feature size = 50nm)
 - $C_g = 2 fF/\mu m$

Dynamic Power Consumption

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks and partially activated at a time!)
- Estimate dynamic power consumption per MHz.
 - Neglect wire capacitance and short-circuit current

Static Power Consumption

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight with ON transistors
 - Leakage draws power from nominally OFF devices

Ratioed Example

- The chip contains a 32 word x 48 bit ROM
 - Uses 1:32 pseudo-nMOS decoder and bit-line pull-ups
 - In average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM

$$-\beta = 75 \mu A/V^2$$
, $V_{DD} = 1.8 V$

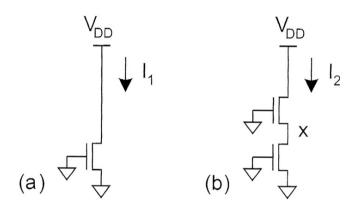
$$- V_{tp} = -0.4V$$

Leakage Example (I)

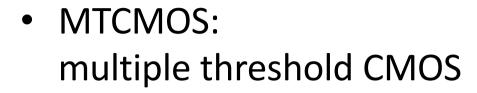
- The process has two threshold voltages and two oxide thicknesses.
- Subthreshold leakage:
 - 20 nA/ μ m for low V_{th} devices
 - 0.02 nA/ μ m for high V_{th} devices
- Gate leakage:
 - $-3 \text{ nA/}\mu\text{m}$ for thin oxide
 - 0.002 nA/ μ m for thick oxide
- Memories use low-leakage transistors everywhere
- Gates use low-leakage transistors on 80% of logic

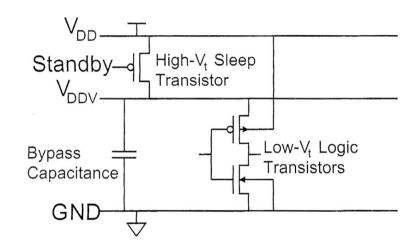
Leakage Example (II)

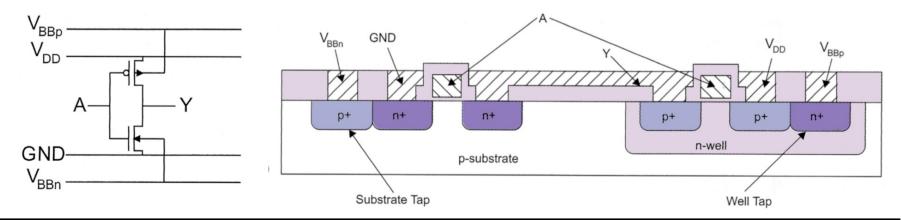
- Estimate static power:
 - High leakage:
 - Low leakage:


Withow leakage devices, P_{static} = 749 mW (!)

Low Power Design


- To rduce dynamic power
 - $-\alpha$: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - V_{DD}: lowest suitable voltage
 - f: lowest suitable frequency
- To reduce static power
 - Selectively use ratioed circuits
 - Selectively use low V_{th} devices
 - Leakage reduction:
 stacked devices, body bias, low temperature


Reduce Static Power


Leakage stack effect

Body bias

Outline

- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling

Interconnect

- Chips are mostly made of wires called interconnect
 - In stick diagrams, wires determine size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Geometry

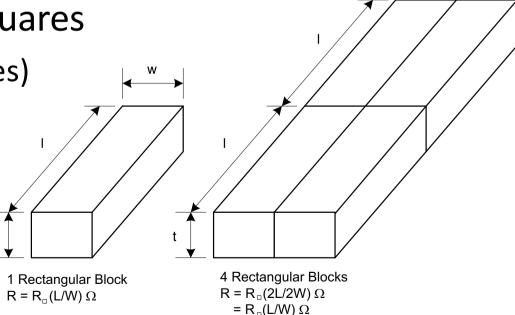
- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1</p>
 - − Modern processes have AR \approx 2
 - Pack in many skinny wires

Layer Stack

- AMI 0.6-μm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- Example: Intel 180 nm process

•	M1: thin, narrow ($< 3\lambda$)	Layer	T (nm)	W (nm)	S (nm)	AR	
	 High density cells 	6	1720	860	860	2.0	
•	M2-M4: thicker		1000				
	 For longer wires 	5	1600	800	800	2.0	
•	M5-M6: thickest	4	1000 1080	540	540	2.0	
	– For V _{DD} , GND, clk	3	700 700 700	320	320	2.2	
		2	700 700	320	320	2.2	00
		1	480 800	250	250	1.9	00
							Substrate

Wire Resistance


• $\rho = resistivity (\Omega^* m)$

• $R_{\square} = sheet\ resistance\ (\Omega/\square)$

— □ is a dimensionless unit(!)

Count number of squares

 $- R = R_{□} * (# of squares)$

Choice of Metals

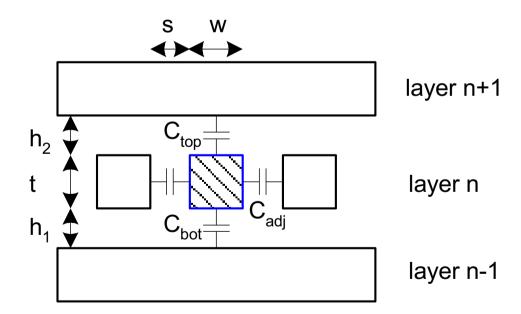
- Until 180 nm, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (AI)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

Typical sheet resistances in 180-nm process

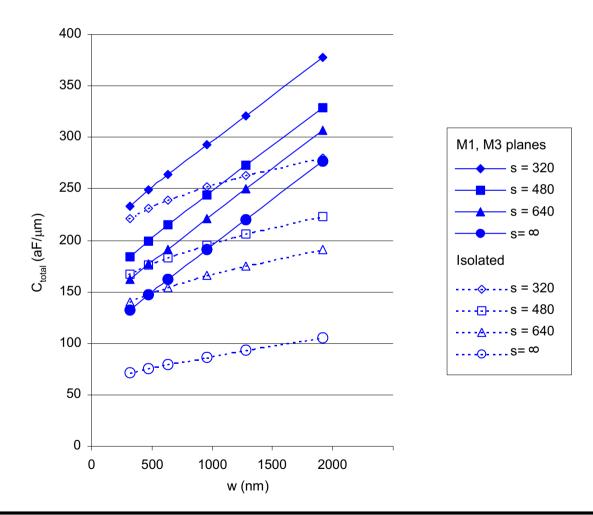
Layer	Sheet Resistance (Ω/□)			
Diffusion (silicided)	3-10			
Diffusion (no silicide)	50-200			
Polysilicon (silicided)	3-10			
Polysilicon (no silicide)	50-400			
Metal1	0.08			
Metal2	0.05			
Metal3	0.05			
Metal4	0.03			
Metal5	0.02			
Metal6	0.02			


Contact Resistance

- Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below
- $C_{total} = C_{top} + C_{bot} + 2C_{adj}$

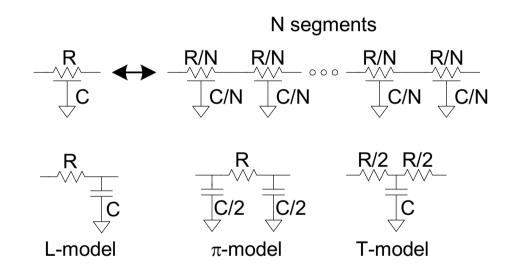


Capacitance Trend

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $\varepsilon = k\varepsilon_0$
 - $-\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
 - $k = 3.9 \text{ for } SiO_2$
- Processes are starting to use low-k dielectrics
 - $-k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

- Typical wires have $\sim 0.2 fF/\mu m$
 - Compare to $2 fF/\mu m$ for gate capacitance



Diffusion and Polysilicon

- Diffusion capacitance is very high (about 2 fF/μm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

- 3-segment π -model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

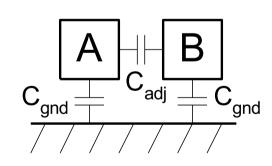
Example

- M2 wire in 180-nm process
 - 5-mm long
 - -0.32-µm wide
- Construct a 3-segment π-model
 - $-R_{\square} = 0.05 \Omega/\square$ $\rightarrow R =$

$$- C_{permicron} = 0.2 fF/\mu m \rightarrow C =$$

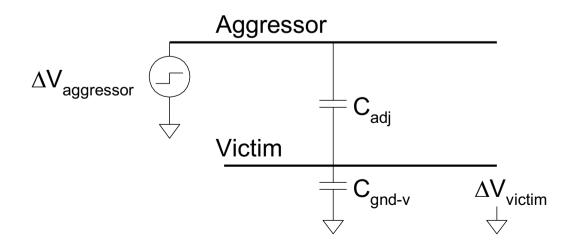
Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5-mm wire from previous example
 - Effective R = 2.5 kΩ/μm for gates, C = 2 fF/μ m
 - Unit inverter: 4λ = 0.36 μm nMOS, 8λ = 0.72 μm pMOS

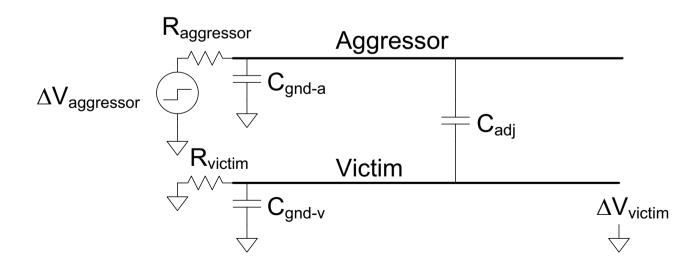

Crosstalk

- Capacitor do not change voltage instantaneously
- A wire has high capacitance to its neighbor
 - When the neighbor (aggressor) switches from 1→0 or
 0→1, the wire (victim) tends to switch as well
 - Called capacitive coupling or crosstalk
- Impacts
 - Cause noise on non-switching wires
 - Increase delay on switching wires

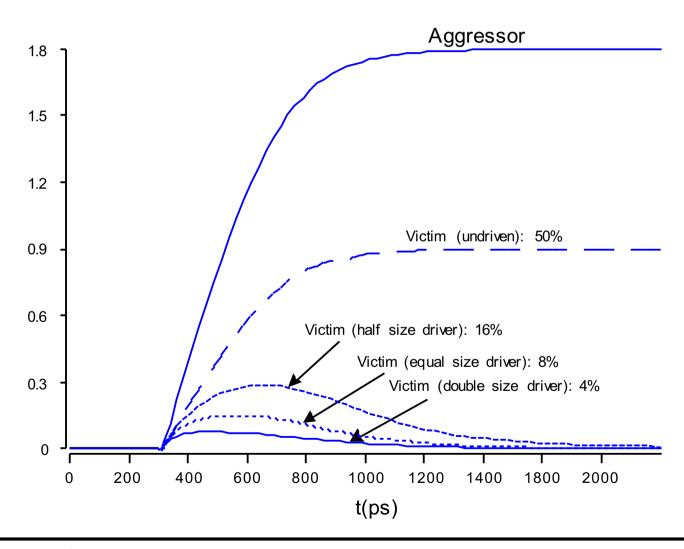
Crosstalk Delay


- Assume layers above and below in average are quiet
 - Second terminal of capacitor can be ignored
 - Modeled as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adi} depends on behavior of neighbors
 - Miller Coupling Factor (MCF)

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C_{gnd}	0
Switching opposite A	2V _{DD}	C _{gnd} + 2 C _{adj}	2


Crosstalk Noise (Floating Victims)

- Crosstalk causes noise on non-switching wires
- If victim is floating
 - modeled as capacitive voltage divider


Crosstalk Noise (Driven Victims)

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Assume victim driver in linear region and aggressor driver in saturation (considering inverter operation)
 - With equal sizes, $R_{aggressor} = 2-4 \times R_{victim}$

Coupling Waveforms

• Simulated coupling for $C_{adj} = C_{gnd}$

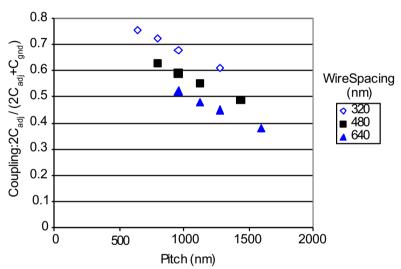
EE3230 Ping-Hsuan Hsieh

Noise Implications

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce wrong outputs

Outline

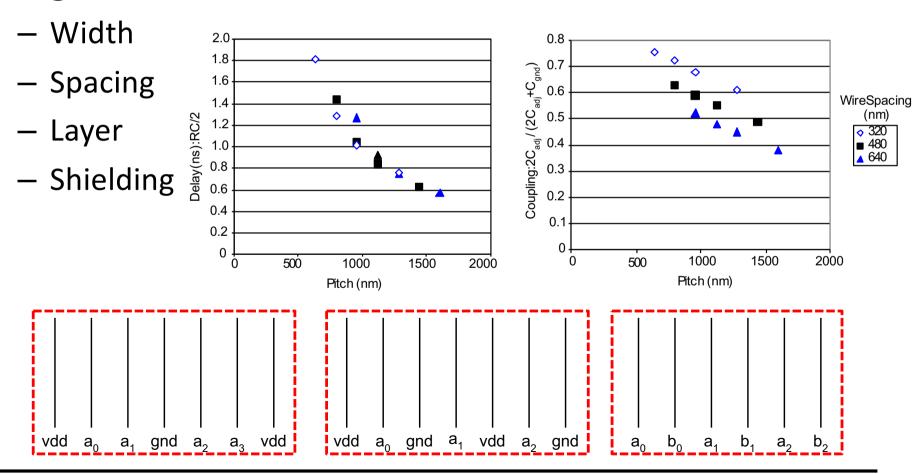
- Delay estimation
- Logical effort and transistor sizing
- Power dissipation
- Interconnect
- Wire engineering
- Design margin
- Reliability
- Scaling


Wire Engineering

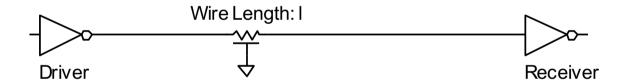
- Goal: to achieve delay, area, and power goals with acceptable noise
- Degrees of freedom:

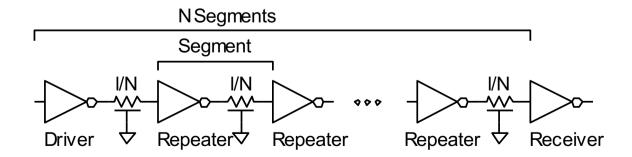
Wire Engineering

- Goal: to achieve delay, area, and power goals with acceptable noise
- Degrees of freedom:
 - Width
 - Spacing



EE3230 Ping-Hsuan Hsieh


Wire Engineering


- Goal: to achieve delay, area, and power goals with acceptable noise
- Degrees of freedom:

Repeaters

- R and C are proportional to / (length)
- RC delay is proportional to *l*²
 - Unacceptably long delays for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w*/, Resistance R_w*/
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capacitance C_w*I/N, Resistance R_w*I/N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W