EE3230 VLSI Design (2019 Fall) HW #2

Due date: 2018/10/30 (Wednesday) 10am

No plagiarism is allowed!!

Run HSpice simulations to answer the following questions.

- 1. Please design an inverter with $(W/L)_N = 1.8 \ \mu m/0.2 \ \mu m$.
 - a. Find and report the PMOS size such that the transition point happens at $V_{out} = 0.5 \cdot V_{DD}$ when V_{in} is also $0.5 \cdot V_{DD}$. W/L = 6.065 u/0.2 u
 - b. What is the ratio between PMOS and NMOS? Why?
 - c. Simulate and plot the DC voltage transfer curve of this inverter as V_{out}
 vs. V_{in}.
 0.755, 1.68, 1.03, 0.092
 - d. Find the values of V_{IL} , V_{OH} , V_{IH} , and V_{OL} at points with slope of -1. 0.755-0.092=0.663 1.68-1.03=0.65
 - e. What are the noise margins NM_L and NM_H of your design?
 - f. Complete the layout (including DRC and LVS). Show figures of your layout with DRC and LVS reports.
- 2. Please design a NAND3 gate with all 3 NMOS sizes of $5.4 \ \mu m/0.2 \ \mu m$.
 - a. Connect all three inputs together and design the PMOS sizes such that the transition point happens at $V_{out} = 0.5 \cdot V_{DD}$ when V_{in} is $0.5 \cdot V_{DD}$, the same as the inverter in Q1. All three PMOS sizes should be the same.
 - b. What is the ratio between PMOS and NMOS? How is it compared to the answer to Q1b and why?
 - c. Simulate and plot the DC voltage transfer curve of this inverter as V_{out} vs. V_{in} (with all three inputs tied together).
 - d. Find the values of V_{IL} , V_{OH} , V_{IH} , and V_{OL} at points with slope of -1.
 - e. What are the noise margins NM_L and NM_H of this design? How are they compared to those of the inverter in Q1? Explain reasons for the difference.

- 3. Simulate the above NAND3 gate with C_{load} of 100 *f*F at the output. Consider input signals that go between 0 V and VDD with both the rise and fall time of 100 ps. Furthermore, <u>only one of the three inputs is switching at a time</u>.
 - a. Simulate the contamination delays for both rising and falling output. For both rising and falling cases, explain the input pattern that results in this shortest delay.
 - b. Simulate the worst-case propagation delays for both rising and falling output. For both rising and falling cases, explain the input patterns that result in this worst-case propagation delay.
 - c. Repeat the above two questions across the following 5 corners. Show the waveforms with proper markers and complete the following table.

Process	Temperature	t _{cdr}	t _{cdf}	t_{pdr}	t_{pdf}
ТТ	25°C	275.324ps	86.017ps	362.504ps	100.7664ps
FF	–40°C	227.489ps	65.637ps	295.949ps	74.591ps
SS	125°C	553.499ps	213.721ps	786.171ps	263.788ps
SF	25°C	250.21ps	164.09ps	345.681ps	206.971ps
FS	25°C	259.679ps	93.065ps	344.883ps	110.713ps

d. Please also submit the sp netlist along with your report.