

Sequential Circuit Design

VLSI Design

Chih-Cheng Hsieh

Outline

1. Sequencing

- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Sequencing

- *Combinational logic*
	- output depends on current inputs
- *Sequential logic*
	- output depends on current and previous inputs
	- Requires separating previous, current, future
	- Called *state* or *tokens*
	- Ex: FSM, pipeline

Sequencing Cont.

- If tokens moved through pipeline at constant speed, no sequencing elements would be necessary
- Ex: fiber-optic cable
	- Light pulses (tokens) are sent down cable
	- Next pulse sent before first reaches end of cable
	- No need for hardware to separate pulses
	- But *dispersion* sets min time between pulses
- This is called *wave pipelining* in circuits
- In most circuits, dispersion is high – Delay fast tokens so they don't catch slow ones.

Sequencing Overhead

- Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- Makes circuit slower than just the logic delay – Called sequencing overhead
- Some people call this clocking overhead
	- But it applies to asynchronous circuits too
	- Inevitable side effect of maintaining sequence

Outline

1. Sequencing

2. Sequencing Element Design

- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Static vs Dynamic Storage

- Static storage
	- preserve state as long as the power is on
	- have positive feedback (regeneration) with an internal connection between the output and the input
	- useful when updates are infrequent (clock gating)
- Dynamic storage
	- store state on parasitic capacitors
	- only hold state for short periods of time (milliseconds)
	- require periodic refresh
	- usually simpler, so higher speed and lower power

Sequencing Elements

- **Latch**: level sensitive
	- a.k.a. transparent latch, D latch
- **Flip-flop**: edge triggered
	- a.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
	- Transparent
	- Opaque
	- Edge-trigger

VLSI Design

Latches vs Flipflops

- Latches
	- level sensitive circuit that passes inputs to Q when the clock is high (or low) - transparent mode
	- input sampled on the falling edge of the clock is held stable when clock is low (or high) - hold mode
- Flipflops (edge-triggered)
	- edge sensitive circuits that sample the inputs on a clock transition
		- positive edge-triggered: $0 \rightarrow 1$
		- negative edge-triggered: $1 \rightarrow 0$
	- built using latches (e.g., master-slave flipflops)

- Pass Transistor Latch
- Pros
	- + Tiny
	- + Low clock load
- Cons
	- $-V_t$ drop (not rail-to-rail)
	- Nonrestoring
	- Backdriving
	- Output noise sensitivity
	- Dynamic (floating when opaque)
	- Diffusion input

Used in 1970's

- Transmission gate
	- $+$ No V_t drop
	- Requires inverted clock

- Inverting buffer
	- + Restoring
	- + No backdriving
	- + Fixes either
		- Output noise sensitivity
		- Or diffusion input
	- Inverted output

- Tristate feedback
	- + Static
	- Backdriving risk
	- Diffusion input
- Noise on diffusion input
	- Noise couple will turn ON the "OFF" transmission gate and destroy the output
- Static latches are now essential

φ $\frac{1}{\Phi}$ ϕ $\begin{array}{c}\n\mathsf{D} \quad \begin{array}{c}\n\mathsf{D} \quad \mathsf{D} \quad \mathsf{$

- Buffered input
	- + Fixes diffusion input
	- + Noninverting
	- Ouput noise backdriving

• Buffered output + No backdriving

- Widely used in standard cells
	- + Very robust (most important)
	- Rather large
	- Rather slow $(1.5 2$ FO4 delays)
	- High clock loading

- Datapath latch
	- + Smaller, faster
	- Unbuffered input
	- Need careful input noise control

Clocked CMOS : C²MOS

6- 17

- C ²MOS latch
	- + Smaller
	- Slower

D toggle will cause charge sharing noise while opaque.

Flip-Flop Design

• Flip-flop is built as pair of back-to-back latches

Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous

Chih-Cheng Hsieh

VLSI Design

Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset

Enable

- Enable: ignore clock when $en = 0$
	- Mux: increase latch D-Q delay
	- Clock Gating: increase en setup time, skew

Sequencing Methods

Chih-Cheng Hsieh

Timing Diagrams

Chih-Cheng Hsieh

VLSI Design

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- **3. Max and Min-Delay**
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Sequential Logic

Timing Metrics

VLSI Design

Chih-Cheng Hsieh

System Timing Constraints

Chih-Cheng Hsieh

Max/Min Delay Constraints

- Max-Delay Constraints
	- Combinational logic delay is too great, the receiving element will miss its setup time and sample the wrong value : *setup time failure* (*max-delay failure*)
	- It can be solved by redesign faster logic or by increasing the clock period.
- Min-Delay Constraints
	- If the hold time is large and the contamination delay is small, data can incorrectly propagate through on one clock edge and corrupt the state : *race condition*, *hold time failure*, or *min-delay failure*.
	- Redesign slower logic.

Max-Delay: Flip-Flops

 $t_{pd} \leq T_c - \left(t_{\text{setup}} + t_{pcq}\right)$

sequencing overhead

Max Delay: 2-Phase Latches

VLSI Design

Chih-Cheng Hsieh

Max Delay: Pulsed Latches

Chih-Cheng Hsieh

VLSI Design

Min-Delay: Flip-Flops

VLSI Design

Chih-Cheng Hsieh

Min-Delay: 2-Phase Latches

Hold time error reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

VLSI Design

Chih-Cheng Hsieh

Min-Delay: Pulsed Latches

VLSI Design

Chih-Cheng Hsieh

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- **4. Time Borrowing**
- 5. Clock Skew
- 6. Two-Phase Clocking

Time Borrowing

- In a flop-based system:
	- Data launches on one rising edge
	- Must setup before next rising edge
	- If it arrives late, system fails
	- If it arrives early, time is wasted
	- Flops have hard edges
- In a latch-based system
	- Data can pass through latch while transparent
	- Long cycle of logic can borrow time into next
	- As long as each loop completes in one cycle

Time Borrowing Example

Chih-Cheng Hsieh

How Much Borrowing?

2-Phase Latches

borrow $\leq \frac{c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$ 2 *T c* $t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonon}}\right)$

Pulsed Latches

 $t_{\text{borrow}} \leq t_{\text{pw}} - t_{\text{setup}}$

VLSI Design

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- **5. Clock Skew**
- 6. Two-Phase Clocking

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
	- Decreases maximum propagation delay
	- Increases minimum contamination delay
	- Decreases time borrowing

Skew: Flip-Flops: Max Delay

 $t_{pd} \leq T_c - \left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)$

sequencing overhead

Skew: Flip-Flops: Min Delay

6- 42

 $t_{cd} \geq t_{hold} - t_{ccq} + t_{skew}$

VLSI Design

Chih-Cheng Hsieh

6- Skew: 2-Phase Latches: Max Delay

 $(2t_{pdq})$ sequencing overhead $t_{pd} \leq T_c$ –

No change \rightarrow Latch-
based systems are $\frac{\phi_1}{\phi_2}$ based systems are *skew-tolerant*

VLSI Design

Chih-Cheng Hsieh

43

Skew: 2-Phase Latches: Min Delay

VLSI Design

Chih-Cheng Hsieh

44

Skew: Pulsed Latches: Max Delay

Chih-Cheng Hsieh

VLSI Design

Skew: Pulsed Latches: Min Delay

VLSI Design

Chih-Cheng Hsieh

Skew: How Much Borrowing ?

VLSI Design

Chih-Cheng Hsieh

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- **6. Two-Phase Clocking**

Master Slave Based ET Flipflop

VLSI Design

Chih-Cheng Hsieh

MS ET Implementation

VLSI Design

MS ET Timing Properties

- Assume propagation delays are t_{pd} $_{inv}$ and t_{pd} $_{tx}$, that the contamination delay is 0, and that the inverter delay to derive !clk is 0
- Set-up time time before rising edge of clk that D must be valid

$$
t_{su} = 3 * t_{pd_inv} + t_{pd_tx}
$$

• Propagation delay - time for data to reach Q

$$
\mathbf{t}_{c-q} = \mathbf{t}_{pd_inv} + \mathbf{t}_{pd_tx}
$$

• Hold time - time D must be stable after rising edge of clk t_{hold} = zero

Set-up Time Simulation

VLSI Design

Chih-Cheng Hsieh

Set-up Time Simulation

 I_2 , I_4 out

Q

VLSI Design

 $\mathbf{3}$

 2.5

 $\overline{\mathbf{2}}$

Chih-Cheng Hsieh

Propagation Delay Simulation

Example of Clock Skew Problems

Race condition – direct path from D to Q during the short time when both clk and !clk are high (1-1 overlap)

Undefined state – both B and D are driving A when clk and !clk are both high

Dynamic storage – when clk and !clk are both low (0-0 overlap)

VLSI Design

Two-Phase Clocking

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- In this class, working chips are most important – No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2 phase latches with big nonoverlap times
- Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- In class, use flip-flop with nonoverlapping clocks
	- Very slow nonoverlap adds to setup time
	- But no hold times
- In industry, use a better timing analyzer
	- Add buffers to slow signals if hold time is at risk

Pseudostatic Two-Phase ET FF

Two Phase Clock Generator

6- 59

VLSI Design

Chih-Cheng Hsieh

Summary

- Flip-Flops:
	- Very easy to use, greatest sequencing overhead
- 2-Phase Transparent Latches:
	- Lots of skew tolerance and time borrowing, great design effort to partition logic to half-cycles.
- Pulsed Latches:

– Fast, some skew tol & borrow, hold time risk

	Table 7.4 Comparison of sequencing elements		
	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t_{cd}	Time borrowing t _{borrow}
\vert Flip-Flops	$t_{\text{pcq}} + t_{\text{setup}} + t_{\text{skew}}$	$t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$	
Two-Phase Transparent Latches	$2t_{pdq}$		$\begin{vmatrix} t_{\text{hold}} - t_{cq} - t_{\text{nonoverlap}} + t_{\text{skew}} \\ \text{in each half-cycle} \end{vmatrix} \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}} \right)$
Pulsed Latches	$\max(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}})$ $t_{\text{hold}} - t_{cq} + t_{pw} + t_{\text{skew}}$		

VLSI Design

Chih-Cheng Hsieh

6- 61Static Sequencing Element Methodology

- Choice of elements
	- Flip-flops have fairly high sequencing overheads but are popular because they are so simple.
	- Transparent latches have lower sequencing overheads and are attractive because of time borrowing (nearly half cycle)
- Low power sequential design
	- Keep device sizes small inside the core latch and minimize the number of clocked transistors
	- Clock gating

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking
- **7. Synchronizers**

Synchronizers

- Data input should change outside the **aperture** between the setup time and hold time.
- What if cannot?
- Synchronizer
	- Accepts an input that can change at arbitrary times and produces an output aligned to the synchronizer's clock

Metastability

Q D B (a)

Chih-Cheng Hsieh

A Simple Synchronizer

- Synchronizer
	- Data should be stable during the aperture = t_{setup} +

 t_{hold} around clock rising edge.

– One clock cycle latency

Communication of Async. Clock Domains

- 6- 66
- Communication between asynchronous systems – Not share a common clock

- 4-phase and 2-phase handshake protocols
	- Request and acknowledge

VLSI Design

Chih-Cheng Hsieh

Arbiters

- The arbiter is used to determine which of two inputs arrived first
	- If the time spacing exceeds aperture, first input will be acknowledged
	- If time spacing is too small, the choice is arbitrary

