

Sequential Circuit Design

VLSI Design

Outline

1. Sequencing

- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Sequencing

- Combinational logic
 - output depends on current inputs
- Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called state or tokens
 - Ex: FSM, pipeline

Sequencing Cont.

- If tokens moved through pipeline at constant speed, no sequencing elements would be necessary
- Ex: fiber-optic cable
 - Light pulses (tokens) are sent down cable
 - Next pulse sent before first reaches end of cable
 - No need for hardware to separate pulses
 - But *dispersion* sets min time between pulses
- This is called *wave pipelining* in circuits
- In most circuits, dispersion is high
 Delay fast tokens so they don't catch slow ones.

Sequencing Overhead

- Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- Makes circuit slower than just the logic delay

 Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Outline

1. Sequencing

2. Sequencing Element Design

- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Static vs Dynamic Storage

- Static storage
 - preserve state as long as the power is on
 - have positive feedback (regeneration) with an internal connection between the output and the input
 - useful when updates are infrequent (clock gating)
- Dynamic storage
 - store state on parasitic capacitors
 - only hold state for short periods of time (milliseconds)
 - require periodic refresh
 - usually simpler, so higher speed and lower power

Sequencing Elements

- Latch: level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - a.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

VLSI Design

Latches vs Flipflops

- Latches
 - level sensitive circuit that passes inputs to Q when the clock is high (or low) - transparent mode
 - input sampled on the falling edge of the clock is held stable when clock is low (or high) - hold mode
- Flipflops (edge-triggered)
 - edge sensitive circuits that sample the inputs on a clock transition
 - positive edge-triggered: $0 \rightarrow 1$
 - negative edge-triggered: $1 \rightarrow 0$
 - built using latches (e.g., master-slave flipflops)

- Pass Transistor Latch
- Pros
 - + Tiny
 - + Low clock load
- Cons
 - V_t drop (not rail-to-rail)
 - Nonrestoring
 - Backdriving
 - Output noise sensitivity
 - Dynamic (floating when opaque)
 - Diffusion input

Used in 1970's

- Transmission gate
 - + No V_t drop
 - Requires inverted clock

- Inverting buffer
 - + Restoring
 - + No backdriving
 - + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output

- Tristate feedback
 - + Static
 - Backdriving risk
 - Diffusion input
- Noise on diffusion input
 - Noise couple will turn ON the "OFF" transmission gate and destroy the output
- Static latches are now essential

- Buffered input
 - + Fixes diffusion input
 - + Noninverting
 - Ouput noise backdriving

Buffered output
 + No backdriving

- Widely used in standard cells
 + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

- Datapath latch
 - + Smaller, faster
 - Unbuffered input
 - Need careful input noise control

Clocked CMOS : C²MOS

6- 17

- C²MOS latch
 - + Smaller
 - Slower

D toggle will cause charge sharing noise while opaque.

Flip-Flop Design

• Flip-flop is built as pair of back-to-back latches

Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous

VLSI Design

Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset

Enable

- Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew

VLSI Design

Sequencing Methods

VLSI Design

Timing Diagrams

Chih-Cheng Hsieh

VLSI Design

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Sequential Logic

Timing Metrics

VLSI Design

System Timing Constraints

VLSI Design

Max/Min Delay Constraints

- Max-Delay Constraints
 - Combinational logic delay is too great, the receiving element will miss its setup time and sample the wrong value : *setup time failure* (*max-delay failure*)
 - It can be solved by redesign faster logic or by increasing the clock period.
- Min-Delay Constraints
 - If the hold time is large and the contamination delay is small, data can incorrectly propagate through on one clock edge and corrupt the state : *race condition*, *hold time failure*, or *min-delay failure*.
 - Redesign slower logic.

Max-Delay: Flip-Flops

 $t_{pd} \le T_c - \left(t_{\text{setup}} + t_{pcq}\right)$

sequencing overhead

Max Delay: 2-Phase Latches

Chih-Cheng Hsieh

6- 30

VLSI Design

Max Delay: Pulsed Latches

Chih-Cheng Hsieh

VLSI Design

Min-Delay: Flip-Flops

VLSI Design

Min-Delay: 2-Phase Latches

Hold time error reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

VLSI Design

Min-Delay: Pulsed Latches

VLSI Design

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Time Borrowing

- In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example

VLSI Design

How Much Borrowing?

2-Phase Latches

 $t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$

Pulsed Latches

 $t_{\rm borrow} \leq t_{pw} - t_{\rm setup}$

VLSI Design

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Clock Skew

- We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

Skew: Flip-Flops: Max Delay

 $t_{pd} \le T_c - \left(t_{pcq} + t_{setup} + t_{skew}\right)$ sequencing overhead

Skew: Flip-Flops: Min Delay

6- 42

 $t_{cd} \ge t_{hold} - t_{ccq} + t_{skew}$

VLSI Design

Skew: 2-Phase Latches: Max Delay

 $\left(2t_{pdq}\right)$ $t_{pd} \leq T_c$ sequencing overhead

No change → Latchbased systems are *skew-tolerant*

Chih-Cheng Hsieh

43

VLSI Design

Skew: 2-Phase Latches: Min Delay

VLSI Design

Skew: Pulsed Latches: Max Delay

Chih-Cheng Hsieh

6- 45

VLSI Design

Skew: Pulsed Latches: Min Delay

VLSI Design

Chih-Cheng Hsieh

Skew: How Much Borrowing ?

VLSI Design

Chih-Cheng Hsieh

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking

Master Slave Based ET Flipflop

VLSI Design

Chih-Cheng Hsieh

MS ET Implementation

VLSI Design

MS ET Timing Properties

- Assume propagation delays are t_{pd_inv} and t_{pd_tx}, that the contamination delay is 0, and that the inverter delay to derive !clk is 0
- Set-up time time before rising edge of clk that D must be valid

$$t_{su} = 3 * t_{pd_{inv}} + t_{pd_{tx}}$$

Propagation delay - time for data to reach Q

$$t_{c-q} = t_{pd_{inv}} + t_{pd_{tx}}$$

 Hold time - time D must be stable after rising edge of clk - t_{hold} = zero

Set-up Time Simulation

VLSI Design

Set-up Time Simulation

VLSI Design

Propagation Delay Simulation

Example of Clock Skew Problems

Race condition – direct path from D to Q during the short time when both clk and !clk are high (1-1 overlap)

Undefined state – both B and D are driving A when clk and !clk are both high

Dynamic storage – when clk and !clk are both low (0-0 overlap)

VLSI Design

Two-Phase Clocking

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- In this class, working chips are most important

 No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- In class, use flip-flop with nonoverlapping clocks
 - Very slow nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Pseudostatic Two-Phase ET FF

Two Phase Clock Generator

6- 59

VLSI Design

Summary

- Flip-Flops:
 - Very easy to use, greatest sequencing overhead
- 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing, great design effort to partition logic to half-cycles.
- Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

Table 7.4 Comparison of sequencing elements			
	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t _{cd}	Time borrowing t _{borrow}
Flip-Flops	$t_{pcq} + t_{setup} + t_{skew}$	$t_{\rm hold} - t_{ccq} + t_{\rm skew}$	0 .
Two-Phase Transparent Latches	2t _{pdq}	$t_{hold} - t_{ccq} - t_{nonoverlap} + t_{skew}$ in each half-cycle	$\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew})$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	

VLSI Design

Static Sequencing Element Methodology

- Choice of elements
 - Flip-flops have fairly high sequencing overheads but are popular because they are so simple.
 - Transparent latches have lower sequencing overheads and are attractive because of time borrowing (nearly half cycle)
- Low power sequential design
 - Keep device sizes small inside the core latch and minimize the number of clocked transistors
 - Clock gating

Outline

- 1. Sequencing
- 2. Sequencing Element Design
- 3. Max and Min-Delay
- 4. Time Borrowing
- 5. Clock Skew
- 6. Two-Phase Clocking
- 7. Synchronizers

Synchronizers

- Data input should change outside the aperture between the setup time and hold time.
- What if cannot?
- Synchronizer
 - Accepts an input that can change at arbitrary times and produces an output aligned to the synchronizer's clock

Metastability

VLSI Design

A Simple Synchronizer

- Synchronizer
 - Data should be stable during the aperture = t_{setup} +

t_{hold} around clock rising edge.

One clock cycle latency

6- 65

VLSI Design

Communication of Async. Clock Domains

- 6- 66
- Communication between asynchronous systems

 Not share a common clock

- 4-phase and 2-phase handshake protocols
 - Request and acknowledge

VLSI Design

Arbiters

- The arbiter is used to determine which of two inputs arrived first
 - If the time spacing exceeds aperture, first input will be acknowledged
 - If time spacing is too small, the choice is arbitrary

