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Static CMOS 

• Bubble Pushing 

• Compound Gates 

• Logical Effort Example 

• Input Ordering 

• Asymmetric Gates 

• Skewed Gates 

• Best P/N ratio 
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Example 1 
module mux(input  s, d0, d1,  

         output y); 

 

   assign y = s ? d1 : d0; 

endmodule 

 

1) Sketch a design using AND, OR, and NOT gates. 
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Example 2 

2) Sketch a design using NAND, NOR, and NOT gates.  
Assume ~S is available. 
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Bubble Pushing 

• Start with network of AND / OR gates 

• Convert to NAND / NOR + inverters 

• Push bubbles around to simplify logic 

– Remember DeMorgan’s Law 
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Bubble Pushing 

• Y = AB + CD 
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Example 3 

3) Sketch a design using one compound gate and 
one NOT gate. Assume ~S is available. 
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Compound Gates 

• Logical Effort of compound gates 
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Example 4 

• The multiplexer has a maximum input capacitance 
of 16 units on each input.  It must drive a load of 
160 units.  Estimate the delay of the NAND and 
compound gate designs. 
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NAND Solution 
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Compound Solution 
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Example 5 

• Annotate your designs with transistor sizes that 
achieve this delay. 
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Input Order 

• Our parasitic delay model was too simple 

– Calculate parasitic delay for Y falling 

• If A arrives latest?  2 

• If B arrives latest?  2.33 
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Inner & Outer Inputs 

• Outer input is closest to rail (B) 

• Inner input is closest to output (A) 

 

 

 

 

 

• If input arrival time is known 

– Connect latest input to inner terminal 
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VTC is Data-Dependent 
• The threshold voltage of M2 is higher than M1 due to body effect () 

 since VSB of M2 is not zero (when VB = 0) due to the presence of Cint 

VTn1 = VTn0 

A 

B 

F= A • B 

A B 

M1 

M2 

M3 M4 

Cint 

VGS1 = VB 

VGS2 = VA –VDS1 

0.5/0.25 NMOS 
0.75 /0.25 PMOS 

D 

D 

S 

S 

weaker 
PUN 

VTn2 = VTn0 + ((|2F| + Vint) - |2F|) 
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Symmetric Gates 

• Inputs can be made perfectly symmetric 
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Asymmetric Gates 

• Asymmetric gates favor one input over another 

• Ex: suppose input A of a NAND gate is most critical 

– Use smaller transistor on A (less capacitance) 

– Boost size of noncritical input 

– So total resistance is same 

– gA = 10/9 

– gB = 2 

– gtotal = gA + gB = 28/9 

• Asymmetric gate approaches g = 1 on critical input 

• But total logical effort goes up 
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Skewed Gates 

• Skewed gates favor one edge over another 
• Ex: suppose rising output of inverter is most critical 

– Downsize noncritical nMOS transistor 
 

 

 
 

 

• Calculate logical effort by comparing to unskewed 
inverter with same effective R on that edge. 
– gu = 2.5 / 3 = 5/6 
– gd = 2.5 / 1.5 = 5/3 
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HI- and LO-Skew 

• Def: Logical effort of a skewed gate for a particular 
transition is the ratio of the input capacitance of 
that gate to the input capacitance of an unskewed 
inverter delivering the same output current for 
the same transition. 

• Skewed gates reduce size of noncritical transistors 

– HI-skew gates favor rising output (small nMOS) 

– LO-skew gates favor falling output (small pMOS) 

• Logical effort is smaller for favored direction 

• But larger for the other direction 

 20 
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Catalog of Skewed Gates 
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Asymmetric Skew 

• Combine asymmetric and skewed gates 

– Downsize noncritical transistor on unimportant input 

– Reduces parasitic delay for critical input 
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Best P/N Ratio 

• We have selected P/N ratio for unit rise and fall 
resistance ( = 2-3 for an inverter). 

• Alternative: choose ratio for least average delay 

• Ex: inverter 

– Delay driving identical inverter 

– tpdf = (P+1) 

– tpdr = (P+1)(/P) 

– tpd = (P+1)(1+/P)/2 = (P + 1 +  + /P)/2 

– Differentiate tpd w.r.t. P 

– Least delay for P =  

 23 
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P/N Ratios 

• In general, best P/N ratio is sqrt of that giving 
equal delay. 

– Only improves average delay slightly for inverters 

– But significantly decreases area and power 
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Observations 

• For speed: 

– NAND vs. NOR 

– Many simple stages vs. fewer high fan-in stages 

– Latest-arriving input 

• For area and power: 

– Many simple stages vs. fewer high fan-in stages 

 25 
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Introduction 

• What makes a circuit fast? 

– I = C dV/dt    ->  tpd  (C/I) DV 

– low capacitance 

– high current 

– small swing 

• Logical effort is proportional to C 

• pMOS are the enemy! 

– High capacitance for a given current 

• Can we take the pMOS capacitance off the input? 

• Various circuit families try to do this… 
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Pseudo-nMOS 

• In the old days, nMOS processes had no pMOS 

– Instead, use pull-up transistor that is always ON 

• In CMOS, use a pMOS that is always ON 

– Ratio issue, Make pMOS about 1/3~1/6 effective 
strength of pulldown network 

 28 

Vout

Vin

16/2

P/2

Ids

load

0 0.3 0.6 0.9 1.2 1.5 1.8

0

0.3

0.6

0.9

1.2

1.5

1.8

P = 24

P = 4

P = 14

V
in

V
out



VLSI Design 

5- 

Chih-Cheng Hsieh 

Pseudo-nMOS Gates 

• Design for unit current on output 
 to compare with unit inverter. 

• Choose pMOS size between 1/3 
    ~ 1/6 the effective width (pick 1/3) 

 29 

Inverter NAND2 NOR2

4/3

2/3

A
Y

8/3

8/3

2/3

B

A
Y

A B 4/34/3

2/3

gu    = 4/3

gd    = 4/9

gavg  = 8/9

pu    = 6/3

pd    = 6/9

pavg  = 12/9

Y

gu    = 8/3

gd    = 8/9

gavg  = 16/9

pu    = 10/3

pd    = 10/9

pavg  = 20/9

gu    = 4/3

gd    = 4/9

gavg  = 8/9

pu    = 10/3

pd    = 10/9

pavg  = 20/9

f

inputs

Y

Inverter NAND2 NOR2

4/3

2/3

A
Y

8/3

8/3

2/3

B

A
Y

A B 4/34/3

2/3

gu    = 4/3

gd    = 4/9

gavg  = 8/9

pu    = 

pd    = 

pavg  = 

Y

gu    = 8/3

gd    = 8/9

gavg  = 16/9

pu    = 

pd    = 

pavg  = 

gu    = 4/3

gd    = 4/9

gavg  = 8/9

pu    = 

pd    = 

pavg  = 

Inverter NAND2 NOR2

4/3

2/3

A
Y

8/3

8/3

2/3

B

A
Y

A B 4/34/3

2/3

gu    = 

gd    = 

gavg  = 

pu    = 

pd    = 

pavg  = 

Y

gu    = 

gd    = 

gavg  = 

pu    = 

pd    = 

pavg  = 

gu    = 

gd    = 

gavg  = 

pu    = 

pd    = 

pavg  = 

Inverter : Iu = (1/3)I, Cinv-u = 1, gu = (4/3)/1, pu = (2/3+4/3)/1  

                  Id = I,          Cinv-d = 3, gd = (4/3)/3, pd = (2/3+4/3)/3   



VLSI Design 

5- 

Chih-Cheng Hsieh 

Pseudo-nMOS Design 

• Ex: Design a k-input AND gate using INV+ seudo-
nMOS NOR. Find the delay driving a fanout of H 

 

• G = 

• F = 

• P = 

• N = 

• D =   
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Pseudo-nMOS Power 

• Pseudo-nMOS draws power whenever Y = 0 

– Called static power     P = I•VDD 

– A few mA / gate * 1M gates would be a problem 

– This is why nMOS went extinct! 

• Use pseudo-nMOS sparingly for wide NORs 

• Turn off pMOS when not in use 
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Cascode Voltage Switch Logic 

• Differential Cascode Voltage Switching Logic (DCVS, 
DCVSL) 

– Seeks the performance of ratioed circuits without the static 
power consumption 

– Use both true and complementary input signals and compute 
both true and complementary outputs 

33 
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Cascode Voltage Switch Logic 
34 

4-input XOR/XNOR gate 2-input AND/NAND gate 
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Dynamic CMOS 

• In static circuits at every point in time (except when 
switching) the output is connected to either GND or VDD 
via a low resistance path. 

– fan-in of N requires 2N devices 

 

• Dynamic circuits rely on the temporary storage of signal 
values on the capacitance of high impedance nodes. 

– requires only N + 2 transistors 

– takes a sequence of precharge and conditional evaluation 
phases to realize logic functions 

36 
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Dynamic Logic 

• Dynamic gates uses a clocked pMOS pullup 

• Two modes: precharge and evaluate 
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The Foot 

• What if pulldown network is ON during precharge? 

• Use series evaluation transistor to prevent fight. 
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Logical Effort 
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Conditions on Output 

• Once the output of a dynamic gate is discharged, it 
cannot be charged again until the next precharge 
operation. 

• Inputs to the gate can make at most one transition 
during evaluation. 

• Output can be in the high impedance state during and 
after evaluation (PDN off), state is stored on CL 

40 
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Properties of Dynamic Gates 

• Logic function is implemented by the PDN only 
– number of transistors is N + 2 (versus 2N for static complementary CMOS) 

– should be smaller in area than static complementary CMOS 

• Full swing outputs (VOL = GND and VOH = VDD) 

• Nonratioed - sizing of the devices is not important for 
proper functioning  (only for performance) 

• Faster switching speeds 
– reduced load capacitance due to lower number of transistors per gate (Cint) 

so a reduced logical effort 

– reduced load capacitance due to smaller fan-out (Cext) 

– no Isc, so all the current provided by PDN goes into discharging CL 

– Ignoring the influence of precharge time on the switching speed of the gate, 
tpLH = 0 but the presence of the evaluation transistor slows down the tpHL 

41 
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Properties of Dynamic Gates, con’t 

• Power dissipation should be better 
– consumes only dynamic power – no short circuit power consumption since 

the pull-up path is not on when evaluating 

– lower CL- both Cint (since there are fewer transistors connected to the drain 
output) and Cext (since there the output load is one per connected gate, not 
two) 

– by construction can have at most one transition per cycle – no glitching 

• But power dissipation can be significantly higher due to 
– higher transition probabilities 

– extra load on CLK 

• PDN starts to work as soon as the input signals exceed 
VTn, so set VM, VIH and VIL all equal to VTn 
– low noise margin (NML) 

• Needs a precharge clock 

42 
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Dynamic Behavior 

#Trns VOH VOL VM NMH NML tpHL tpLH tp 

6 2.5V 0V VTn 2.5-VTn VTn 110ps 0ns 83ps 

CLK 

CLK 

In1 

In2 

In3 

In4 

Out 

In & 

CLK Out 

Time, ns 

Evaluate 

Precharge 
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Gate Parameters are Time Independent 
• The amount by which the output voltage drops is a strong 

function of the input voltage and the available evaluation time. 

– Noise needed to corrupt the signal has to be larger if the evaluation time is 
short – i.e., the switching threshold is truly time independent. 

VG 

CLK 

Vout (VG=0.55) 
Vout (VG=0.5) 

Vout (VG=0.45) 
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Power Consumption of Dynamic Gate 

In1 

In2 PDN 

In3 

Me 

Mp 

CLK 

CLK 

Out 

CL 

Power only dissipated when previous Out = 0 
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Dynamic Power is Data Dependent 

A B Out 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Dynamic 2-input NOR Gate 

Assume signal probabilities 
   PA=1 = 1/2 
   PB=1 = 1/2 

Then transition probability 
   P01 = Pout=0  x  Pout=1 

            = 3/4  x  1 = 3/4 

Switching activity can be higher in dynamic gates! 
P01 = Pout=0 
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Issues 1: Charge Leakage 

Minimum clock rate of a few kHz 

CL 

CLK 

CLK 

Out 

A=0 

Mp 

Me 

Leakage sources 

CLK 

VOut 

Precharge 

Evaluate 

1 

2 

3 
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Impact of Charge Leakage 
• Output settles to an intermediate voltage determined by a 

resistive divider of the pull-up and pull-down networks 

– Once the output drops below the switching threshold of the fan-out logic 
gate, the output is interpreted as a low voltage. 

CLK 

Out 

48 
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A Solution to Charge Leakage 

Same approach as level restorer for pass 
transistor logic 

CL 

CLK 

CLK 

Me 

Mp 

A 

B 

!Out 

Mkp 

Keeper 

• Keeper compensates for the charge lost due to the pull-
down leakage paths. 
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Summary: Leakage 

• Dynamic node floats high during evaluation 

– Transistors are leaky (IOFF  0) 

– Dynamic value will leak away over time 

– Formerly miliseconds, now nanoseconds! 

• Use keeper to hold dynamic node 

– Must be weak enough not to fight evaluation 
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Issues 2: Charge Sharing 
• Charge stored originally on CL is redistributed (shared) over CL and 

CA leading to static power consumption by downstream gates and 
possible circuit malfunction. 

CL 

CLK 

CLK 

Ca 

Cb 

B=0 

A 

Out 

Mp 

Me 

• When  DVout = - VDD (Ca / (Ca + CL )) the drop in Vout is large enough 
to be below the switching threshold of the gate it drives causing a 
malfunction.  
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Charge Sharing 

• Dynamic gates suffer from charge sharing 

 52 

B = 0

A

Y



x

Cx

CY A



x

Y

Charge sharing noise

Y
x Y DD

x Y

C
V V V

C C
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Charge Sharing Example 

Cy=50fF 

CLK 

CLK 

A !A 

B !B B !B 

C !C 

y = A  B  C 

Ca=15fF 

Cc=15fF 

Cb=15fF 

Cd=10fF 

What is the worst case voltage drop on y?  (Assume all inputs are 
low during precharge and that all internal nodes are initially at 0V.) 

Load 

inverter 

a 

b 

d c 
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Charge Sharing Example 
What is the worst case voltage drop on y?  (Assume all inputs are 
low during precharge and that all internal nodes are initially at 0V.) 

Cy=50fF 

CLK 

CLK 

A !A 

B !B B !B 

C !C 

y = A  B  C 

Ca=15fF 

Cc=15fF 

Cb=15fF 

Cd=10fF 

Load 

inverter 

a 

b 

d c 

DVout = - VDD ((Ca + Cc)/((Ca + Cc) + Cy)) = - 2.5V*(30/(30+50)) = -0.94V 
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Solution to Charge Redistribution 

CLK 

CLK 

Me 

Mp 

A 

B 

Out 

Mkp CLK 

Precharge internal nodes using a clock-driven transistor 
(at the cost of increased area and power) 
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Secondary Precharge 

• Solution: add secondary precharge transistors 

– Typically need to precharge every other node 

• Big load capacitance CY helps as well 
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B

A

Y



x

secondary 

precharge 
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Issues 3: Backgate Coupling 

Dynamic NAND Static NAND 

• Susceptible to crosstalk due to 1) high impedance of the 
output node and 2) backgate capacitive coupling 
‒ Out2 capacitively couples with Out1 through the gate-source 

and gate-drain capacitances of M4 

CL1 

CLK 

CLK 

B=0 

A=0 

Out1 

Mp 

Me 

Out2 

CL2 

In 

=1 =10 

M1 

M2 
M3 

M4 

M5 M6 
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Backgate Coupling Effect 

• Capacitive coupling means Out1 drops significantly so 
Out2 doesn’t go all the way to ground 

-1

0

1

2

3

0 2 4 6Time, ns 

CLK 

In 

Out1 

Out2 

Clock Feedthrough 
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Issues 4: Clock Feedthrough 

CL 

CLK 

CLK 

B 

A 

Out 

Mp 

Me 

Coupling between Out and CLK 
input of the precharge device due 
to the gate-drain capacitance.  So 
voltage of Out can rise above VDD.  
The fast rising (and falling edges) 
of the clock couple to Out. 

• A special case of backgate capacitive coupling between 
the clock input of the precharge transistor and the 
dynamic output node 
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Clock Feedthrough 

CLK 

CLK 

In1 

In2 

In3 

In4 

Out 

In & 

CLK Out 

Time, ns 

Clock feedthrough 

Clock feedthrough 

60 



VLSI Design 

5- 

Chih-Cheng Hsieh 

Issues 5:  Cascading Gates 

CLK 

CLK 

Out1 

In 

Mp 

Me 

Mp 

Me 

CLK 

CLK 

Out2 

V 

t 

CLK 

In 

Out1 

Out2 

DV 

VTn 

Only a single 0  1 transition allowed at the 
inputs during the evaluation period! 
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Monotonicity 

• Dynamic gates require monotonically rising inputs 
during evaluation 

– 0 -> 0 

– 0 -> 1 

– 1 -> 1 

– But not 1 -> 0 

 

 62 

 Precharge Evaluate

Y

Precharge

A

Output should rise but does not

violates monotonicity

 during evaluation

A


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Monotonicity Woes 

• But dynamic gates produce monotonically falling 
outputs during evaluation 

• Illegal for one dynamic gate to drive another! 
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Monotonicity Woes 

• But dynamic gates produce monotonically falling 
outputs during evaluation 

• Illegal for one dynamic gate to drive another! 
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A
X


Y

 Precharge Evaluate

X

Precharge

A = 1

Y should rise but cannot

Y

X monotonically falls during evaluation
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Domino Gates 

• Follow dynamic stage with inverting static gate 

– Dynamic / static pair is called domino gate 

– Produces monotonic outputs 
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 Precharge Evaluate

W

Precharge

X

Y

Z

A



B
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A
B

W X
Y
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Domino Optimizations 

• Each domino gate triggers next one, like a string of 
dominos toppling over 

• Gates evaluate sequentially, precharge in parallel 
• Thus evaluation is more critical than precharge 
• HI-skewed static stages can perform logic 
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S0

D0

S1

D1

S2

D2

S3

D3


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D4
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Dual-Rail Domino 

• Domino only performs noninverting functions: 

– AND, OR but not NAND, NOR, or XOR 

• Dual-rail domino solves this problem 

– Takes true and complementary inputs  

– Produces true and complementary outputs 
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sig_h sig_l Meaning 

0 0 Precharged 

0 1 ‘0’ 

1 0 ‘1’ 

1 1 invalid 

Y_h

f





inputs

Y_l

f
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Example: AND/NAND 

• Given A_h, A_l, B_h, B_l 

• Compute Y_h = A * B, Y_l = ~(A * B) 

• Pulldown networks are conduction complements 
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Y_h



Y_l

A_h

B_hB_lA_l

= A*B= A*B
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Example: XOR/XNOR 

• Sometimes possible to share transistors 
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Y_h



Y_l

A_l

B_h

= A xor B

B_l

A_hA_lA_h= A xnor B
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Noise Sensitivity 

• Dynamic gates are very sensitive to noise 

– Inputs: VIH  Vtn 

– Outputs: floating output susceptible noise 

• Noise sources 

– Capacitive crosstalk 

– Charge sharing 

– Power supply noise 

– Feedthrough noise 

– And more! 
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Domino Summary 

• Domino logic is attractive for high-speed circuits 

– 1.5 – 2x faster than static CMOS 

– But many challenges: 

• Monotonicity 

• Leakage 

• Charge sharing 

• Noise 

• Widely used in high-performance microprocessors 
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72 

1. Static CMOS 

2. Ratioed Circuits 

3. Cascode Voltage Switch Logic 

4. Dynamic Circuits 

5. Pass-Transistor Circuits 

6. Circuit Pitfalls 

Outline 



VLSI Design 

5- 

Chih-Cheng Hsieh 

Pass Transistor Circuits 

• Use pass transistors like switches to do logic 

• Inputs drive diffusion terminals as well as gates 

• CMOS + Transmission Gates: 

– 2-input multiplexer 

– Gates should be restoring 
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NMOS Transistors in Series/Parallel 

• Primary inputs drive both gate and source/drain 
terminals 

• NMOS switch closes when the gate input is high 

 

 

 

 
 

• Remember - NMOS transistors pass a strong 0 
but a weak 1 

A B 

X Y 
X = Y if A and B 

X Y 

A 

B X = Y if A or B 
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PMOS Transistors in Series/Parallel 

• Primary inputs drive both gate and source/drain 
terminals 

• PMOS switch closes when the gate input is low 

 

 

 

 
 

• Remember - PMOS transistors pass a strong 1 but 
a weak 0 

A B 

X Y 
X = Y if A and B = A + B 

X Y 

A 

B X = Y if A or B = A  B 
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Pass Transistor (PT) Logic 

A 

B 

F 
B 

0 

• Gate is static – a low-impedance path exists to both 
supply rails under all circumstances 

• N transistors instead of 2N 

• No static power consumption 

• Ratioless 

• Bidirectional (versus undirectional) 

A 

0 

B 

B 
F 

= A  B 

= A  B 
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VTC of PT AND Gate 

A 

0 

B 

B 
F = AB 

0.5/0.25 

0.5/0.25 

0.5/0.25 

1.5/0.25 

B=VDD, A=0VDD 

A=VDD, B=0VDD 

A=B=0VDD 
V

o
u
t, 

V
 

• Pure PT logic is not regenerative -  the signal gradually 
degrades after passing through a number of PTs (can fix 
with static CMOS inverter insertion) 
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NMOS Only PT Driving an Inverter 

• Vx does not pull up to VDD, but VDD – VTn 

In = VDD 

A = VDD 

Vx = VDD-VTn 

M1 

M2 

 B 

S D 

• Threshold voltage drop causes static power consumption 
(M2 may be weakly conducting forming a path from VDD 
to GND) 

• Notice VTn increases for pass transistor due to body effect 
(VSB) 

VGS 
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Voltage Swing of PT Driving an Inverter 

• Body effect – large VSB at x - when pulling high (B is tied 
to GND and S charged up close to VDD) 

• So the voltage drop is even worse 

Vx = VDD - (VTn0 +  ((|2f| + Vx) -  |2f|)) 

In = 0  VDD =2.5V 

VDD 

x Out 
0.5/0.25 

0.5/0.25 

1.5/0.25 

D 

S 

 B 

Time, ns 

V
o

lt
ag

e,
 V

 

In 

Out 

x = 1.8V 
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Cascaded NMOS Only PTs 

B = VDD 

Out 

M1 

y M2 

Swing on y = VDD - VTn1 - VTn2 

x M1 

B = VDD 

Out 
y M2 

Swing on y = VDD - VTn1 

C = VDD 

A = VDD 

C = VDD 

A = VDD 

• Pass transistor gates should never be cascaded as on 
the left 

• Logic on the right suffers from static power dissipation 
and reduced noise margins 

x = VDD - VTn1 

G 

S 

G 

S 
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Solution 1: Level Restorer 

• Full swing on x (due to Level Restorer) so no static power 
consumption by inverter 

• No static backward current path through Level Restorer 
and PT since Restorer is only active when A is high 

• For correct operation Mr must be sized correctly (ratioed) 

 Level Restorer 

M1 

M2 

A=0 Mn 

Mr 

x 

B 

Out =1 

off 

= 0 
A=1 Out=0 

on 

1 A 
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Restorer Circuit Transient Response 
• Restorer has speed and power impacts:  increases the capacitance 

at x, slowing down the gate; increases tr (but decreases tf) 

W/L2=1.50/0.25 

W/L1=0.50/0.25 

V
o
lt
a
g
e
, 
V

 

Time, ps 

W/Lr=1.75/0.25 

W/Lr=1.50/0.25 

W/Lr=1.25/0.25 

W/Lr=1.0/0.25 

node x never goes below VM 

of inverter so output never 

switches 
M1 

M2 

Mn 

Mr 

x 

W/Ln=0.50/0.25 
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Solution 2:  Multiple VT Transistors 
• Technology solution:  Use (near) zero VT devices for the NMOS PTs to eliminate 

most of the threshold drop (body effect still in force preventing full swing to VDD) 

• Impacts static power consumption due to subthreshold currents flowing through 
the PTs (even if VGS is below VT) 

Out 

In2 = 0V 

In1 = 2.5V 

A = 2.5V 

B = 0V 

low VT transistors 

sneak path 

on 

off but 

leaking 
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• Most widely used solution 

• Full swing bidirectional switch controlled by the gate 
signal C, A = B if C = 1 

 

Solution 3: Transmission Gates (TGs) 

A B 

C 

C 

A B 

C 

C 

B 

C = VDD 

C = GND 

A = VDD B 

C = VDD 

C = GND 

A = GND 
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Solution 4: CPL 

• Complementary Pass-transistor Logic 

– Dual-rail form of pass transistor logic 

– Avoids need for ratioed feedback 

– Optional cross-coupling for rail-to-rail swing 
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1. Static CMOS 

2. Ratioed Circuits 

3. Cascode Voltage Switch Logic 

4. Dynamic Circuits 

5. Pass-Transistor Circuits 

6. Circuit Pitfalls 

Outline 
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Introduction 

• Circuit Pitfalls 

– Detective puzzle 

– Given circuit and symptom, diagnose cause and 
recommend solution 

– All these pitfalls have caused failures in real chips 

• Noise Budgets 

• Reliability 
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Threshold Drop 

• Circuit 

– 2:1 multiplexer 

 88 

• Symptom 

– Mux works when 
selected D is 0 but 
not 1.   

– Or fails at low VDD. 

– Or fails in SF corner.  

XD0
Y

D1

S

S

 Principle: Threshold drop 

– X never rises above VDD-Vt 

– Vt is raised by the body effect 

– The threshold drop is most serious as Vt becomes a greater 
fraction of VDD. 

 Solution: Use transmission gates, not pass transistors 
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Leakage 

• Circuit 

– Latch 
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• Symptom 

– Load a 0 into Q 

– Set  = 0 

– Eventually Q 
spontaneously flips to 1  

 Principle: Leakage 

– X is a dynamic node holding value as charge on the node 

– Eventually subthreshold leakage may disturb charge 

 Solution: Stabilize node with feedback 

– Or periodically refresh node (requires fast clock,  

 not practical processes with big leakage) 

D Q





X





Q

D
X




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Leakage 

• Circuit 

– Domino AND  

    gate 

 90 

• Symptom 

– Precharge gate (Y=0) 

– Then evaluate 

– Eventually Y 
spontaneously flips to 1  

 Principle: Leakage 

– X is a dynamic node holding value 
as charge on the node 

– Eventually subthreshold leakage 
may disturb charge 

 Solution: Keeper 

1

0
Y


X

1

0
Y



X
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Ratio Failure 

• Circuit 

– Pseudo-nMOS OR 

 91 

• Symptom 

– When only one input is 
true, Y = 0. 

– Perhaps only happens in 
SF corner.  

 Principle: Ratio Failure 

– nMOS and pMOS fight each other. 

– If the pMOS is too strong, nMOS cannot pull X low enough. 

 Solution: Check that ratio is satisfied in all corners 

A B

Y
X
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Ratio Failure 

• Circuit 

– Latch 

 92 

• Symptom 

– Q stuck at 1. 

– May only happen for 
certain latches where 
input is driven by a small 
gate located far away.  

 Principle: Ratio Failure (again) 
– Series resistance of D driver, wire  
 resistance, and tgate must be much  
 less than weak feedback inverter. 

 Solutions: Check relative strengths 
– Avoid unbuffered diffusion inputs 

where driver is unknown 

QD



 weak

X

QD



 weak

stronger
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Charge Sharing 

• Circuit 

– Domino AND 

    gate 

 93 

• Symptom 

– Precharge gate while  

 A = B = 0, so Z = 0 

– Set  = 1 

– A rises 

– Z is observed to 
sometimes rise  Principle: Charge Sharing 

– If X was low, it shares charge with Y 

 Solutions: Limit charge sharing 

 
 

– Safe if CY >> CX 

– Or precharge node X too 

B

A

Y


X

Z

B

A

Y


X

Cx

CY

Z

Y
x Y DD

x Y

C
V V V

C C
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
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Charge Sharing 

• Circuit 

– Dynamic gate  

    + latch 
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• Symptom 

– Precharge gate while 
transmission gate latch 
is opaque 

– Evaluate 

– When latch becomes 
transparent, X falls 

 Principle: Charge Sharing 

– If Y was low, it shares charge with X 

 Solution: Buffer dynamic nodes before driving 
transmission gate 

0

X


Y
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Diffusion Input Noise 

• Circuit 

– Latch 

 95 

• Symptom 

– Q changes while latch 
is opaque 

– Especially if D comes 
from a far-away driver 

 Principle: Diffusion Input Noise Sensitivity 

– If D < -Vt, transmission gate turns on 

– Most likely because of power  

     supply noise or coupling on D 

 Solution: Buffer D locally 

Q
D

0

weak
VDD

VDD
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Hot Spot 

• Nonuniform power dissipation (even within overall power 
budget) 
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Minority Carrier Injection 

• Minority injection caused by forward biased p-n junction 

• Solution: Use guard ring to collect the excess minority 
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Back-Gate Coupling  

• Dynamic gates drive multiple-input static CMOS gates 

• Solution : Drive input closer to the rail 
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