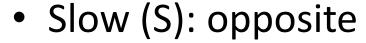
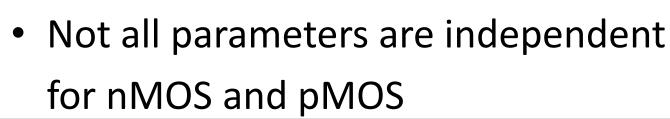
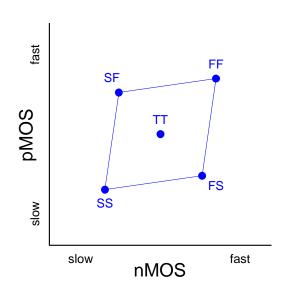


Circuit Characterization and Performance Estimation III

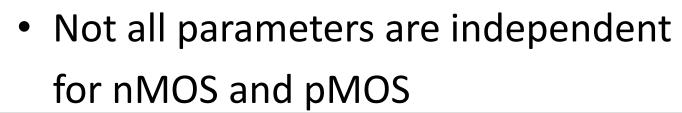

Outline

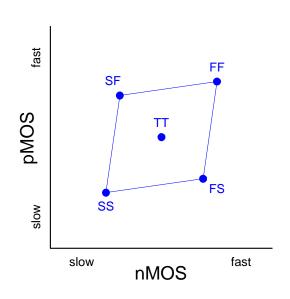

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling


- Sources of variations
 - Supply voltage
 - Temperature
 - Process variation

Parameter Variation

- Transistors have uncertainty in parameters
 - Process: L_{eff} , V_t , t_{ox} of nMOS and pMOS
 - Vary around typical (T) values
- Fast (F)





VLSI Design

Parameter Variation

- Transistors have uncertainty in parameters
 - Process: L_{eff} , V_t , t_{ox} of nMOS and pMOS
 - Vary around typical (T) values
- Fast (F)
 - L_{eff}: short
 - $-V_{t}$: low
 - $-t_{ox}$: thin
- Slow (S): opposite

VLSI Design

Environmental Variation

- V_{DD} and T also vary in time and space
- Fast:

— T: _____

Corner	Voltage	Temperature
F		
Т	1.8	70 C
S		

V_{DD} and T also vary in time and space

• Fast:

− V_{DD}: high

- T: low

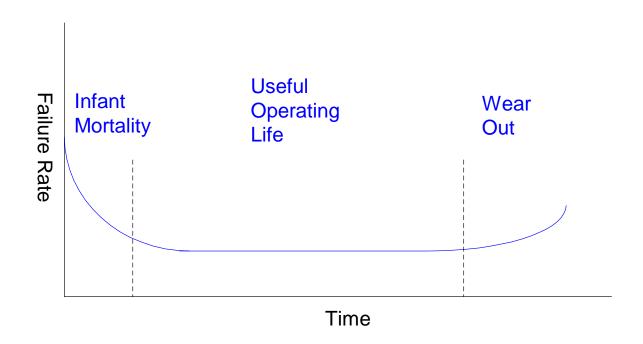
Corner	Voltage	Temperature
F	1.98	0 C
Т	1.8	70 C
S	1.62	125 C

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

Some critical simulation corners include


Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time	S	S	S	0)
Power	F	F	F	F
Subthrehold leakage	F	F	F	S
Pseudo-nMOS	S	F	?	?

Outline

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Reliability

- Hard Errors
- Soft Errors

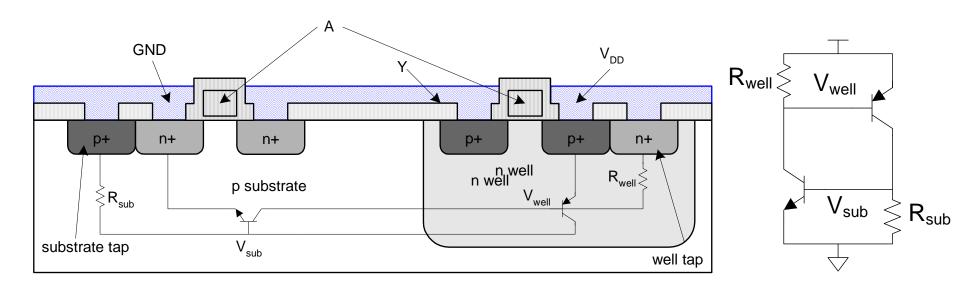
Electromigration

- "Electron wind" causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Black's Equation: $MTTF \propto \frac{e^{\frac{E_a}{kT}}}{J_{dc}}$
 - Typical limits: $J_{dc} < 1 2 \text{ mA} / \mu \text{m}^2$
- See videos

Self-Heating

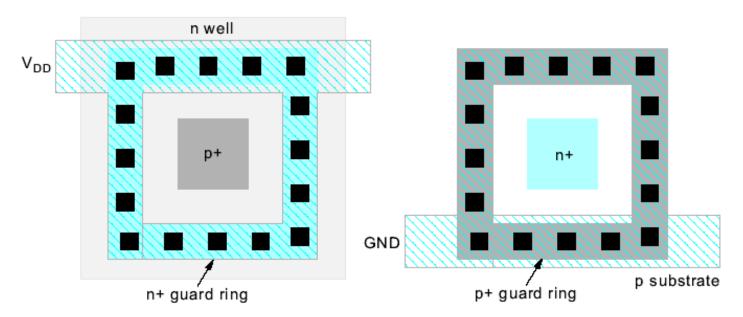
- Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower
- Self-heating limits AC current densities for reliability

$$I_{rms} = \sqrt{\frac{\int_{0}^{T} I(t)^{2} dt}{T}}$$


- Typical limits: J_{rms} < 15 mA / μ m²

Hot Carriers

- Electric fields across channel impart high energies to some carriers
 - These "hot" carriers may be blasted into the gate oxide where they become trapped
 - Accumulation of charge in oxide causes shift in V_t over time
 - Eventually V_t shifts too far for devices to operate correctly
- Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input risetime and long propagation delays


Latchup

- Latchup: positive feedback leading to V_{DD} GND short
 - Major problem for 1970's CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps

Guard Rings

- Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- Surround sensitive region with guard ring to collect injected charge

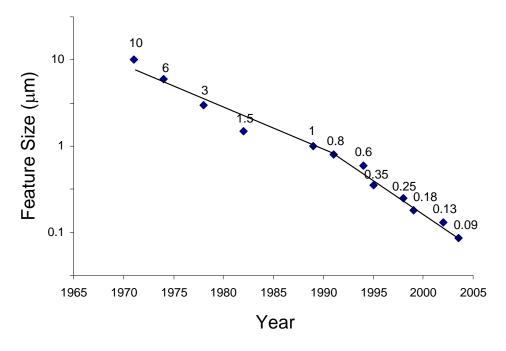
Overvoltage

- High voltages can damage transistors
 - Electrostatic discharge
 - Oxide arcing
 - Punchthrough
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents
- Requires low V_{DD} for thin oxides and short channels
- Use ESD protection structures where chip meets real world

Summary

- Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- Very important to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren't worth the paper they are printed on unless you back them up with a tool.

Soft Errors


- In 1970's, DRAMs were observed to occasionally flip bits for no apparent reason
 - Ultimately linked to alpha particles and cosmic rays
- Collisions with particles create electron-hole pairs in substrate
 - These carriers are collected on dynamic nodes, disturbing the voltage
- Minimize soft errors by having plenty of charge on dynamic nodes
- Tolerate errors through ECC, redundancy

Outline

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster
 - Wires do not improve (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

Scaling Assumptions

- What changes between technology nodes?
- Constant Field Scaling
 - All dimensions (x, y, z => W, L, t_{ox})
 - Voltage (V_{DD})
 - Doping levels
- Lateral Scaling
 - Only gate length L
 - Often done as a quick gate shrink (S = 1.05)

4- 23

Device Scaling

Table 4.15 Influence of scaling on MOS device characteristics				
Parameter	Sensitivity	Constant Field	Lateral	
Scaling	Parameters			
Length: L		1/ <i>S</i>	1/S	
Width: W		1/ <i>S</i>	1	
Gate oxide thickness: t_{ox}		1/S	1	
Supply voltage: V_{DD}		1/ <i>S</i>	1	
Threshold voltage: V_{tn} , V_{tp})	1/S	1	
Substrate doping: N_A		S	1	
Device C	haracteristics			
β	$\frac{W}{L} \frac{1}{t_{\text{ox}}}$	S	S	
Current: I_{ds}	$\beta \big(V_{DD} - V_t \big)^2$	1/S	S	
Resistance: R	$rac{{V_{DD}}}{{I_{ds}}}$	1	1/S	
Gate capacitance: C	$\frac{WL}{t_{\text{ox}}}$	1/S	1/S	
Gate delay: τ	RC	1/S	$1/S^2$	
Clock frequency: f	1/τ	S	S^2	
Dynamic power dissipation (per gate): P	CV^2f	$1/S^2$	S	
Chip area: A		$1/S^2$	1	
Power density	P/A	1	S	
Current density	I_{ds}/A	S	S	

Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
- Velocity saturation makes lateral scaling unsustainable

Example

- Gate capacitance is typically about 2 fF/μm
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about 0.5f ps
- Estimate the ON resistance of a unit (4 λ wide) nMOS transistor.
- $FO4 = 5 \tau = 15 RC$
- RC = (0.5f) / 15 = (f/30) ps/nm
- If W = 2f, C=4f*(1e-3) fF, R = 8.33 k Ω
 - Unit resistance is roughly independent of f

Scaling Assumptions

- Wire thickness
 - Hold constant vs. reduce in thickness
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by $D_c \approx 1.1$

4- 27

Interconnect Scaling

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Pa	arameters		
Width: w			1/S
Spacing: s			1/S
Thickness: t		1/S	1
Interlayer oxide height: h			1/ <i>S</i>
Characteristics Per Unit Length			
Wire resistance per unit length: R_w	$\frac{1}{wt}$	S^2	S
Fringing capacitance per unit length: C_{wf}	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: C_{wp}	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_w	$C_{wf} + C_{wp}$	1	between 1, S
Unrepeated RC constant per unit length: t_{wu}	$R_w C_w$	S^2	between S,
Repeated wire RC delay per unit length: t_{wr} (assuming constant field scaling of gates in Table 4.15)	$\sqrt{RCR_wC_w}$	\sqrt{S}	between 1, \sqrt{S}
Crosstalk noise	$\frac{t}{s}$	1	S

Interconnect Delay

Table 4.16 Influence of scaling on interconnect characteristics							
Parameter	Sensitivity	Reduced Thickness	Constant Thickness				
Scaling Parameters							
Width: w			1/ <i>S</i>				
Spacing: s		4	1/ <i>S</i>				
Thickness: t		1/S	1				
Interlayer oxide height: h	1	1/S					
Local/Scaled Interconnect Characteristics	Acid						
Length: l			1/ <i>S</i>				
Unrepeated wire RC delay	Pt_{wu}	1	between 1/S, 1				
Repeated wire delay	lt_{wr}	$\sqrt{1/S}$	between $1/S$, $\sqrt{1/S}$				
Global Interconnect Characteristics							
Length: l		D_c					
Unrepeated wire RC delay	l^2t_{wu}	$S^2D_c^2$	between SD_c^2 , $S^2D_c^2$				
Repeated wire delay	lt_{wr}	$D_c \sqrt{S}$	between D_c , $D_c \sqrt{S}$				

Observations

- Capacitance per micron is remaining constant
 - About 0.2 fF/μm
 - Roughly 1/10 of gate capacitance
- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle

ITRS

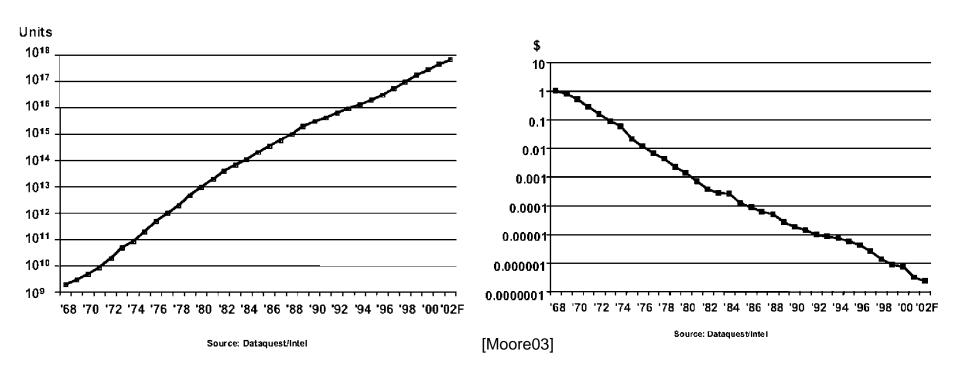
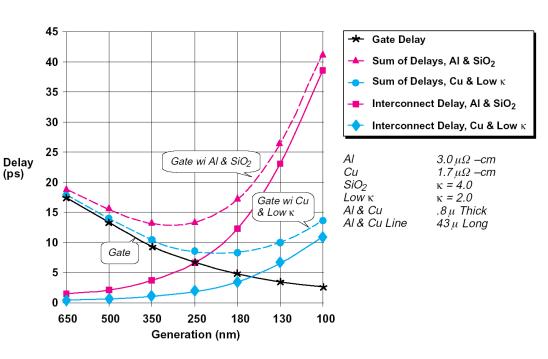
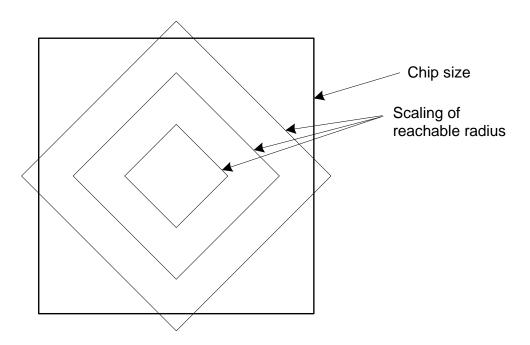

- Semiconductor Industry Association forecast
 - Intl. Technology Roadmap for Semiconductors

Table 4.17 Predictions from the 2002 ITRS						
Year	2001	2004	2007	2010	2013	2016
Feature size (nm)	130	90	65	45	32	22
$V_{DD}\left(\mathrm{V} ight)$	1.1-1.2	1-1.2	0.7-1.1	0.6-1.0	0.5-0.9	0.4-0.9
Millions of transistors/die	193	385	773	1564	3092	6184
Wiring levels	8-10	9–13	10-14	10-14	11–15	11–15
Intermediate wire pitch (nm)	450	275	195	135	95	65
Interconnect dielectric	3-3.6	2.6-3.1	2.3-2.7	2.1	1.9	1.8
constant						
I/O signals	1024	1024	1024	1280	1408	1472
Clock rate (MHz)	1684	3990	6739	11511	19348	28751
FO4 delays/cycle	13.7	8.4	6.8	5.8	4.8	4.7
Maximum power (W)	130	160	190	218	251	288
DRAM capacity (Gbits)	0.5	1	4	8	32	64

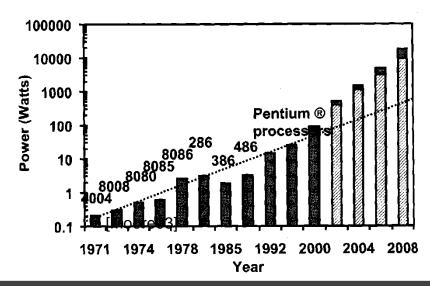

- Improved Performance
- Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Cost Improvement

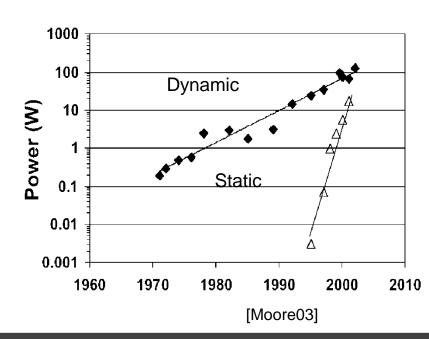
- In 2003, \$0.01 bought you 100,000 transistors
 - Moore's Law is still going strong



- SIA made a gloomy forecast in 1997
 - Delay would reach minimum at 250 180 nm, then get worse because of wires
- But...
 - Misleading scale
 - Global wires
- 100 kgate blocks ok


Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - Just as off-chip memory latencies were tolerated


Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Intel stock dropped 8% on the next day
- But attention to power is increasing

Static Power

- V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point in high value because of velocity sat.
- V_t must decrease to keep device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
 - Bigger design teams
 - Up to 500 for a high-end microprocessor
 - More expensive design cost
 - Pressure to raise productivity
 - Rely on synthesis, IP blocks
 - Need for good engineering managers

Physical Limits

- Will Moore's Law run out of steam?
 - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated