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Power and Energy 
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• Power is drawn from a voltage source attached to 
the VDD pin(s) of a chip. 

 

• Instantaneous Power: 

 

• Energy: 

 

• Average Power: 
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Static and Dynamic Dissipation 

• Static dissipation 

– Subthreshold conduction through OFF transistors 

– Tunneling current through gate oxide 

– Leakage through reverse-biased diodes 

– Contention current in ratioed circuits 

• Dynamic dissipation 

– Charging and discharging of load capacitance 

– “Short-circuit” current while both pMOS and nMOS 
networks are partially ON 

 

4 
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Dynamic Power 
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• Dynamic power is required to charge and discharge 
load capacitances when transistors switch. 

• One cycle involves a rising and falling output. 

• On rising output, charge Q = CVDD is required 

• On falling output, charge is dumped to GND 

• This repeats Tfsw times 

 over an interval of T 
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Dynamic Power Cont. 
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Activity Factor 
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• Suppose the system clock frequency = f 

• Let fsw = af, where a = activity factor 

– If the signal is a clock, a = 1 

– If the signal switches once per cycle, a = ½  

– Dynamic gates:  

• Switch either 0 or 2 times per cycle, a = ½  

– Static gates: 

• Depends on design, but typically a = 0.1 

• Dynamic power: 
2

dynamic DDP CV fa
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Short Circuit Current 
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• When transistors switch, both nMOS and pMOS 
networks may be momentarily ON at once 

• Leads to a blip of “short circuit” current. 

• < 10% of dynamic power if rise/fall times are 
comparable for input and output 
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Example 
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• 200M transistor chip 

– 20M logic transistors 

• Average width: 12 l 

– 180M memory transistors 

• Average width: 4 l 

– 1.2 V 100 nm process (l = 0.5* feature size = 50nm) 

– Cg = 2 fF/mm 



VLSI Design 

4- 

Chih-Cheng Hsieh 

Dynamic Example 
10 

• Static CMOS logic gates: activity factor = 0.1 

• Memory arrays: activity factor = 0.05 (many banks 
and partially activated at a time!) 

• Estimate dynamic power consumption per MHz.  

–  Neglect wire capacitance and short-circuit current. 
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Dynamic Example 
11 

• Static CMOS logic gates: activity factor = 0.1 

• Memory arrays: activity factor = 0.05 (many banks 
and partially activated at a time!) 

• Estimate dynamic power consumption per MHz.  

–  Neglect wire capacitance. 
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Static Power 
12 

• Static power is consumed even when chip is 
quiescent. 

– Ratioed circuits burn power in fight between ON 
transistors 

– Leakage draws power from nominally OFF devices 
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Ratio Example 
13 

• The chip contains a 32 word x 48 bit ROM 

– Uses 1:32 pseudo-nMOS decoder and bitline pullups 

– On average, one wordline and 24 bitlines are high 

• Find static power drawn by the ROM  

–  b = 75 mA/V2, VDD = 1.8V 

– Vtp = -0.4V 

• Solution: 
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Leakage Example 
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• The process has two threshold voltages and two 
oxide thicknesses.   

• Subthreshold leakage:  

– 20 nA/mm for low Vt 

– 0.02 nA/mm for high Vt 

• Gate leakage: 

– 3 nA/mm for thin oxide 

– 0.002 nA/mm for thick oxide 

• Memories use low-leakage transistors everywhere 

• Gates use low-leakage transistors on 80% of logic 



VLSI Design 

4- 

Chih-Cheng Hsieh 

Leakage Example Cont. 
15 

• Estimate static power: 

– High leakage: 

– Low leakage: 

 

 

 

 

 

 

• If no low leakage devices, Pstatic = 749 mW (!) 
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Low Power Design 
16 

• Reduce dynamic power 

– a: clock gating, sleep mode 

– C: small transistors (esp. on clock), short wires  

– VDD: lowest suitable voltage 

– f: lowest suitable frequency 

• Reduce static power 

– Selectively use ratioed circuits 

– Selectively use low Vt devices 

– Leakage reduction:  

 stacked devices, body bias, low temperature 
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Reduce Static Power 

• Leakage stack effect 

17 

• MTCMOS : Multiple 
Threshold CMOS 

• Body bias 
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Interconnect 
 19 

• Chips are mostly made of wires called 
interconnect 

– In stick diagram, wires set size 

– Transistors are little things under the wires 

– Many layers of wires 

• Wires are as important as transistors 

– Speed 

– Power 

– Noise 

• Alternating layers run orthogonally 
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Wire Geometry 
 20 

• Pitch = w + s 

• Aspect ratio: AR = t/w 

– Old processes had AR << 1 

– Modern processes have AR  2 

• Pack in many skinny wires 

l

w s

t

h
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Layer Stack 
 21 

• AMI 0.6 mm process has 3 metal layers 

• Modern processes use 6-10+ metal layers 

• Example: Intel 180 nm process 

• M1: thin, narrow (< 3l) 

– High density cells 

• M2-M4: thicker 

– For longer wires 

• M5-M6: thickest 

– For VDD, GND, clk 

Layer T (nm) W (nm) S (nm) AR

6 1720 860 860 2.0

1000

5 1600 800 800 2.0

1000

4 1080 540 540 2.0

700

3 700 320 320 2.2

700

2 700 320 320 2.2

700

1 480 250 250 1.9

800

Substrate
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Wire Resistance 
 22 

• r = resistivity (W*m) 

 

 

• R


 = sheet resistance (W/) 

– is a dimensionless unit(!) 

• Count number of squares 

– R = R


 * (# of squares) 
l

w

t
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    = R  (L/W) W

t
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l

l l
R R

t w w
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Choice of Metals 
 23 

• Until 180 nm, most wires were aluminum 

• Modern processes often use copper 

– Cu atoms diffuse into silicon and damage FETs 

– Must be surrounded by a diffusion barrier 

Metal Bulk resistivity (mW*cm) 

Silver (Ag) 1.6 

Copper (Cu) 1.7 

Gold (Au) 2.2 

Aluminum (Al) 2.8 

Tungsten (W) 5.3 

Molybdenum (Mo) 5.3 
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Sheet Resistance 
 24 

• Typical sheet resistances in 180 nm process 

Layer Sheet Resistance (W/) 

Diffusion (silicided) 3-10 

Diffusion (no silicide) 50-200 

Polysilicon (silicided) 3-10 

Polysilicon (no silicide) 50-400 

Metal1 0.08 

Metal2 0.05 

Metal3 0.05 

Metal4 0.03 

Metal5 0.02 

Metal6 0.02 
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Contacts Resistance 
 25 

• Contacts and vias also have 2-20 W 

• Use many contacts for lower R 

– Many small contacts for current crowding around 
periphery 
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Wire Capacitance 
 26 

• Wire has capacitance per unit length 

– To neighbors 

– To layers above and below 

• Ctotal = Ctop + Cbot + 2Cadj 

layer n+1

layer n

layer n-1

C
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C
top

C
bot
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h
1

h
2



VLSI Design 

4- 

Chih-Cheng Hsieh 

Capacitance Trends 
 27 

• Parallel plate equation:  C = eA/d 

– Wires are not parallel plates, but obey trends 

– Increasing area (W, t) increases capacitance 

– Increasing distance (s, h) decreases capacitance 

• Dielectric constant 

– e = ke0 

– e0 = 8.85 x 10-14 F/cm 

– k = 3.9 for SiO2 

• Processes are starting to use low-k dielectrics 

– k  3 (or less) as dielectrics use air pockets 
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M2 Capacitance Data 
 28 

• Typical wires have ~ 0.2 fF/mm 

– Compare to 2 fF/mm for gate capacitance 
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Diffusion & Polysilicon 
 29 

• Diffusion capacitance is very high (about 2 fF/mm) 

– Comparable to gate capacitance 

– Diffusion also has high resistance 

– Avoid using diffusion runners for wires! 

• Polysilicon has lower C but high R 

– Use for transistor gates 

– Occasionally for very short wires between gates 
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Lumped Element Models 
 30 

• Wires are a distributed system 
– Approximate with lumped element models 

 

 

 

 

 

• 3-segment p-model is accurate to 3% in 
simulation 

• L-model needs 100 segments for same accuracy! 

• Use single segment p-model for Elmore delay 

C
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Example 
 31 

• Metal2 wire in 180 nm process 

– 5 mm long 

– 0.32 mm wide 

• Construct a 3-segment p-model 

– R


 = 0.05 W/          => R = 781 W 

– Cpermicron = 0.2 fF/mm   => C = 1 pF 

260 W

167 fF 167 fF

260 W

167 fF 167 fF

260 W

167 fF 167 fF
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Wire RC Delay 
 32 

• Estimate the delay of a 10x inverter driving a 2x 
inverter at the end of the 5mm wire from the 
previous example. 

– Effective R = 2.5 kW/mm for gates, C = 2 fF/mm 

– Unit inverter: 4l = 0.36 mm nMOS, 8l = 0.72 mm pMOS 

• R(10x) = 2.5kW/(0.36x10)=690, C(2x) = (0.36+0.72)x2=2 fF. 

• tpd = (690W)*(500fF)+(690W781W)*(5000fF+4fF)=1.1 ns. 

 
 

 

 

 

 

 

781 W

500 fF 500 fF

Driver Wire

4 fF

Load

690 W
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Crosstalk 
 33 

• A capacitor does not like to change its voltage 
instantaneously. 

• A wire has high capacitance to its neighbor. 

– When the neighbor switches from 1-> 0 or 0->1, the 
wire tends to switch too. 

– Called capacitive coupling or crosstalk. 

• Crosstalk effects 

– Noise on nonswitching wires 

– Increased delay on switching wires 
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Crosstalk Delay 
 34 

• Assume layers above and below on average are 
quiet 

– Second terminal of capacitor can be ignored 

– Model as Cgnd = Ctop + Cbot 

• Effective Cadj depends on behavior of neighbors 

– Miller Coupling Factor (MCF)  

A B
C

adjC
gnd

C
gnd

B DV Ceff(A) MCF 

Constant VDD Cgnd + Cadj 1 

Switching with A 0 Cgnd 0 

Switching opposite A 2VDD Cgnd + 2 Cadj 2 
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Crosstalk Noise 
 35 

• Crosstalk causes noise on nonswitching wires 

• If victim is floating: 

– model as capacitive voltage divider 

C
adj

C
gnd-v

Aggressor

Victim

DV
aggressor

DV
victim
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victim aggressor

gnd v adj
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V V
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Driven Victims 
 36 

• Usually victim is driven by a gate that fights noise 

– Noise depends on relative resistances 

– Victim driver is in linear region, and aggressor driver is  
in saturation. (p3-53) 

– If sizes are same, Raggressor = 2-4 x Rvictim 

1

1
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victim aggressor

gnd v adj
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V V
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Coupling Waveforms 
 37 

• Simulated coupling for Cadj = Cgnd 

Aggressor

Victim (undriven): 50%

Victim (half size driver): 16%

Victim (equal size driver): 8%

Victim (double size driver): 4%

t (ps)

0 200 400 600 800 1000 1200 1400 1800 2000

0

0.3

0.6

0.9

1.2

1.5

1.8
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Noise Implications 
 38 

• So what if we have noise? 

• If the noise is less than the noise margin, nothing 
happens 

• Static CMOS logic will eventually settle to correct 
output even if disturbed by large noise spikes 

– But glitches cause extra delay 

– Also cause extra power from false transitions 

• Dynamic logic never recovers from glitches 

• Memories and other sensitive circuits also can 
produce the wrong answer 
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39 

1. Delay Estimation 

2. Logical Effort and Transistor Sizing 

3. Power Dissipation 

4. Interconnect 

5. Wire Engineering 

6. Design Margin 

7. Reliability 

8. Scaling 



VLSI Design 

4- 

Chih-Cheng Hsieh 

Wire Engineering 
 40 

• Goal: achieve delay, area, power goals with 
acceptable noise 

• Degrees of freedom: 



VLSI Design 

4- 

Chih-Cheng Hsieh 

Wire Engineering 
 41 

• Goal: achieve delay, area, power goals with 
acceptable noise 

• Degrees of freedom: 

– Width  

– Spacing 
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Wire Engineering 
 42 

• Goal: achieve delay, area, power goals with 
acceptable noise 

• Degrees of freedom: 

– Width  

– Spacing 

– Layer 

– Shielding 
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Repeaters 
 43 

• R and C are proportional to l (length) 

• RC delay is proportional to l2 

– Unacceptably great for long wires 

• Break long wires into N shorter segments 

– Drive each one with an inverter or buffer 
Wire Length: l

Driver Receiver

l/N

Driver

Segment

Repeater

l/N

Repeater

l/N

ReceiverRepeater

N Segments
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Repeater Design 
 44 

• How many repeaters should we use? 

• How large should each one be? 

• Equivalent Circuit 

– Wire length l 

• Wire Capaitance Cw*l, Resistance Rw*l 

– Inverter width W (nMOS = W, pMOS = 2W) 

• Gate Capacitance C’*W, Resistance R/W 
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Repeater Design 
 45 

• How many repeaters should we use? 

• How large should each one be? 

• Equivalent Circuit 

– Wire length l/N 

• Wire Capacitance Cw*l/N, Resistance Rw*l/N 

– Inverter width W (nMOS = W, pMOS = 2W) 

• Gate Capacitance C’*W, Resistance R/W 

R/W
C'WC

w
l/2N C

w
l/2N

R
w
lN
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Repeater Results 
 46 

• Write equation for Elmore Delay 

 

 

– Differentiate with respect to W and N 

– Set equal to 0, solve 
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