

Circuit Characterization and Performance Estimation II

Outline

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- **3. Power Dissipation**
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Power and Energy

 Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

- Instantaneous Power: $P(t) = i_{DD}(t)V_{DD}$
- Energy: $E = \int_{0}^{1} P(t)dt = \int_{0}^{1} i_{DD}(t)V_{DD}dt$
- Average Power:

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

Static and Dynamic Dissipation

$$P_{\text{total}} = P_{\text{static}} + P_{\text{dynamic}}$$

- Static dissipation
 - Subthreshold conduction through OFF transistors
 - Tunneling current through gate oxide
 - Leakage through reverse-biased diodes
 - Contention current in ratioed circuits
- Dynamic dissipation
 - Charging and discharging of load capacitance
 - "Short-circuit" current while both pMOS and nMOS networks are partially ON

Dynamic Power

- Dynamic power is required to charge and discharge load capacitances when transistors switch.
- One cycle involves a rising and falling output.
- On rising output, charge Q = CV_{DD} is required
- On falling output, charge is dumped to GND
- This repeats Tf_{sw} times over an interval of T

Dynamic Power Cont.

Chih-Cheng Hsieh

VLSI Design

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where α = activity factor
 - If the signal is a clock, α = 1
 - If the signal switches once per cycle, α = ½
 - Dynamic gates:
 - Switch either 0 or 2 times per cycle, α = ½
 - Static gates:
 - Depends on design, but typically α = 0.1
- Dynamic power:

$$P_{\rm dynamic} = \alpha C V_{DD}^2 f$$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output

Example

- 200M transistor chip
 - 20M logic transistors
 - Average width: 12 λ
 - 180M memory transistors
 - Average width: 4 λ
 - 1.2 V 100 nm process (λ = 0.5* feature size = 50nm)
 - $-C_g = 2 \text{ fF}/\mu m$

Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks and partially activated at a time!)
- Estimate dynamic power consumption per MHz.
 - Neglect wire capacitance and short-circuit current.

Dynamic Example

- Static CMOS logic gates: activity factor = 0.1
- Memory arrays: activity factor = 0.05 (many banks and partially activated at a time!)
- Estimate dynamic power consumption per MHz.

Neglect wire capacitance.

$$C_{\text{logic}} = (20 \times 10^{6})(12\lambda)(0.05\,\mu m \,/\,\lambda)(2\,fF \,/\,\mu m) = 24nF$$
$$C_{\text{mem}} = (180 \times 10^{6})(4\lambda)(0.05\,\mu m \,/\,\lambda)(2\,fF \,/\,\mu m) = 72nF$$
$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.05C_{\text{mem}}\right](1.2)^{2} \,f = 8.6 \text{ mW/MHz}$$
$$= 8.6 \text{ W} @ 1 \text{ GHz}$$

Static Power

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight between ON transistors
 - Leakage draws power from nominally OFF devices

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left[1 - e^{\frac{-V_{ds}}{v_T}} \right]$$

$$V_{t} = V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}}\right)$$

Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses 1:32 pseudo-nMOS decoder and bitline pullups
 - On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM

$$- \beta = 75 \ \mu A/V^2, V_{DD} = 1.8V$$

 $- V_{tp} = -0.4V$

• Solution:

$$I_{\text{pull-up}} = \beta \frac{\left(V_{DD} - \left|V_{tp}\right|\right)^2}{2} = 73\mu\text{A}$$
$$P_{\text{pull-up}} = V_{DD}I_{\text{pull-up}} = 130\mu\text{W}$$
$$P_{\text{static}} = (31 + 24)P_{\text{pull-up}} = 7.2 \text{ mW}$$

Leakage Example

- The process has two threshold voltages and two oxide thicknesses.
- Subthreshold leakage:
 - 20 nA/ μm for low V $_t$
 - 0.02 nA/ μm for high V $_t$
- Gate leakage:
 - 3 nA/ μ m for thin oxide
 - 0.002 nA/ μ m for thick oxide
- Memories use low-leakage transistors everywhere
- Gates use low-leakage transistors on 80% of logic

Leakage Example Cont.

- Estimate static power:
 - High leakage:
 - Low leakage:

 $(20 \times 10^{6})(0.2)(12\lambda)(0.05 \mu m / \lambda) = 2.4 \times 10^{6} \mu m$

 $(20 \times 10^{6})(0.8)(12\lambda)(0.05 \mu m / \lambda) +$ $(180 \times 10^{6})(4\lambda)(0.05 \mu m / \lambda) = 45.6 \times 10^{6} \mu m$

$$I_{static} = (2.4 \times 10^{6} \,\mu m) [(20nA / \,\mu m) / 2 + (3nA / \,\mu m)] + (45.6 \times 10^{6} \,\mu m) [(0.02nA / \,\mu m) / 2 + (0.002nA / \,\mu m)] = 32mA$$
$$P_{static} = I_{static} V_{DD} = 38mW$$

If no low leakage devices, P_{static} = 749 mW (!)

Low Power Design

- Reduce dynamic power
 - $-\alpha$: clock gating, sleep mode
 - C: small transistors (esp. on clock), short wires
 - $-V_{DD}$: lowest suitable voltage
 - f: lowest suitable frequency
- Reduce static power
 - Selectively use ratioed circuits
 - Selectively use low V_t devices
 - Leakage reduction:

stacked devices, body bias, low temperature

Reduce Static Power

• Leakage stack effect

• MTCMOS : Multiple Threshold CMOS

• Body bias

Chih-Cheng Hsieh

4- 17

VLSI Design

Outline

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation

4. Interconnect

- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Interconnect

- Chips are mostly made of wires called interconnect
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w
 - Old processes had AR << 1</p>
 - Modern processes have AR ≈ 2
 - Pack in many skinny wires

Layer Stack

- AMI 0.6 µm process has 3 metal layers
- Modern processes use 6-10+ metal layers
- Example: Intel 180 nm process
- M1: thin, narrow (< 3λ)
 High density cells
- M2-M4: thicker
 For longer wires
- M5-M6: thickest
 - For V_{DD}, GND, clk

Layer	T (nm)	W (nm)	S (nm)	AR	
6	1720	860	860	2.0	
	1000				
5	1600	800	800	2.0	
	1000				
4	1080	540	540	2.0	
	700				
3	700 700	320	320	2.2	
2	700 700	320	320	22	aa
Z	700 700	520	320	2.2	88
1	480 800	250	250	1.9	00

Substrate

Wire Resistance

• $\rho = resistivity (\Omega^*m)$

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\Box} \frac{l}{w}$$

- $R_{\Box} = sheet \ resistance \ (\Omega/\Box)$ - \Box is a dimensionless unit(!)
- Count number of squares

 $-R = R_{\Box} * (# of squares)$

Choice of Metals

- Until 180 nm, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity (μΩ*cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Sheet Resistance

• Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/\Box)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

Contacts Resistance

- Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

- Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

Capacitance Trends

- Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant
 - $-\epsilon = k\epsilon_0$
 - $-\epsilon_0 = 8.85 \text{ x } 10^{-14} \text{ F/cm}$
 - $k = 3.9 \text{ for } SiO_2$
- Processes are starting to use low-k dielectrics $- k \approx 3$ (or less) as dielectrics use air pockets

M2 Capacitance Data

- Typical wires have $\sim 0.2 \text{ fF}/\mu m$
 - Compare to 2 fF/ μ m for gate capacitance

VLSI Design

Chih-Cheng Hsieh

Diffusion & Polysilicon

- Diffusion capacitance is very high (about 2 fF/ μ m)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion *runners* for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

4- 30

- Wires are a distributed system
 - Approximate with lumped element models

- 3-segment π-model is accurate to 3% in simulation
- L-model needs 100 segments for same accuracy!
- Use single segment π -model for Elmore delay

VLSI Design

Example

- Metal2 wire in 180 nm process
 - 5 mm long
 - $-0.32\ \mu m$ wide
- Construct a 3-segment π -model
 - $-R_{\Box} = 0.05 \ \Omega/\Box$ => R = 781 Ω
 - $-C_{permicron} = 0.2 \text{ fF}/\mu m => C = 1 \text{ pF}$

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - Effective R = 2.5 k $\Omega/\mu m$ for gates, C = 2 fF/ μm
 - Unit inverter: 4λ = 0.36 μ m nMOS, 8λ = 0.72 μ m pMOS
 - $R(10x) = 2.5k\Omega/(0.36x10)=690$, C(2x) = (0.36+0.72)x2=2 fF.
 - $t_{pd} = (690\Omega)^*(500fF) + (690\Omega + 781\Omega)^*(5000fF + 4fF) = 1.1 \text{ ns.}$

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- Effective C_{adj} depends on behavior of neighbors
 - Miller Coupling Factor (MCF)

В	ΔV	C _{eff(A)}	MCF
Constant	V _{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C _{gnd}	0
Switching opposite A	$2V_{DD}$	C_{gnd} + 2 C_{adj}	2

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- If victim is floating:
 - model as capacitive voltage divider

Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, and aggressor driver is in saturation. (p3-53)
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

Coupling Waveforms

• Simulated coupling for C_{adj} = C_{gnd}

VLSI Design

Chih-Cheng Hsieh

Noise Implications

- So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

VLSI Design

Outline

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

Wire Engineering

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

VLSI Design

Chih-Cheng Hsieh

Repeaters

- R and C are proportional to *I* (*length*)
- RC delay is proportional to *l*²
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

VLSI Design

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capaitance C_w**I*, Resistance R_w**I*
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Design

- How many repeaters should we use?
- How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capacitance C_w**I/N*, Resistance R_w*I/N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Results

• Write equation for Elmore Delay

$$t_{pd} = N \left[\frac{R}{W} \left(C_w \frac{l}{N} + C'W \right) + R_w \frac{l}{N} \left(\frac{C_w}{2} \frac{l}{N} + CW \right) \right]$$

- Differentiate with respect to W and N
- Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$
$$\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right)\sqrt{RC'R_w C_w}$$
$$W = \sqrt{\frac{RC_w}{R_w C'}}$$

VLSI Design

~60-80 ps/mm

in 180 nm process