

Circuit Characterization and Performance Estimation I

Outline

1. Delay Estimation

- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Transient Response

- DC analysis tells us Vout if Vin is constant
- Transient analysis tells us V_{out}(t) if V_{in}(t) changes
 Requires solving differential equations
- Input is usually considered to be a step or ramp
 From 0 to V_{DD} or vice versa

4-3

Inverter Step Response

• Find step response of inverter driving load cap

$$V_{in}(t) = u(t - t_0)V_{DD}$$

$$V_{out}(t < t_0) = V_{DD}$$

$$\frac{dV_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}}$$

$$V_{in}(t) = \begin{cases} 0 & t \le t_0 \\ \frac{\beta}{2}(V_{DD} - V_t)^2 & V_{out} > V_{DD} - V_t \\ \beta\left(V_{DD} - V_t - \frac{V_{out}(t)}{2}\right)V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

Delay Definitions (1/3)

- t_{pdr}: maximum rising propagation delay

 From input to rising output crossing V_{DD}/2
- t_{pdf}: maximum falling propagation delay

 From input to falling output crossing V_{DD}/2
- **t**_{pd}: average propagation delay

$$-t_{pd} = (t_{pdr} + t_{pdf})/2$$

- **t**_r: *rise time*
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- **t**_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions (2/3)

4- 6

VLSI Design

Chih-Cheng Hsieh

Delay Definitions (3/3)

- t_{cdr}: minimum rising contamination delay

 From input to rising output crossing V_{DD}/2
- t_{cdf}: minimum falling contamination delay

 From input to falling output crossing V_{DD}/2
- **t**_{cd}: average contamination delay

4-7

Simulated Inverter Delay

- Solving differential equations by hand is too difficult
- SPICE simulator solves the equations numerically
 - Use more accurate I-V models too
- But accurate simulations take time

Delay Estimation I

- Estimate delay easily
 - Not as accurate as simulation
 - Easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $\mathbf{t}_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

Delay Estimation II

- **Critical path** : the signal path with the slowest (most critical) timing, it can be affected at 4 main levels.
- The architectural/micro-architectural level
 - Tradeoff of pipeline stages, number of execution units, and size of memory, it's the level with the most impact factor.
- The **logic** level
 - Tradeoff of functional block types, number of gate in the cycle, fan-in and fan-out number.
- The circuit level
 - Choosing transistor size and CMOS logic styles.
- The **layout** level
 - Determine floor plan, wire length, and check parasitic

Critical Path

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

Example: Inverter

Example: Inverter

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R)

3-input NAND Caps

Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

 Annotate the 3-input NAND gate with gate and diffusion capacitance.

VLSI Design

3-input NAND Caps

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

4-18

VLSI Design

Delay of 3-input NAND

Rising

Elmore Delay Model

4- 20

- On transistors look like resistors
- Pullup or pulldown network can be modeled as RC ladder
- Elmore delay model of an RC ladder

$$t_{pd} = \sum_{i} R_{n-i} C_i = \sum_{i=1}^{N} C_i \sum_{j=1}^{N} R_j$$

VLSI Design

Example: 2-input NAND

 Estimate worst-case rising and falling delay of 2input NAND driving *h* identical gates

h copies

falling delay (A=1, B=0->1, X,Y=1->0)

$$_{pdf} = \left(2C\right)\left(\frac{R}{2}\right) + \left[\left(6+4h\right)C\right]\left(\frac{R}{2}+\frac{R}{2}\right) = \left(7+4h\right)RC$$

VLSI Design

Chih-Cheng Hsieh

Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay
- Example: If both inputs fall simultaneously

Latest input should be connected to transistor closest to the output

VLSI Design

Chih-Cheng Hsieh

4-22

Diffusion Capacitance

- Good layout minimizes diffusion area
- Example: NAND3 layout shares diffusion contact
 - Reduce output capacitance by 2C
 - Merged un-contacted diffusion might help too

Layout Comparison

• Which layout is better

Delay Components

- Parasitic delay
 - -6 or 7 RC

Independent of load

- Effort delay
 - -4h RC
 - Proportional to load capacitance

$$t_{pdr} = (6+4h)RC$$
$$t_{pdf} = (7+4h)RC$$

Outline

4-26

- 1. Delay Estimation
- 2. Logical Effort and Transistor Sizing
- 3. Power Dissipation
- 4. Interconnect
- 5. Wire Engineering
- 6. Design Margin
- 7. Reliability
- 8. Scaling

Introduction

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

4-28

- Express delays in process-independent unit $d = \frac{d_{abs}}{\tau}$ $\tau = 3RC$
 - \approx 12 ps in 180 nm process
 - 40 ps in 0.6 μ m process

- Express delays in process-independent unit $d = \frac{d_{abs}}{d}$
- Delay has two components

$$d = f + p$$

4- 31

- Express delays in process-independent unit $d = \frac{d_{abs}}{d}$
- Delay has two components

$$d = f + p$$

- Effort delay **f** = gh (or stage effort)
 - Again has two components

Propagation Delay in a Logic Gate

- Express delays in process-independent unit $d = \frac{d_{abs}}{d}$
- Delay has two components

$$d = f + p$$

- Effort delay f = gh (or stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter

- 4- 33
- Express delays in process-independent unit $d = \frac{d_{abs}}{d}$
- Delay has two components

$$d = f + p$$

- Effort delay *f* = *gh* (a.k.a. stage effort)
 - Again has two components
- *h*: *electrical effort* = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

- 4- 34
- Express delays in process-independent unit $d = \frac{d_{abs}}{d}$
- Delay has two components

 $d = f + \mathbf{p}$

- Parasitic delay p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

Chih-Cheng Hsieh

Computing Logical Effort

- The ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current
- Measure from delay vs. fanout plots or
- Estimate by counting transistor widths

Delay Plots

d = f + p= gh + p

VLSI Design

Delay Plots

- d = f + p= gh + p
- What about NOR2?

4-37

Catalog of Gates

• Logic effort of common gates

$$g_i = \frac{C_{in-i}}{C_{in-inv}} = \frac{C_{in-i}}{3C}$$

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

Catalog of Gates

- Parasitic delay of common gates
 - In multiples of P_{inv}(~1)

$$p_i = \frac{C_{p-i}}{C_{p-inv}} = \frac{C_{p-i}}{3C}$$

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

 Estimate the frequency of an N-stage ring oscillator

Logic Effort:g = 1Electrical Effort:h = 1Parasitic Delay:p = 1Stage Delay:d = 2Frequency: $f_{osc} = \frac{1}{2M}$

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter
 - FO4 delay for a process (ps) is ⅓ to ⅓ of the channel length (nm). Ex. 180nm : FO4 = 60~90ps → highly sensitive to process, voltage, temperature variation.

Multistage Logic Networks

- Logic effort generalizes to multistage networks
- Path logical effort $G = \prod g_i$
- Path electrical effort $H = C_{out-path}/C_{in-path}$
- Path effort

$$F = \prod f_i = \prod g_i h_i$$

Paths that Branch

• No! Consider paths that branch

```
G = 1

H = 90/5 = 18

GH = 18

h<sub>1</sub> = (15+15)/5 = 6

h<sub>2</sub> = 90/15 = 6

F = g_1g_2h_1h_2 = 36 = 2GH
```


Branching Effort

Accounts for branching between stages in path

- Branching effort
$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$
Note:- Path ranching effort $B = \prod b_i$ $\prod h_i = BH$

Now we compute path effort

F = GBH

Multistage Delays

Path effort delay

 $D_F = \sum f_i$

• Path parasitic delay

 $P = \sum p_i$

• Path delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

 $D = \sum d_i = D_F + P$

Delay is smallest when each stage bears same effort

 $\hat{f} = g_i h_i = F^{\frac{1}{N}}$

• Thus minimum delay of N stage path is

 $D = NF^{\frac{1}{N}} + P$

- This is a key result of logic effort
 - Find fastest possible delay
 - Doesn't require calculating gate size

Gate Size

How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$
$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate with given load it drives
- Check work by verifying input cap spec is met

Example: 3-stage path

- 4- 48
- Select gate size x and y for least delay from A to B

Example: 3-stage path

Logical effort Electrical effort Branching effort Path effort Best stage effort Parasitic delay Delay

G = (4/3)(5/3)(5/3)=100/27H = 45/8 B = 3*2 = 6 F = GBH = 125 $\hat{f} = \sqrt[3]{F} = 5$ P = 2 + 3 + 2 = 7 D = 3*5 + 7 = 22 = 4.4 FO4 4-49

VLSI Design

Example: 3-stage path

Work backward for sizes

 y=45*(5/3)/5=15
 x=(15*2)*(5/3)/5=10

4-50

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fast
- Example: Drive 64-bit datapath with unit inverter

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fast
- Example: Drive 64-bit datapath with unit inverter

$$D = NF^{1/N} + P$$

= N(64)^{1/N} + N

Derivation

• Consider adding inverters to end of path

- How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

• Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

N₋n ExtraInverters

Best Stage Effort

- $p_{inv} + \rho (1 \ln \rho) = 0$ has no closed-form solution
- Neglecting parasitics (p_{inv} =0), we define ρ = 2.718 (e)
- For p_{inv} =1, solve numerically for ρ = 3.59

Sensitivity Analysis

- 4-55
- How sensitive is delay to using exactly the best

- 2.4< ρ <6 gives delay with 15% of optimal
 - 4 is a convenient choice

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Number of Stages

- Decoder effort is mainly electrical and branching Electrical Effort: H =
 Branching Effort: B =
- If we neglect logical effort (assume G = 1)
 Path Effort: F =
 - Number of Stages: N =

4-57

Number of Stages

- Decoder effort is mainly electrical and branching Electrical Effort: H = (32*3) / 10 = 9.6 Branching Effort: B = 8
- If we neglect logical effort (assume G = 1)
 Path Effort: F = GBH = 76.8
 - Number of Stages: $N = \log_4 F = 3.1$
- Try a 3-stage design

4-58

3 Stage 4:16 Decoder

Gate Sizes & Delay

Logical Effort: G =

- Path Effort: F =
- Stage Effort: $\hat{f} =$
- Path Delay: D =
- Gate sizes: z =

Gate Sizes & Delay

VLSI Design

Chih-Cheng Hsieh

Comparison

• Compare many alternatives with a spreadsheet

Design	Ν	G	Ρ	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	8	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = rac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	р	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

- 1) Compute path effort F = GBH
- 2) Estimate best number of stages $N = \log_4 F$
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort

6) Find gate sizes

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

4-64

Limits of Logical Effort

4- 65

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects, velocity saturation & body effect ...
- No Interconnect account
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master