Chapter 16

The Molecular Basis of Inheritance

Modified by YJ Chuang @ NTHU-DMS

- In 1953, <u>James Watson</u> and <u>Francis Crick</u> introduced an elegant double-helical model for the structure of <u>DeoxyriboNucleic Acid</u>, or <u>DNA</u>
- Hereditary information is encoded in DNA and reproduced in nearly all cells of the body
- This DNA program directs the development of biochemical, anatomical, physiological, and (to some extent) behavioral traits

Watson visited NTHU in Spring 2010

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Timeline 關於DNA知識的累積與其連貫性

Concept 16.1: DNA is the genetic material

 Early in the 20th century, the identification of the molecules of inheritance loomed as a major challenge to biologists

(Phenotypes \rightarrow Chromosome \rightarrow Molecules)

Let us revisit the question :

What is the molecules of inheritance?

The Search for the Genetic Material: *Scientific Inquiry*

- When <u>T. H. Morgan</u>'s group showed that genes are located on chromosomes, the two components of chromosomes—<u>DNA and</u> protein—became candidates for the genetic material
- The key factor in determining the genetic material was choosing appropriate experimental organisms (模式生物/研究系統)
- The role of DNA in heredity was first discovered by studying bacteria and the viruses that infect them

Evidence That DNA Can Transform Bacteria

- The discovery of the genetic role of DNA began with research by <u>Frederick Griffith</u> in 1928
- Griffith worked with two strains of a bacterium (*Streptococcus pneumoniae* 肺炎鏈球菌), one pathogenic and one harmless

 \bigcirc

Transformation

- When he mixed heat-killed remains of the pathogenic strain with living cells of the harmless strain, some living cells became pathogenic (致病力的獲得; How?)
- He called this phenomenon "transformation", now defined as a change in genotype and phenotype due to assimilation of foreign DNA

Fig. 16-2

Can a genetic trait be transferred between different bacterial strains? **EXPERIMENT** Living S cells Living R cells Heat-killed Mixture of heat-killed S cells (control) (control) S cells (control) and living R cells "transformation" **RESULTS Mouse dies** Mouse dies Mouse healthy Mouse healthy

Living S cells

Timeline

DNA as the transforming substance

- In 1944, <u>Oswald Avery</u>, <u>Maclyn McCarty</u>, and <u>Colin MacLeod</u> announced that the <u>transforming substance was DNA</u>
 - Their conclusion was based on experimental evidence that only DNA worked in transforming harmless bacteria into pathogenic bacteria

What is the evidences to support this?

可被重複驗證的實驗證據!

Evidence That Viral DNA Can Program Cells

- More evidence for DNA as the genetic material came from <u>studies of viruses that</u> <u>infect bacteria</u>
- Such viruses, called bacteriophages (or phages; 噬菌體), are widely used in molecular genetics research

Image next page: Bacteriophages (Phages)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjami

Animation: Phage T2 Reproductive Cycle

100 nm

Timeline

Hershey-Chase Experiment : Is protein or DNA the genetic material of phage T2?

- In 1952, Alfred Hershey and Martha Chase performed experiments showing that DNA is the genetic material of a phage known as T2
 - To determine the source of genetic material in the phage, they designed an experiment showing that only one of the two
 components of T2 (DNA or protein) enters an *E. coli* cell during infection
- They concluded that the <u>injected DNA of the</u> <u>phage</u> provides the genetic information

Fig. 16-4-1

Is protein or DNA the genetic material of phage T2?

EXPERIMENT

Answer: The genetic material of Phage T2 is the DNA.

Additional evidence to support DNA Is the Genetic Material

- It was known that DNA is a polymer of nucleotides, each consisting of a nitrogenous base, a sugar, and a phosphate group
- In 1950, <u>Erwin Chargaff</u> reported that DNA composition varies from one species to the next
 - This evidence of <u>diversity</u> made DNA a more credible candidate for the genetic material

Ratio of DNA nucleotide

 Chargaff's rules state that in any species there is an equal number of A and T bases, and an equal number of G and C bases

Building a Structural Model of DNA: *Scientific Inquiry*

- After most biologists became convinced that DNA was the genetic material, the challenge was to determine: how its structure accounts for its role?
- <u>Maurice Wilkins and Rosalind Franklin</u> were using a technique called <u>X-ray crystallography</u> to study molecular structure

Diffracted

Film

vstallized

X-ray beam

Franklin produced a picture of the DNA molecule using this technique

Fig. 16-6 Rosalind Franklin and her X-ray diffraction photo of DNA

(a) Rosalind Franklin

(b) Franklin's X-ray diffraction photograph of DNA

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- Franklin's X-ray crystallographic images of DNA enabled Watson to deduce that DNA was helical, the X-ray images also enabled Watson to deduce the width of the helix and the spacing of the nitrogenous bases
- The width suggested that the DNA molecule was made up of two strands, forming a double helix

DNA Structure

 Franklin had concluded that there were two antiparallel sugar-phosphate backbones, with the nitrogenous bases paired in the molecule's interior

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Purine + purine: too wide (A or G)

Pyrimidine + pyrimidine: too narrow (T or C)

Purine + pyrimidine: width consistent with X-ray data (A-T or G-C)

Pairing a purine (A or G) with a pyrimidine (T or C) resulted in a uniform width consistent with the X-ray; The Watson-Crick model explains Chargaff's rules: in any organism the amount of A = T, and the amount of G = C

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Summary : The structure of DNA

Watson and Crick built models of a **double helix** to conform to the X-rays and chemistry of DNA.

Figure 16.7 (11th Ed)

Concept 16.2: Many proteins work together in DNA replication and repair

- The relationship between structure and function is manifest in the double helix.
- Watson and Crick noted that the specific base pairing suggested a possible <u>copying</u> <u>mechanism</u> for genetic material.

Genetic molecule? \rightarrow What structure? \rightarrow How does DNA replicate?

逐步深入的問題

The Basic Principle: Base Pairing to a Template Strand

- Since the two strands of DNA are complementary (互補), each strand acts as a template for building a new strand in replication
- In DNA replication, the parent molecule unwinds, and two new daughter strands are built based on **base-pairing rules**

A model for DNA replication on next page

Fig. 16-9-3

A model for DNA replication: the basic concept

(a) Parent molecule

(b) Separation of strands

(c) "Daughter" DNA molecules, each consisting of one parental strand and one new strand

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

DNA replication

- Watson and Crick's semiconservative model of replication predicts that when a double helix replicates, each daughter molecule will have one old strand (derived or "conserved" from the parent molecule) and one newly made strand
- Competing models were the conservative model (the two parent strands rejoin) and the dispersive model (each strand is a mix of old and new)

Experiments to prove the Semiconservative Model

- Experiments by Matthew Meselson and Franklin Stahl supported the semiconservative model
- They labeled the nucleotides of the old strands with a heavy isotope of nitrogen, while any nucleotides were labeled with a lighter isotope

實驗方法與設計

Meselson and Stahl Experiment

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The first replication produced a band of hybrid DNA, eliminating the conservative model
- A second replication produced both light and hybrid DNA, eliminating the dispersive model and supporting the semiconservative model
CONCLUSION

Timeline

DNA double helix Watson and Crick

DNA Replication: A Closer Look

- The copying of DNA is remarkable in its speed and accuracy
- More than a dozen enzymes and other proteins participate in DNA replication

Preview:

Speed of DNA Replication

Bacteria (i.e. *E Coli*) about 500 nucleotides per second per origin of replication **Eukaryotes** about 50 base pairs per second per origin of replication

Getting Started – origins of replication

- Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication "bubble"
- A eukaryotic chromosome may have hundreds or even thousands of origins of replication
- Replication proceeds in both directions from each origin, until the entire molecule is copied

Fig. 16-12a

Origins of replication in E. coli

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Origins of replication in eukaryotes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

重要專有名詞

- At the end of each replication bubble is a replication fork, a Y-shaped region where new DNA strands are elongating
- Helicases are enzymes that untwist the double helix at the replication forks
- Single-strand binding protein binds to and stabilizes single-stranded DNA until it can be used as a template
- Topoisomerase corrects "overwinding" ahead of replication forks by breaking, swiveling, and rejoining DNA strands

Figure 16.13

Some of the proteins involved in the initiation of DNA replication.

© 2011 Pearson Education, Inc.

RNA Primer

- DNA polymerases cannot initiate synthesis of a polynucleotide; they can only add nucleotides to the 3' end
- The initial nucleotide strand is a short RNA primer

Primase

- An enzyme called primase can start an RNA chain from scratch and adds RNA nucleotides one at a time using the parental DNA as a template
- The primer is short (5–10 nucleotides long), and the 3' end serves as the starting point for the new DNA strand

DNA polymerases Synthesizing a New DNA Strand

- Enzymes called DNA polymerases catalyze the elongation of new DNA at a replication fork
- Most DNA polymerases require a primer and a DNA template strand
- The rate of elongation is about 500 nucleotides per second in bacteria and 50 per second in human cells

dATP and ATP

- Each nucleotide that is added to a growing DNA strand is a nucleoside triphosphate
- dATP supplies adenine to DNA and is similar to the ATP of energy metabolism
- The difference is in their sugars: dATP has deoxyribose while ATP has ribose
- As each monomer of dATP joins the DNA strand, it loses two phosphate groups as a molecule of pyrophosphate

Fig. 16-14 Incorporation of a nucleotide into a DNA strand

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The antiparallel structure of the double helix (two strands oriented in opposite directions) affects replication
- DNA polymerases add nucleotides only to the free 3' end of a growing strand; therefore, a new DNA strand can elongate only in the 5' to 3' direction

Leading stand

 Along one template strand of DNA, the DNA polymerase synthesizes a leading strand continuously, moving toward the replication fork

Synthesis of the leading strand during DNA replication

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Lagging strand

- To elongate the other new strand, called the lagging strand, DNA polymerase must work in the direction away from the replication fork
- The lagging strand is synthesized as a series of segments called Okazaki fragments (岡崎令治 discovered in 1968), which are joined together by DNA ligase

Synthesis of the lagging strand

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Protein	Function
Helicase	Unwinds parental double helix at replication forks
Single-strand binding protein	Binds to and stabilizes single-stranded DNA until it can be used as a template
Topoisomerase	Relieves "overwinding" strain ahead of replica- tion forks by breaking, swiveling, and rejoining DNA strands
Primase	Synthesizes an RNA primer at 5' end of leading strand and of each Okazaki fragment ofl agging strand
DNA pol III	Using parental DNA as a template, synthesizes new DNA strand by covalently adding nu- cleotides to the 3' end of a pre-existing DNA strand or RNA primer
DNA pol I	Removes RNA nucleotides of primer from 5' end and replaces them with DNA nucleotides
DNA ligase	Joins 3' end of DNA that replaces primer to rest of leading strand and joins Okazaki fragments of lagging strand

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

The DNA Replication Complex

- The proteins that participate in DNA replication form a large complex, a "DNA replication machine"
- The DNA replication machine is probably stationary during the replication process
- Recent studies support a model in which DNA polymerase molecules "reel in" parental DNA and "extrude" newly made daughter DNA molecules

Figure 16.18

A current model of the DNA replication complex.

Thinking question: Genotoxic drugs and cancer

- Why chemicals that could disrupt DNA replication may be good candidate for anti-cancer (chemotherapy) drug?
 - Cisplatin (阿樂癌): DNA cross-links
 - Paclitaxel (太平洋紫杉醇): Mitotic inhibitor
 - Etoposide (醫百幸): Topoisomerase II inhibitor
 - Peplomycin (培洛霉素): Inhibit DNA metabolism
 - Irinotecan (抗癌妥): Topoisomerase I inhibitor
 - Gemcitabine (健擇): Compound nucleotides, which compete with dNTPs during DNA replication

Proofreading and Repairing DNA

- DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides
- In mismatch repair of DNA, repair enzymes correct errors in base pairing
- DNA can be damaged by chemicals, radioactive emissions, X-rays, UV light, and certain molecules (in cigarette smoke for example)
 In nucleotide excision repair, a nuclease cuts out and replaces damaged stretches of DNA

Figure 16.19-3

Nucleotide excision repair of DNA damage.

Replicating the Ends of DNA Molecules

- Limitations of DNA polymerase create problems for the linear DNA of eukaryotic chromosomes
- The usual replication machinery provides no way to complete the 5' ends, so repeated rounds of replication produce shorter DNA molecules

- Eukaryotic chromosomal DNA molecules have at their ends nucleotide sequences called telomeres
- Telomeres do not prevent the shortening of DNA molecules, but they do postpone the erosion of genes near the ends of DNA molecules
- It has been proposed that the shortening of telomeres is connected to aging

Telomeres 染色體尾端 又稱 端粒 (telomere)

Telomeres are stained orange in these mouse chromosome.

1 µm

© 2011 Pearson Education, Inc.

Telomerase 端粒酶

- If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce
- An enzyme called telomerase catalyzes the lengthening of telomeres in germ cells

Protective function of telomeres

- The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions
- There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist

Exercise makes you younger at the cellular level: the telomere effect 運動抗老?

- Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv. 2016 Jul 27;2(7):e1600031
- Physical activity and telomere length in U.S. men and women: An NHANES investigation. Preventive Medicine 100 (2017) 145–151
- Physical activity was significantly and meaningfully associated with telomere length in U.S. men and women - high levels of physical activity tend to have longer telomeres, accounting for years of reduced cellular.

常見耐力鍛煉:

健走 (時速~6公里,雙手需擺動) 跑步 (時速8公里+,持續20分鐘+) 跳舞 游泳 自行車 爬樓梯 網球 籃球 足球 羽毛球

思考題: Anti-Aging vs. Exercise

- "Although recent findings on the link of exercise and telomere length is compelling, the study didn't actually measure whether the 45 minutes of endurance exercise led to longer telomeres."
- NRF1 is also part of the pathway that's activated during starvation; some studies have indeed hinted that a fasting diet may help cells stay biologically young and not divide as frequently.
- 1. How to design an experiment to directly measure endurance exercise effect to telomere length?
- 2. What may happen on telomere length if one combine endurance exercise and fasting diet?

Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins

- The bacterial chromosome is a doublestranded, circular DNA molecule associated with a small amount of protein
- Eukaryotic chromosomes have linear DNA molecules associated with a large amount of protein
- In a bacterium, the DNA is "supercoiled" and found in a region of the cell called the nucleoid

 \mathcal{D}

Chromatin and Histones

- Chromatin is a complex of DNA and protein, and is found in the nucleus of eukaryotic cells
 Histones are proteins that are responsible for the first level of DNA packing in chromatin
 - Histones can undergo chemical modifications that result in changes in chromatin organization

Chromatin Packing in a Eukaryotic Chromosome

DNA, the double helix

Histones

Nucleosomes, or "beads on a string" (10-nm fiber)

Chromatin is organized into fibers

- 2-nm DNA double helix
- 10-nm fiber
 - DNA winds around histones to form nucleosome "beads"
 - Nucleosomes are strung together like beads on a string by linker DNA
- 30-nm fiber
 - Interactions between nucleosomes cause the thin fiber to coil or fold into this thicker fiber

300-nm fiber

The 30-nm fiber forms **looped domains** that attach to proteins

• 700-nm Metaphase chromosome

- The looped domains coil further
- The width of a chromatid is 700 nm

Euchromatin and heterochromatin

- Most chromatin is loosely packed in the nucleus during interphase and condenses prior to mitosis
 - Loosely packed chromatin is called euchromatin

- During interphase a few regions of chromatin (centromeres and telomeres) are highly condensed into heterochromatin
 - It is difficult for the cell to express genetic information coded in these condensed regions

You should now be able to:

Describe the contributions of the following people: Griffith; Avery, McCary, and MacLeod; Hershey and Chase; Chargaff; Watson and Crick; Franklin; Meselson and Stahl Describe the structure of DNA

Describe the process of DNA replication; include the following terms: antiparallel structure, DNA polymerase, leading strand, lagging strand, Okazaki fragments, DNA ligase, primer, primase, helicase, topoisomerase, single-strand binding proteins

Describe the function of telomeres

Compare a bacterial chromosome and a eukaryotic chromosome